Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Minimizzazione degli Stati in una Rete Sequenziale Sincrona"

Transcript

1 Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l prolm 2. Costruzion ll tll gli stti 3. Minimizzzion l numro gli stti 4. Coifi gli stti intrni 5. Costruzion ll tll ll trnsizioni 6. Slt gli lmnti i mmori 7. Costruzion ll tll ll itzioni 8. Sintsi si ll rt omintori h rlizz l funzion stto prossimo si i qull h rlizz l funzion usit Murizio Plsi 2 1

2 Motivzioni Il numro minimo i lmnti i mmori nssri mmorizzr gli stti ll insim S è N min = log 2 S Nl mollo i un mhin stti possono sistr gli stti rionnti L intifizion liminzion gli stti rionnti omport Rti omintori mno ostos Minori lmnti i mmori Mhin 8 stti, 1 ingrsso, 1 usit Funzioni λ, δ Mhin 4 stti, 1 ingrsso, 1 usit Funzioni λ 1, δ 1 Eliminno 4 stti Murizio Plsi 3 Oittivi Oittivo ll riuzion l numro gli stti è l iniviuzion i un mhin minim quivlnt, ovvro funzionlmnt quivlnt on il minimo numro i stti L riuzion vin rlizzt in u fsi Eliminzion gli stti non rggiungiili llo stto inizil Intifizion gli stti Equivlnti, pr l mhin ompltmnt spifit Comptiili, pr l mhin non ompltmnt spifit Murizio Plsi 4 2

3 Stti Irrggiungiili Uno stto è irrggiungiil s non sist lun squnz i trnsizion i stto h porti llo stto inizil in tl stto Trnsizion i Rst I I C C D D Murizio Plsi 5 Minimizzzion i Mhin Compltmnt Spifit Dfinizioni Sino: I α un squnz ingrsso {i j,, i k } U α, squnz usit ss ssoit ottnut ttrvrso λ s i,s j u gnrii stti Du stti s i s j pprtnnti S sono inistinguiili s U α,i =L(s i, I α ) = L(s j, I α ) = U α,j I α Cioè s pr qulsisi squnz i ingrsso l usit gnrt prtno s i o s j sono l stss L inistinguiilità tr s i s j si ini on s i ~s j L rlzion i inistinguiilità go i tr proprità Riflssiv: s i ~ s i Simmtri: s i ~s j s j ~ s i Trnsitiv: s i ~s j s j ~s k s i ~s k Murizio Plsi 6 3

4 Minimizzzion i Mhin Compltmnt Spifit Clssi i Stti Equivlnti Du stti inistinguiili sono quivlnti possono ssr sostituiti un solo stto Un gruppo i stti tr loro quivlnti può ssr rggruppto in un uni lss L insim i lssi iniviut trmin l insim i stti ll mhin minim quivlnt α ~ ; D ~ E α C β β D E γ γ Murizio Plsi 7 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr L finizion i inistinguiilità è i iffiil ppliilità poihé rihir i onsirr tutt l squnz i ingrsso Rgol i Pull-Ungr Du stti sono s i s j sono inistinguiili s solo s λ(s i,i) = λ(s j,i) i I ovvro l usit sono uguli pr tutti i simoli ingrsso δ(s i,i) = δ(s j,i) i I ovvro gli stti prossimi sono inistinguiili pr tutti i simoli ingrsso L rgol è itrtiv Murizio Plsi 8 4

5 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Esmpio 0 /0 /0 /1 /1 /1 1 /1 /1 /1 /0 /0 hnno l stss usit s gli stti futuri sono inistinguiili, ~ hnno l stss usit s gli stti futuri sono inistinguiili, ~ non è inistinguiil, poihé h un iffrnt usit Mhin minim quivlnt α β γ 0 γ /0 α /1 α /1 1 α /1 β /1 β /0 Poihé l inistinguiilità tr ipn qull tr vivrs, possimo onlur h ~, ~ L lssi i inistinguiilità sono: α={, }, β={}, γ={, } Murizio Plsi 9 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr Poihé gli insimi I S hnno rinlità finit, opo un numro finito i pssi si vrifi un ll u onizioni: s i ~s j s i simoli usit sono ivrsi o gli stti prossimi sono istinguiili s i ~s j s i simoli usit sono uguli gli stti prossimi sono inistinguiili Murizio Plsi 10 5

6 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni L rlzioni i inistinguiilità possono ssr intifit mint l Tll ll Implizioni Mtt in rlzion ogni oppi i stti È tringolr (proprità simmtri) priv i igonl prinipl Ogni lmnto ll tll ontin Il simolo i non quivlnz (X) o i quivlnz (~) L oppi i stti ui si rimn l vrifi, s non è possiil pronunirsi sull quivlnz gli stti orrisponnti S1 S2 S3 S1,S2 S0 ~ S1 S2 Murizio Plsi 11 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni Pr ogni oppi i stti S è mrt om quivlnt non è rihist un ultrior vrifi S si rimn un ltr oppi S qusti stti sono quivlnti nh gli stti ll oppi in sm sono quivlnti S qusti sono non quivlnti nh gli stti ll oppi in sm sono non quivlnti S gli stti ll oppi ui si rimn ipnono un oppi ultrior si ript il proimnto in moo itrtivo L nlisi trmin quno non sono più possiili liminzioni L oppi rimst sono quivlnti Murizio Plsi 12 6

7 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni f g 0 g/0 /0 /1 /0 g/0 /1 /1 1 /1 /1 g/0 /1 /1 f/0 g/0 f g g g ~ g fg g f Murizio Plsi 13 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni f g g g ~ g fg g nlisi nlisi ll ll oppi oppi gli gli stti stti -: -: -g -g è inistinguiil inistinguiil s s lo lo è - - ~ ~ -: -: -g -g è istinguiil istinguiil ~ ~ -: -: - - è istinguiil istinguiil ~ ~ -: -: -g -g è inistinguiil inistinguiil s s lo lo è - - ~ ~ -: -: -g -g è istinguiil istinguiil ~ ~ f-: f-: - - è inistinguiil inistinguiil s s lo lo è -g -g f~ f~ g-: g-: - - è inistinguiil inistinguiil g~ g~ g-f: g-f: - - è inistinguiil inistinguiil s s lo lo è -g -g g~f g~f f Murizio Plsi 14 7

8 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni f g ~ ~ ~ ~ f Clssi i inistinguiilità α = {,,} β = {,g} γ = {} δ = {f} Tll gli stti minim quivlnt α β γ δ 0 1 β /0 α /1 α /1 β /0 α /0 α /1 γ /1 δ /0 Murizio Plsi 15 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Ossrvzioni Pr l FSM ompltmt spifit l lgoritmo i Pull-Ungr Consnt i intifir in mnir stt l FSM minim quivlnt L prtizion i quivlnz è uni (ogni stto pprtin un un sol lss) H un omplssità sponnzil on il numro i stti Murizio Plsi 16 8

9 Mhin non ompltmnt spifit Dfinizioni Sono mhin in ui pr lun onfigurzioni gli ingrssi stti orrnti non sono spifiti gli stti futuri /o l onfigurzioni usit Du stti s i s j si iono omptiili (s i s j ) S, ssunti om stti inizili, pr ogni possiil squnz i ingrsso (grn pir) nno luogo squnz i simoli usit intii mno i onizioni i iniffrnz Murizio Plsi 17 Mhin non ompltmnt spifit Rgol i Pull-Ungr Ests L omptiilità è un rlzion mno fort i qull i inistinguiilità, non vl l proprità trnsitiv C 1 /- /1 /- 0 C/1 C/- C/0 ; C m C L rgol i Pull-Ungr è stt sts pr trttr il so i mhin non ompltmnt spifit Du stti s i s j sono omptiili s solo s λ(s i,i) = λ(s j,i) i I ovunqu sono ntrmi spifiti δ(s i,i) δ(s j,i) i I ovunqu sono ntrmi spifiti L sutt finizion è riorsiv Murizio Plsi 18 9

10 Mhin non ompltmnt spifit Tll ll Implizioni L rlzioni i omptiilità possono ssr intifit mint l Tll ll Implizioni Ogni lmnto ll tll ontin: X s in lmno un olonn vi sono usit ivrs (stti inomptiili) S i S j s l usit sono tutt uguli m i nomi gli stti futuri (S i, S j ) sono ivrsi non oiniono on qulli ll oppi i stti in sm ltrimnti (stti omptiili) Murizio Plsi 19 Mhin non ompltmnt spifit Tll ll Implizioni 1 /0 /0 /- /1 /- 0 /0 /0 /- /1 /- Vinoli s s s s s, s, s Murizio Plsi 20 10

11 Mhin non ompltmnt spifit Grfo i Comptiilità Grfo i Comptiilità (GC) I noi orrisponono gli stti Du noi n i n j sono tr loro ollgti s gli stti ssi ssoiti sono omptiili o l loro omptiilità ipn ll omptiilità l loro stto prossimo Pr ogni ro vono ssr riportti i vinoli sull omptiilità gli stti prossimi Murizio Plsi 21 Mhin non ompltmnt spifit Dfinizioni Clss i omptiilità (CC) Un insim i stti omptiili tr loro oppi Sul GC è rpprsntt un poligono omplto L lssi i omptiilità tr stti non sono nssrimnt isgiunt,,,,,,,, Sono tutti smpi i lssi i omptiilità Murizio Plsi 22 11

12 Mhin non ompltmnt spifit Dfinizioni Clss i mssim omptiilità (CMC) Clss i omptiilità non ontnut in nssun ltr lss Sul GC è iniviut un poligono omplto non ontnuto in nssun ltro {,,}: è un CMC {,,}: è un CMC {,,}: è un CMC Murizio Plsi 23 Mhin non ompltmnt spifit Dfinizioni Insim hiuso i lssi i omptiilità Insim i lssi i omptiilità i ui vinoli sino ontnuti in lmno un lss ll insim. Ciò grntis h tutti i vinoli sono rispttti Non è un insim hiuso i CC prhé il vinolo non è ontnuto in nssun CC E un insim hiuso i CC prhé tutti i vinoli sono ontnuti in lmno un CC Murizio Plsi 24 12

13 Mhin non ompltmnt spifit Dfinizioni Coprtur ll tll gli stti Insim i CC pr ui ogni stto ll tll gli stti è ontnuto in lmno un CC { {,,},{,,},{,,} } { {,},{,},{,,,},{,,} } Sono tutti smpi i oprtur Murizio Plsi 25 Mhin non ompltmnt spifit Minimizzzion l Numro i Stti Minimizzr il numro gli stti signifi Trovr il più piolo insim hiuso i lssi i omptiilità h opr l insim i stti su ui l mhin è finit L insim i tutt l lssi i mssim omptiilità è hiuso opr l insim gli stti ll mhin S si ssoi uno stto ogni lss i mssim omptiilità si ottin un nuov mhin on un numro i stti Possiilmnt minor i qullo i prtnz Non nssrimnt minimo Murizio Plsi 26 13

14 Mhin non ompltmnt spifit Rir ll Clssi i Mssim Comptiilità Un oprtur mmissiil è t ll insim ll lssi i mssim omptiilità: α={,,} β ={,,} γ ={,,} Tl oprtur non è minim L lssi i qust oprtur oniviono ivrsi stti Murizio Plsi 27 Mhin non ompltmnt spifit Un uristi pr l rir ll oprtur minim 1. Inizilizzr un list L1 vuot 2. Finhè il grfo non è vuoto:. Iniviur orinr l lssi i mssim omptiilità prsnti sul grfo pr imnsion. Iniviur l lss i omptiilità mssim i imnsion mssim prsnt sul grfo. Insrir nll list L1 tutti i vinoli prsnti nll lss i omptiilità onsirt. Eliminr ll list L1 l grfo i vinoli soisftti ll lss onsirt. Eliminr l grfo tutti i noi ( i rltivi rhi) pprtnnti ll lss i omptiilità onsirt h non pprtngono nssun vinolo prsnt nll list L1 /o nl grfo 3. L lssi osì iniviut formno un prtizion i omptiilità (insim i lssi i omptiilità hiuso) Murizio Plsi 28 14

15 Mhin non ompltmnt spifit Un uristi pr l rir ll oprtur minim Grfo i prtnz Psso 1 Psso 1 ),, ) ) L1={} ) L1={} ) Murizio Plsi 29 Mhin non ompltmnt spifit Un uristi pr l rir ll oprtur minim Grfo i prtnz Psso 2 Psso 2 ) ) ) L1={} ) L1={} ) grfo vuoto Coprtur iniviut: {, } Tll gli stti inizil 0 1 /0 /0 /0 /0 /- /- /1 /1 /- /- Clssi omptiilità h oprono tutti gli Tll gli stti stti h formno riott un insim hiuso 0 1 α = {,,} β = {,} α β /0 α/0 β α /1 α /1 Murizio Plsi 30 15

16 Mhin non ompltmnt spifit Esmpio Grfo i prtnz Psso 1 C CD CD CD F D E Psso 1 ) CDE, EF,, D ) CDE ) L1={, CD} ) L1={} ) F CD E CD CD D C F Murizio Plsi 31 Mhin non ompltmnt spifit Esmpio Grfo i prtnz Psso 2 F Psso 2 ) F, ) F ) L1={} ) L1={} F ) Murizio Plsi 32 16

17 Mhin non ompltmnt spifit Esmpio Grfo i prtnz Psso 3 Psso 3 ) ) ) L1={} ) L1={} ) Grfo vuoto Coprtur iniviut: {, f, } Murizio Plsi 33 17

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica Modlli di Sistmi di Produzion Modlli Algoritmi dll Logisti 000- Prolm dl ommsso viggitor: EURISTICHE CARLO MANNINO Spinz Univrsità di Rom Diprtimnto di Informti Sistmisti Euristih pr il TSP simmtrio Considrimo

Dettagli

The cost of the material maintenance is averaged over the last 3 years.

The cost of the material maintenance is averaged over the last 3 years. Anlisi i osti i un Diprtimnto 11 TABLE 4 Dprition n mintnn osts (unit: ITL) Ctgory Y Prio Inrs vlu Annul vlu 1 Furnitur 5 1.1.90{31.12.95 219 311 127 43 862 225 2 Lirry 5 1.1.90{31.12.95 542 832 793 108

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO ALLEGATO: N. 1 PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO MANUTENZIONE ORDINARIA E RIPARATIVA DEGLI EDIFICI PATRIMONIALI DESTINATI AD UFFICI DELLA PROVINCIA. IMPIANTI ELETTRICI

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 Sgnli i siurzz pr fontnll o i mrgnz pr l ontminzion UNI 7546/3. Symols for sfty signs-ys wshing - mrgny showr. 332 Normtiv in mtri i tutl ll slut siurzz

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto Dipartimnto fdral dlla difsa, dlla protzion dlla popolazion dllo sport DDPS Uffiio fdral di topografia swisstopo Elno uffiial dll loalità on il numro postal d avviamnto il primtro Informazioni sul prodotto

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

COTA NSW SONDAGGIO CLIENTI 2016

COTA NSW SONDAGGIO CLIENTI 2016 COTA NSW SONDAGGIO CLIENTI 2016 Prlimo i om trsorrr il tuo tmpo. Complti il sonio prtipi ll strzion pr vinr un ip. Grzi pr il tmpo ito ompilr il nostro sonio su om trsorr il suo tmpo. L ssiurimo h tutt

Dettagli

Euristiche per il Problema del Commesso Viaggiatore

Euristiche per il Problema del Commesso Viaggiatore Spinz Univrsità di Rom - Diprtimnto di Inggnri Informti, Automti Gstionl Euristih pr il Problm dl Commsso Viggitor Rnto Bruni bruni@dis.unirom.it Il mtril prsntto è drivto d qullo di proff. A. Sssno C.

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

MODELLI DEI SISTEMI ELETTROMECCANICI

MODELLI DEI SISTEMI ELETTROMECCANICI Ing Mrigrzi Dotoli Controlli Autotici NO (9 CFU) Modlli di Sisti Elttroccnici MODELLI DEI SISTEMI ELETTROMECCANICI Nl sguito ci occupio dll odllzion di sisti ibridi ch cobinno sisti lttrici con sisti ccnici,

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI,

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

MACCHINE TRACCIALINEE ED ACCESSORI

MACCHINE TRACCIALINEE ED ACCESSORI MHIN TRILIN D SSORI D M PR SGNLTI ORIZZONTL G G N H I L F F ON MISURTOR STRDL INORPORTO FIGUR QT'. 2400MTRMT000 MHIN TRILIN 2400MTRMT0002 MHIN TRILIN 2400MTRMT0003 MHIN TRILIN D 2400MTRPM0005 PISTOL MNUL

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

l apparecchio dalla confezione e controllare i componenti

l apparecchio dalla confezione e controllare i componenti Gui i instllzion rpi Inizio MFC-J6510DW MFC-J6710DW Lggr nzitutto l Opusolo su Siurzz rstrizioni lgli prim i onfigurr l pprhio. Quini, lggr l prsnt Gui i instllzion rpi pr onfigurr instllr orrttmnt il

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Test di autovalutazione

Test di autovalutazione Tst i utovlutzion 0 10 20 0 0 0 60 70 80 90 100 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltntiv. n Confont l tu ispost on l soluzioni. n Colo, ptno sinist, tnt sll qunt sono

Dettagli

RELAZIONE DEL DIRIGENTE SCOLASTICO

RELAZIONE DEL DIRIGENTE SCOLASTICO ISTITUTO DI ISTRUZIONE SUPERIORE G. L. LAGRANGE Szioni ssocit ITI G.L. Lgrng - IPSEOA G. Brr Vi A. Litt Moignni, 65-20161 MILANO Tl. 02 66222804/54 Fx 02 66222266 RELAZIONE DEL DIRIGENTE SCOLASTICO AL

Dettagli

ISTRUZIONI DI MONTAGGIO per controtelai SP

ISTRUZIONI DI MONTAGGIO per controtelai SP ISTRUZIONI DI MONTAGGIO pr ontrotli SP 100-125 Controtli vrsion rtonsso INCASTRO NOMENCLATURA: ontrotlio, inrio rrmnt Controtli pr port somprs i m l SET i ALLARGAMENTO pr SP 125 Montnti vrtili ntriori

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi Algr + numri rltivi +l lolo lttrl Equzioni, isquzioni, prolmi + numri rltivi Rpprsnt on un numro rltivo l sgunti grnzz. SEZ. O g Altituin i 00 m sul livllo l mr. Trzo pino i un prhggio sottrrno. Prit i

Dettagli

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo)

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo) Oittivo: srizion sintti Oittivo n. 1 Costruzion iplntzion l Pino ll Prorn sono l isposizioni introott l D.Ls. 150/2009, inlità prsuir, olità, lin ui i ttuzion Vriili L'oittivo h il in i rniontr i ittini

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 -

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 - Flornzi rriv il prmio: contrtto fino l 2016 stipno umntto CHIARA ZUCCHELLI Il prmio più mritto rrivto Com nnuncito si d Sbtini si dl suo gnt Alssndro Lucci rrivto il rinnovo dl contrtto Alssndro Flornzi

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Droga, il punto del comando provinciale dell'arma Mercoledì 06 Agosto 2014 16:59

Droga, il punto del comando provinciale dell'arma Mercoledì 06 Agosto 2014 16:59 Drog, il pto comndo provcil l'arm Mrcoldì 06 Agosto 2014 16:59 REGGIO CALABRIA 6 go. - Costnt d cssnt è il controllo trritorio l zion rprssiv svolt i Crbiri nll provci Rggio Clbri nl consto ll produzion

Dettagli

2.2 L analisi dei dati: valutazioni generali

2.2 L analisi dei dati: valutazioni generali 2.2 L analisi di dati: valutazioni gnrali Di sguito (figur 7-) vngono riportat l informazioni più intrssanti rilvat analizzando globalmnt la banca dati dll tichtt raccolt. Considrando ch l tichtta nutrizional

Dettagli

Guida di riferimento per l'installatore e per l'utente

Guida di riferimento per l'installatore e per l'utente Gui i rifrimnto pr l'instlltor pr l'utnt Climtizztor Sistm VRV IV REYQ8T7Y1B REYQ10T7Y1B REYQ12T7Y1B REYQ14T7Y1B REYQ16T7Y1B REYQ18T7Y1B REYQ20T7Y1B REMQ5T7Y1B Gui i rifrimnto pr l'instlltor pr l'utnt

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Crisi occupazionale, ammortizzatori sociali e riforma pensionistica Elisabetta Pedrazzoli* La riforma previdenziale Legge n. 214 del 22 dicembre 2011

Crisi occupazionale, ammortizzatori sociali e riforma pensionistica Elisabetta Pedrazzoli* La riforma previdenziale Legge n. 214 del 22 dicembre 2011 Tmi Crisi occupzionl, mmortizztori socili riform pnsionistic Elisbtt Pdrzzoli* Prmss L ttul situzion conomic è crttrizzt dl prdurr di un fort crisi con tutt l consgunz ch ciò comport sui livlli occupzionli.

Dettagli

SUPERFICIE CONVENZIONALE VENDIBILE

SUPERFICIE CONVENZIONALE VENDIBILE CATASTO (*) Utilizza suprfici catastal (si COMPRAVENDITA DI IMMOBILI RESIDENZIALI UNIFAMILIARI NORMA UNI 10750 (**) Utilizza suprfici convnzional vndibil (si MERCATO DI MODENA (***) (si R/2 A/7 Abitazioni

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Bar Pasticceria Gelateria

Bar Pasticceria Gelateria Br Pstiri Gltri BRETELLE FASHION STREET Un st lgnt, prtio trny. Lo stil inononiil ll rtll ll ultim mo in tssuto nim rsistnt ll lt prstzioni pr un shion strt inimitil. Un look qullo ll rtll inroit sull

Dettagli

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete Trsormzioni gomtrih +somtri Omotti similituin Tormi i Euli torm i Tlt +somtri Stilisi s l sgunti rmzioni sono vr o ls. SEZ. N g h i l pplino un isomtri un igur, ss si orm. L simmtri ntrl è un prtiolr rotzion.

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

ELENCO PREZZI AREE VERDI

ELENCO PREZZI AREE VERDI ALLEGATO B) AL CAPITOLATO SPECIALE D APPALTO ELENCO PREZZI AREE VERDI MANO D OPERA I przzi ll no opr pplir sono qulli i sguito lnti sunti l Przzirio ll Assoizion Itlin Costruttori l Vr (www.ssovr.it) Dsrizion

Dettagli

la confezione e controllare i componenti Gruppo tamburo (compresa la cartuccia toner iniziale)

la confezione e controllare i componenti Gruppo tamburo (compresa la cartuccia toner iniziale) Guid di instllzion rpid Inizio MFC-8370DN MFC-8380DN Prim di potr utilizzr l pprcchio, lggr qust Guid di instllzion rpid pr l corrtt impostzion instllzion. Pr consntir un utilizzo immdito dll'pprcchio,

Dettagli

test Di chimica per l accesso alle Facoltà UNiVersitarie

test Di chimica per l accesso alle Facoltà UNiVersitarie tst i himia pr l asso all Faoltà UNiVrsitari il sistma priodio dgli lmnti il sistma priodio dgli lmnti 1. indiar qual di sgunti lmnti NoN è di transizion: a F zn as Cu Cr (Mdiina Chirurgia 2005) 2. indiar

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

Italienisch. Kompetenzaufbau

Italienisch. Kompetenzaufbau tlinish Komptnzuu Elmnt s Komptnzuus Witr normtionn zu n Elmntn s Komptnzuus sin im Kpitl Ürlik un Anlitun zu inn. mprssum Hrusr: Dutshshwizr Erzihunsirktorn-Konrnz (D-EDK) D-EDK Gshätsstll, Zntrlstrss

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari Corso di Fisic cnic (ING-IND/). nno lur spcilistic in rchitttur: indirizzo città Docnt: Antonio Crbonri Cpitolo I Il sistm città l uso pproprito dll nrgi.. Introduzion Un insdimnto urbno è un sistm strmmnt

Dettagli

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà.

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà. Corpo di Polizia Provincial 3 Corso di Formazion pr Opratori Volontari pr Cntri di Primo Soccorso Cntri di Rcupro Animali Slvatici Friti o in difficoltà. (Opratori da impigar prsso il Cntro di Rcupro Animali

Dettagli

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi L nsm N l nsm Z L r numr L quttro oprzon l potnz n N L sprsson L msur prolm L r numr 1 Stls s l sunt rmzon sono vr o ls. SEZ. A l m n o p q 39 è un numro spr. 112 è un numro pr. In 79, 9 è un r. 10 è un

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli