Pattern Recognition. Bayes decision theory

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Pattern Recognition. Bayes decision theory"

Transcript

1 Computer Scence Department Unversty of Verona A.A Pattern Recognton Bayes decson theory 1

2 Rev. Thomas Bayes, F.R.S

3 Introduzone Approcco statstco fondamentale d classfcazone d pattern Ipotes: Goal: 1. Il problema d decsone è posto n termn probablstc;. Tutte le probabltà rlevant sono conoscute; Dscrmnare le dfferent regole d decsone usando le probabltà ed cost ad esse assocat; 3

4 Sa lo stato d natura da descrvere probablstcamente; Sano date: 1. Due class 1 and per cu sono note 1 a P = 0.7 b P = 0.3. Nessuna msurazone. Regola d decsone: Un esempo semplce = Probabltà a pror o Pror 1 1 Decd se P > P ; altrment decd Pù che decdere, ndovno lo stato d natura. 4

5 Altro esempo Formula d Bayes Nell potes precedente, con n pù la sngola msurazone, v.a. dpendente da, posso ottenere p 1, ossa la probabltà d avere la msurazone sapendo che lo stato d natura è. Fssata la msurazone pù è alta p pù è probable che sa lo stato gusto. = Lkelhood, o Probabltà stato-condzonale 5

6 6 = Pror = Lkelhood = Posteror = Evdenza Note e, la decsone dello stato d natura dventa, per Bayes ossa Altro esempo Formula d Bayes P p, P p p P p P p p P p P P P P, dove: 1 J P p p

7 Regola d decsone d Bayes P p P p posteror lkelhood pror evdence Ossa l Posteror o probabltà a posteror è la probabltà che lo stato d natura sa data l osservazone. Il fattore pù mportante è l prodotto ; l evdenza p lkelhood pror è semplcemente un fattore d scala, che asscura che P 1 Dalla formula d Bayes derva la regola d decsone d Bayes: Decd 1 se P 1 > P, altrment 7

8 Regola d decsone d Bayes Per dmostrare l effcaca della regola d decsone d Bayes: 1 Defnsco la probabltà d errore annessa a tale decsone: P error P 1 P se decdo se decdo 1 Dmostro che la regola d decsone d Bayes mnmzza la probabltà d errore. Decdo 1 se P e vceversa. 1 P 3 Qund se voglo mnmzzare la probabltà meda d errore su tutte le osservazon possbl, P error P error, d se per ogn prendo Perror pù pccola possble m asscuro la probabltà d errore mnore come detto l fattore p è nnfluente. P error p d 8

9 Regola d decsone d Bayes 3 In questo caso tale probabltà d errore dventa Perror =mn[p 1, P ]; Questo m asscura che la regola d decsone d Bayes Decd 1 se P 1 > P, altrment mnmzza l errore! Regola d decsone equvalente: La forma della regola d decsone evdenza l mportanza della probabltà a posteror, e sottolnea l nnfluenza dell evdenza, un fattore d scala che mostra quanto frequentemente s osserva un pattern ; elmnandola, s ottene la equvalente regola d decsone: Decd 1 se p 1 P 1 > p P, altrment 9

10 Teora della decsone Il problema può essere scsso n una fase d nferenza n cu s usano dat per addestrare un modello p k e una seguente fase d decsone, n cu s usa la posteror per fare la scelta della classe Un alternatva è quella d rsolvere problem contemporaneamente e addestrare una funzone che mapp l nput drettamente nello spazo delle decson, coè delle class lnear machne, che usa funzon dscrmnant lnear 10

11 Funzon dscrmnant Uno de var metod per rappresentare classfcator d pattern consste n un set d funzon dscrmnant g, =1...c Il classfcatore fnale, ossa la lnear machne assegna l vettore d feature alla classe se g > g per ogn 11

12 Funzone dscrmnant Esstono molte funzon dscrmnant equvalent. Per esempo, tutte quelle per cu rsultat d classfcazone sono gl stess Per esempo, se f è una funzone monotona crescente, allora g f g Alcune forme d funzon dscrmnant sono pù semplc da capre o da calcolare 1

13 13 L effetto d una funzone dscrmnante è quello d dvdere lo spazo delle features n c superfc d separazone o decsone, R 1,..., R c Funzone dscrmnant 3 Le regon sono separate con confn d decsone, lnee descrtte dalle funzon dscrmnant. Nel caso a due categore ho due funzon dscrmnant, g 1,g, per cu assegno a 1 se g 1 > g o g 1 -g >0 Usando ln ln P P p p g P P g g g g ottengo una lnear machne

14 La struttura d un classfcatore d Bayes è determnata da: Le denstà condzonal Le probabltà a pror La denstà normale p P Una delle pù mportant denstà è la denstà normale o Gaussana multvarata; nfatt: è analtcamente trattable; pù mportante, fornsce la mglore modellazone d problem sa teorc che pratc l teorema del Lmte Centrale assersce che sotto vare condzon, la dstrbuzone della somma d d varabl aleatore ndpendent tende ad un lmte partcolare conoscuto come dstrbuzone normale. Intervallo Inform % 95% 99% 14

15 La denstà normale La funzone Gaussana ha altre propretà La trasformata d Fourer d una funzone Gaussana è una funzone Gaussana; È ottmale per la localzzazone nel tempo o n frequenza 15

16 Denstà normale unvarata Inzamo con la denstà normale unvarata. Essa è completamente specfcata da due parametr, meda e varanza, s ndca con N, e s presenta nella forma Meda Varanza p 1 E[ ] E[ 1 ep p d ] Fssata meda e varanza la denstà Normale è quella dotata d massma entropa; L entropa msura l ncertezza d una dstrbuzone o la quanttà d nformazone necessara n meda per descrvere la varable aleatora assocata, ed è data da H p p ln p d p d 16

17 Denstà normale multvarata La generca denstà normale multvarata a d dmenson s presenta nella forma p 1 ep 1/ d / S n cu vettore d meda a d component S matrce d d d covaranza, dove 1 S = determnante della matrce S -1 = matrce nversa T S 1 d=1 d= Analtcamente S Elemento per elemento t t μ μ μ μ p d 17

18 Denstà normale multvarata Caratterstche della matrce d covaranza Smmetrca Semdefnta postva S 0 = varanza d = = covaranza tra e se e sono statstcamente ndpendent = 0 0 Se p è l prodotto della denstà unvarata per componente per componente. Se p N μ, S A matrce d k y=a t t t p y N A μ, A SA 18

19 Denstà normale multvarata 3 CASO PARTICOLARE: k = 1 p N μ, Σ a vettore d 1 d lunghezza untara y=a t y è uno scalare che rappresenta la proezone d su una lnea n drezone defnta da a a t S a è la varanza d su a In generale S c permette d calcolare la dspersone de dat n ogn superfce, o sottospazo. 19

20 Sano trasf. sbancante, htenng transform F la matrce degl autovettor d S n colonna; L la matrce dagonale de corrspondent autovalor; La trasformazone A = FL 1/, applcata alle coordnate dello spazo delle feature, asscura una dstrbuzone con matrce d covaranza = I matrce dentca Denstà normale multvarata 4 La denstà N, S d-dmensonale necessta d d + dd+1/ parametr per essere defnta Ma cosa rappresentano grafcamente F e L? Meda ndvduata dalle coordnate d 0

21 Denstà normale multvarata 5 Gl ass prncpal degl perellssod sono dat dagl autovettor d S descrtt da F Gl perellssod sono que luogh de punt per qual la dstanza d da r t 1 S detta anche dstanza d Mahalanobs, è costante Le lunghezze degl ass prncpal degl perellssod sono dat dagl autovalor d S descrtt da L 1

22 Funzon dscrmnant - Denstà Normale Tornando a classfcator Bayesan, ed n partcolare alle lnear machne, analzzamo la funzone dscrmnante come s traduce nel caso d denstà Normale g ln p ln P g 1 μ t Σ 1 μ ln A seconda della natura d S, la funzone dscrmnante può essere semplfcata. Vedamo alcun esemp. d 1 ln Σ ln P

23 Funzon dscrmnant - Denstà Normale S = I È l caso pù semplce n cu le feature sono statstcamente ndpendent = 0,, ed ogn classe ha la stessa varanza caso 1-D: μ g ln P 1 t t t g μ ln μμ P t dove l termne, uguale per ogn, può essere gnorato dove g 1 t μ e gungendo 0, 0 alla 1 forma : μ μ t ln P 3

24 Funzon dscrmnant - Denstà Normale S = I Le funzon precedent vengono chamate funzon dscrmnant lnear I confn d decsone sono dat da g =g per le due class con pù alta probabltà a posteror In questo caso partcolare abbamo: dove 0 t μ 1 μ 0 μ μ 0 μ μ NB: se << μ μ la poszone del confne d decsone è nsensble a pror! ln P μ P μ 4

25 Funzon dscrmnant - Denstà Normale S = I 3 Le funzon dscrmnant lnear defnscono un perpano passante per 0 ed ortogonale a : dato che μ μ, l perpano che separa R da R è ortogonale alla lnea che unsce le mede. Dalla formula precedente s nota che, a partà d varanza, l pror maggore determna la classfcazone. 1-D 5

26 Funzon dscrmnant - Denstà Normale S = I 4 1-D -D Teora e Tecnche del Rconoscmento 6

27 Funzon dscrmnant - Denstà Normale S = I 5 -D 3-D Teora e Tecnche del Rconoscmento 7

28 Funzon dscrmnant - Denstà Normale S = I 6 1 μ μ ln P μ P 0 μ μ μ NB.: Se le probabltà pror P, =1,...,c sono ugual, allora l termne logartmco può essere gnorato, rducendo l classfcatore ad un classfcatore d mnma dstanza. In pratca, la regola d decsone ottma ha una semplce nterpretazone geometrca Assegna alla classe la cu meda è pù vcna 8

29 Funzon dscrmnant - Denstà Normale S = I 7 1-D -D 9

30 Funzon dscrmnant - Denstà Normale S = I 8 -D 3-D 30

31 31 Un altro semplce caso occorre quando le matrc d covaranza per tutte le class sono ugual, ma arbtrare. In questo caso l ordnara formula può essere semplfcata con che è ulterormente trattable, con un procedmento analogo al caso precedente svluppando l prodotto ed elmnando l termne Funzon dscrmnant - Denstà Normale S = S ln ln 1 ln 1 1 t P d g S Σ μ μ ln 1 1 t P g S μ μ Σ 1 t

32 Funzon dscrmnant - Denstà Normale S = S Ottenamo così funzon dscrmnant ancora lnear, nella forma: t g dove 0 Σ 1 1 μ μ t Σ 1 0 μ ln P Poché dscrmnant sono lnear, confn d decsone sono ancora perpan 3

33 Funzon dscrmnant - Denstà Normale S = S 3 Se le regon d decsone R ed R sono contgue, l confne tra esse dventa: 33

34 Funzon dscrmnant - Denstà Normale S = S 4 Poché n generale dfferentemente da prma non è l vettore che unsce le mede = -, l perpano che dvde R da R non è qund ortogonale alla lnea tra le mede; comunque, esso nterseca questa lnea n 0 Se pror sono ugual, allora 0 s trova n mezzo alle mede, altrment l perpano ottmale d separazone s troverà spostato verso la meda meno probable. 34

35 Funzon dscrmnant - Denstà Normale S = S 5 -D 35

36 Funzon dscrmnant - Denstà Normale S = S 6 3-D 36

37 Funzon dscrmnant - Denstà Normale S arbtrara Le matrc d covaranza sono dfferent per ogn categora; Le funzon dscrmnant sono nerentemente quadratche; 37

38 Nel caso -D le superfc d decsone sono perquadrche: Iperpan Coppa d perpan Ipersfere Funzon dscrmnant Denstà Normale S arbtrara Iperparabolod Iperperbolod d varo tpo Anche nel caso 1-D, per la varanza arbtrara, le regon d decsone d solto sono non connesse. 38

39 Funzon dscrmnant Denstà Normale S arbtrara 3 39

40 Funzon dscrmnant Denstà Normale S arbtrara 4 40

41 Funzon dscrmnant Denstà Normale S arbtrara 5 41

42 Funzon dscrmnant Denstà Normale S arbtrara 6 4

43 Funzon dscrmnant Denstà Normale S arbtrara 7 43

44 Funzon dscrmnant Denstà Normale S arbtrara 8 44

45 Rferment Lbro Duda, fno a Sez..6 compresa 45

Teoria e Tecniche del Riconoscimento. Teoria della decisione di Bayes

Teoria e Tecniche del Riconoscimento. Teoria della decisione di Bayes Facoltà d Scenze MM. FF. NN. Unverstà d Verona A.A. 00- Teora e Tecnche del Rconoscmento Teora della decsone d Bayes Teora e Tecnche del Rconoscmento Rev. Thomas Bayes, F.R.S 70-76 Teora e Tecnche del

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Rconoscmento e recupero dell nformazone per bonformatca Teora della decsone d Bayes Manuele Bcego Corso d Laurea n Bonformatca Dpartmento d Informatca - Unverstà d Verona Sommaro Sstema d classfcazone

Dettagli

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche Element d teora bayesana della decsone Teora bayesana della decsone: caratterstche La teora bayesana della decsone è un approcco statstco fondamentale al problema del pattern recognton. Il suo obettvo

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari REGRESSIONE LINEARE Ha un obettvo mportante: nvestgare sulle relazon emprche tra varabl allo scopo d analzzare le cause che possono spegare un determnato fenomeno È caratterzzata da semplctà: modell utlzzat

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Lezione 6. Bayesian Learning

Lezione 6. Bayesian Learning Lezone 6 Bayesan Learnng Martedì, 6 Novembre 004 Guseppe Manco Readngs: Sectons 6.-6.5, Mtchell Chapter, Bshop Chapter 4, Hand-Mannla-Smth Bayesan Learnng Bayesan Learnng Concett probablstc, apprendmento

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Contenuti: o Specificazione del modello. o Ipotesi del modello classico. o Stima dei parametri. Regressione semplice Roberta Siciliano 2

Contenuti: o Specificazione del modello. o Ipotesi del modello classico. o Stima dei parametri. Regressione semplice Roberta Siciliano 2 Corso d STATISTICA Prof. Roberta Sclano Ordnaro d Statstca, Unverstà d Napol Federco II Professore supplente, Unverstà della Baslcata a.a. 0/0 Contenut: o Specfcazone del modello o Ipotes del modello classco

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Fisica Generale I Misure di grandezze fisiche e incertezze di misura Lezione 3 Facoltà di Ingegneria Livio Lanceri

Fisica Generale I Misure di grandezze fisiche e incertezze di misura Lezione 3 Facoltà di Ingegneria Livio Lanceri Fsca Generale I Msure d grandezze fsche e ncertezze d msura Lezone 3 Facoltà d Ingegnera Lvo Lancer Indce Abbamo mparato: Orgne e classfcazone delle ncertezze (error) d msura Rappresentazone delle ncertezze

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Fisica Generale I Misure di grandezze fisiche e incertezze di misura Lezione 3 Facoltà di Ingegneria Livio Lanceri

Fisica Generale I Misure di grandezze fisiche e incertezze di misura Lezione 3 Facoltà di Ingegneria Livio Lanceri Fsca Generale I Msure d grandezze fsche e ncertezze d msura Lezone 3 Facoltà d Ingegnera Lvo Lancer Indce Abbamo mparato: Orgne e classfcazone delle ncertezze (error) d msura Rappresentazone delle ncertezze

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

SVM learning WM&R a.a. 2015/16

SVM learning WM&R a.a. 2015/16 SVM learnng WM&R a.a. 2015/16 R. BASILI D I PA R T I M E N T O D I I N G E G N E R I A D E L L I M P R E S A U N I V E R S I TÀ D I R O M A T O R V E R G ATA E M A I L : B A S I L I @ I N F O. U N I R

Dettagli

SVM learning. R. Basili (A. Moschitti) WM&R a.a. 2013/14. Dipartimento di Ingegneria dell Impresa Università di Roma Tor Vergata

SVM learning. R. Basili (A. Moschitti) WM&R a.a. 2013/14. Dipartimento di Ingegneria dell Impresa Università di Roma Tor Vergata SVM learnng WM&R a.a. 2013/14 R. Basl (A. Moschtt) Dpartmento d Ingegnera dell Impresa Unverstà d Roma Tor Vergata Emal: basl@nfo.unroma2.t 1 Sommaro Perceptron Learnng Lmt de classfcator lnear Support

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

TECNICHE DI ANALISI DEI DATI MODELLI LINEARI

TECNICHE DI ANALISI DEI DATI MODELLI LINEARI TECNICHE DI ANALISI DEI DATI AA 017/018 PROF. V.P. SENESE Quest materal sono dsponbl per tutt gl student al seguente ndrzzo: https://goo.gl/hxl9zg Unverstà della Campana Lug Vanvtell Dpartmento d Pscologa

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni IL MODELLO DI MACK Materale ddattco a cura d Domenco Gorgo Attuaro Dann d Gruppo Socetà Cattolca d Asscurazon CHAIN-LADDE CLASSICO Metodo pù utlzzato per la stma della rserva snstr. Semplctà. Dstrbuton-ree

Dettagli

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili SVM learnng WM&R a.a. 2010/11 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e Produzone Unverstà d Roma Tor Vergata Emal: basl@nfo.unroma2.t 1 Sommaro Perceptron Learnng Lmt de classfcator lnear Support

Dettagli

La likelihood. , x 3. , x 2. ,...x N

La likelihood. , x 3. , x 2. ,...x N La lkelhood È dato un set d msure {x 1, x 2, x 3,...x N } (cascuna delle qual può essere multdmensonale) Supponamo che la pdf (f) dpenda da un parametro (anch'esso eventualmente multdmensonale) La verosmglanza

Dettagli

Elementi di strutturistica cristallina I

Elementi di strutturistica cristallina I Chmca fsca superore Modulo 1 Element d strutturstca crstallna I Sergo Brutt Impacchettamento compatto n 2D Esstono 2 dfferent mod d arrangare n un pano 2D crconferenze dentche n modo da tassellare n modo

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II L'Anals n Component Prncpal Lug D Ambra Dpartmento d Matematca e Statstca Unverstà d Napol Federco II ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Anals Multdmensonale de Dat (AMD) è una famgla d tecnche

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

Incertezza di sensibilità < fluttuazione intrinseca delle misure.

Incertezza di sensibilità < fluttuazione intrinseca delle misure. Error casual no ad ora abbamo correlato la bontà d una msura alla sensbltà degl strument utlzzat. Samo partt da una stuazone n cu effettuata una sere d msure rpetute, le msure hanno tutte dato lo stesso

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986 Anals degl error Introduzone J. R. Taylor, Introduzone all anals degl error, Zanchell, Bo 1986 Sstem d untà d msura, rappresentazone numerca delle quanttà fsche e cfre sgnfcatve Resnck, Hallday e Krane

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

TECNICHE DI ANALISI DEI DATI MODELLI LINEARI

TECNICHE DI ANALISI DEI DATI MODELLI LINEARI TECNICHE DI ANALISI DEI DATI AA 16/17 PROF. V.P. SENESE Quest materal sono dsponbl per tutt gl student al seguente ndrzzo: https://goo.gl/rwabbd Seconda Unverstà d Napol (SUN) Dpartmento d Pscologa TECNICHE

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

Analisi statistica degli errori casuali

Analisi statistica degli errori casuali Anals statstca degl error casual error casual: dovut a ncertezze spermental non controllabl che comunque spngono l valore msurato con ugual probabltà n alto od n basso rspetto al valore vero. Quest error

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI METODI PER LO STUDIO DEL LEGAME TRA VARIABILI IN UN RAPPORTO DI CAUSA ED EFFETTO I MODELLI DI REGRESSIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

Classificazione di immagini con GRASS

Classificazione di immagini con GRASS Classfcazone d mmagn con GRASS Classfcazone d mmagn Scopo della classfcazone: rcavare da una mmagne nformazon sulla superfce. Foto nterpretazone sfrutta le conoscenze a pror dell operatore. Classfcazone

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 2:

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 2: Costruzone d macchne Modulo d: Progettazone probablstca e affdabltà Marco Beghn Lezone : Probabltà condzonata e varabl casual Probabltà condzonata: La probabltà d un evento A (r)valutata quando è noto

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Classificazione di immagini con GRASS

Classificazione di immagini con GRASS Classfcazone d mmagn con GRASS Paolo Zatell Dpartmento d Ingegnera Cvle e Ambentale Unverstà d Trento Classfcazone d mmagn Scopo della classfcazone: rcavare da una mmagne nformazon sulla superfce. Foto

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 17 30 novembre 2011 Meda e varanza professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Teorema er ogn funzone

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008 Intellgenza rtfcale II Ragonamento probablstco Rappresentazone Marco astra Ragonamento probablstco: rappresentazone - arte Mond possbl sottonsem event artzon e varabl aleatore robabltà Margnalzzazone Condzonal

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

L analisi della correlazione lineare

L analisi della correlazione lineare L anals della correlazone lneare Corso d STATISTICA Prof. Roberta Sclano Ordnaro d Statstca, Unverstà d apol Federco II Professore supplente, Unverstà della Baslcata a.a. 20/202 Prof. Roberta Sclano Statstca

Dettagli

1) Le medie e le varianze calcolate su n osservazioni relative alle variabili quantitative X ed Y sono tali che. σ x

1) Le medie e le varianze calcolate su n osservazioni relative alle variabili quantitative X ed Y sono tali che. σ x TEORIA 1) Le mede e le varanze calcolate su n osservazon relatve alle varabl quanttatve X ed Y sono tal che 1 e. Consderando le corrspondent varabl standardzzate delle seguent affermazon rsulta vera 1

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Modelli di utilità aleatoria

Modelli di utilità aleatoria corso d Teora de Sstem d Trasporto Modell d utltà aleatora PROF. ING. UMBERTO CRISALLI Dpartmento d Ingegnera dell Impresa crsall@ng.unroma.t Iscrzone al corso Modell d offerta ü Da effettuars anche on

Dettagli

Campo elettrico. F E q. Qq k r. r q r

Campo elettrico. F E q. Qq k r. r q r Campo elettrco In passato s potzzava che le nterazon (lumnose, elettrche) potessero vaggare a veloctà nfnta, per cu due carche poste ad una certa dstanza avrebbero dovuto stantaneamente rsentre d una forza

Dettagli

Richiami di modelli di utilità aleatoria

Richiami di modelli di utilità aleatoria Corso d LOGISTICA TERRITORIALE www.unroma.t/ddattca/lt DOCENTE prof. ng. Agostno Nuzzolo Rcham d modell d utltà aleatora prof. ng. Agostno Nuzzolo - Corso d Logstca Terrtorale Modell d domanda e utltà

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE Corso d laurea n Ingegnera per l Ambente e l Terrtoro a.a. 006-007 Prof. V. Franco: Topografa e tecnche cartografche RETI TOPOGRAFICHE Unverstà degl Stud d Palermo Dpartmento d Rappresentazone Corso d

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercz d Probabltà e Statstca Samuel Rota Bulò 25 maggo 2007 Funzon d v.a., meda, varanza, moda, medana, quantl e quartl. Vettor aleator, denst condzonata, covaranza, correlazone. Eserczo 1 Sa Y ax + b

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella L AALISI MOOVARIATA: Varabltà e mutabltà Prof. Mara Carella Varabltà Le msure d tendenza centrale non sono suffcent alla comprensone de fenomen. Una sntes approprata deve tener conto del modo n cu s dstrbuscono

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Distribuzione di Boltzmann. Nota

Distribuzione di Boltzmann. Nota Dstrbuzone d Boltzmann ota Tutto l soggetto trattato deve n realta essere nserto nel quadro concettuale della meccanca statstca, che non e trattato n questo corso. Quest cenn sono solo un breve rchamo

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli

IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE

IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE CORRELAZIONE Legame - Assocazone - Accordo Relazone tra varabl valutare l grado d recproca nfluenza tra due varabl; valutare l grado d assocazone

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

Ragionamento probabilistico: rappresentazione

Ragionamento probabilistico: rappresentazione Intellgenza Artfcale II Ragonamento probablstco: rappresentazone Marco astra Intellgenza Artfcale II - A.A. - Rappresentazone robablstca ] Ragonamento probablstco: rappresentazone Mond possbl sottonsem

Dettagli