Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Minimizzazione degli Stati in una Rete Sequenziale Sincrona"

Transcript

1 Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l prolm 2. Costruzion ll tll gli stti 3. Minimizzzion l numro gli stti 4. Coifi gli stti intrni 5. Costruzion ll tll ll trnsizioni 6. Slt gli lmnti i mmori 7. Costruzion ll tll ll itzioni 8. Sintsi si ll rt omintori h rlizz l funzion stto prossimo si i qull h rlizz l funzion usit Murizio Plsi 2 1

2 Motivzioni Il numro minimo i lmnti i mmori nssri mmorizzr gli stti ll insim S è N min = log 2 S Nl mollo i un mhin stti possono sistr gli stti rionnti L intifizion liminzion gli stti rionnti omport Rti omintori mno ostos Minori lmnti i mmori Mhin 8 stti, 1 ingrsso, 1 usit Funzioni λ, δ Mhin 4 stti, 1 ingrsso, 1 usit Funzioni λ 1, δ 1 Eliminno 4 stti Murizio Plsi 3 Oittivi Oittivo ll riuzion l numro gli stti è l iniviuzion i un mhin minim quivlnt, ovvro funzionlmnt quivlnt on il minimo numro i stti L riuzion vin rlizzt in u fsi Eliminzion gli stti non rggiungiili llo stto inizil Intifizion gli stti Equivlnti, pr l mhin ompltmnt spifit Comptiili, pr l mhin non ompltmnt spifit Murizio Plsi 4 2

3 Stti Irrggiungiili Uno stto è irrggiungiil s non sist lun squnz i trnsizion i stto h porti llo stto inizil in tl stto Trnsizion i Rst I I C C D D Murizio Plsi 5 Minimizzzion i Mhin Compltmnt Spifit Dfinizioni Sino: I α un squnz ingrsso {i j,, i k } U α, squnz usit ss ssoit ottnut ttrvrso λ s i,s j u gnrii stti Du stti s i s j pprtnnti S sono inistinguiili s U α,i =L(s i, I α ) = L(s j, I α ) = U α,j I α Cioè s pr qulsisi squnz i ingrsso l usit gnrt prtno s i o s j sono l stss L inistinguiilità tr s i s j si ini on s i ~s j L rlzion i inistinguiilità go i tr proprità Riflssiv: s i ~ s i Simmtri: s i ~s j s j ~ s i Trnsitiv: s i ~s j s j ~s k s i ~s k Murizio Plsi 6 3

4 Minimizzzion i Mhin Compltmnt Spifit Clssi i Stti Equivlnti Du stti inistinguiili sono quivlnti possono ssr sostituiti un solo stto Un gruppo i stti tr loro quivlnti può ssr rggruppto in un uni lss L insim i lssi iniviut trmin l insim i stti ll mhin minim quivlnt α ~ ; D ~ E α C β β D E γ γ Murizio Plsi 7 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr L finizion i inistinguiilità è i iffiil ppliilità poihé rihir i onsirr tutt l squnz i ingrsso Rgol i Pull-Ungr Du stti sono s i s j sono inistinguiili s solo s λ(s i,i) = λ(s j,i) i I ovvro l usit sono uguli pr tutti i simoli ingrsso δ(s i,i) = δ(s j,i) i I ovvro gli stti prossimi sono inistinguiili pr tutti i simoli ingrsso L rgol è itrtiv Murizio Plsi 8 4

5 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Esmpio 0 /0 /0 /1 /1 /1 1 /1 /1 /1 /0 /0 hnno l stss usit s gli stti futuri sono inistinguiili, ~ hnno l stss usit s gli stti futuri sono inistinguiili, ~ non è inistinguiil, poihé h un iffrnt usit Mhin minim quivlnt α β γ 0 γ /0 α /1 α /1 1 α /1 β /1 β /0 Poihé l inistinguiilità tr ipn qull tr vivrs, possimo onlur h ~, ~ L lssi i inistinguiilità sono: α={, }, β={}, γ={, } Murizio Plsi 9 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr Poihé gli insimi I S hnno rinlità finit, opo un numro finito i pssi si vrifi un ll u onizioni: s i ~s j s i simoli usit sono ivrsi o gli stti prossimi sono istinguiili s i ~s j s i simoli usit sono uguli gli stti prossimi sono inistinguiili Murizio Plsi 10 5

6 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni L rlzioni i inistinguiilità possono ssr intifit mint l Tll ll Implizioni Mtt in rlzion ogni oppi i stti È tringolr (proprità simmtri) priv i igonl prinipl Ogni lmnto ll tll ontin Il simolo i non quivlnz (X) o i quivlnz (~) L oppi i stti ui si rimn l vrifi, s non è possiil pronunirsi sull quivlnz gli stti orrisponnti S1 S2 S3 S1,S2 S0 ~ S1 S2 Murizio Plsi 11 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni Pr ogni oppi i stti S è mrt om quivlnt non è rihist un ultrior vrifi S si rimn un ltr oppi S qusti stti sono quivlnti nh gli stti ll oppi in sm sono quivlnti S qusti sono non quivlnti nh gli stti ll oppi in sm sono non quivlnti S gli stti ll oppi ui si rimn ipnono un oppi ultrior si ript il proimnto in moo itrtivo L nlisi trmin quno non sono più possiili liminzioni L oppi rimst sono quivlnti Murizio Plsi 12 6

7 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni f g 0 g/0 /0 /1 /0 g/0 /1 /1 1 /1 /1 g/0 /1 /1 f/0 g/0 f g g g ~ g fg g f Murizio Plsi 13 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni f g g g ~ g fg g nlisi nlisi ll ll oppi oppi gli gli stti stti -: -: -g -g è inistinguiil inistinguiil s s lo lo è - - ~ ~ -: -: -g -g è istinguiil istinguiil ~ ~ -: -: - - è istinguiil istinguiil ~ ~ -: -: -g -g è inistinguiil inistinguiil s s lo lo è - - ~ ~ -: -: -g -g è istinguiil istinguiil ~ ~ f-: f-: - - è inistinguiil inistinguiil s s lo lo è -g -g f~ f~ g-: g-: - - è inistinguiil inistinguiil g~ g~ g-f: g-f: - - è inistinguiil inistinguiil s s lo lo è -g -g g~f g~f f Murizio Plsi 14 7

8 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Tll ll Implizioni f g ~ ~ ~ ~ f Clssi i inistinguiilità α = {,,} β = {,g} γ = {} δ = {f} Tll gli stti minim quivlnt α β γ δ 0 1 β /0 α /1 α /1 β /0 α /0 α /1 γ /1 δ /0 Murizio Plsi 15 Minimizzzion i Mhin Compltmnt Spifit Rgol i Pull-Ungr - Ossrvzioni Pr l FSM ompltmt spifit l lgoritmo i Pull-Ungr Consnt i intifir in mnir stt l FSM minim quivlnt L prtizion i quivlnz è uni (ogni stto pprtin un un sol lss) H un omplssità sponnzil on il numro i stti Murizio Plsi 16 8

9 Mhin non ompltmnt spifit Dfinizioni Sono mhin in ui pr lun onfigurzioni gli ingrssi stti orrnti non sono spifiti gli stti futuri /o l onfigurzioni usit Du stti s i s j si iono omptiili (s i s j ) S, ssunti om stti inizili, pr ogni possiil squnz i ingrsso (grn pir) nno luogo squnz i simoli usit intii mno i onizioni i iniffrnz Murizio Plsi 17 Mhin non ompltmnt spifit Rgol i Pull-Ungr Ests L omptiilità è un rlzion mno fort i qull i inistinguiilità, non vl l proprità trnsitiv C 1 /- /1 /- 0 C/1 C/- C/0 ; C m C L rgol i Pull-Ungr è stt sts pr trttr il so i mhin non ompltmnt spifit Du stti s i s j sono omptiili s solo s λ(s i,i) = λ(s j,i) i I ovunqu sono ntrmi spifiti δ(s i,i) δ(s j,i) i I ovunqu sono ntrmi spifiti L sutt finizion è riorsiv Murizio Plsi 18 9

10 Mhin non ompltmnt spifit Tll ll Implizioni L rlzioni i omptiilità possono ssr intifit mint l Tll ll Implizioni Ogni lmnto ll tll ontin: X s in lmno un olonn vi sono usit ivrs (stti inomptiili) S i S j s l usit sono tutt uguli m i nomi gli stti futuri (S i, S j ) sono ivrsi non oiniono on qulli ll oppi i stti in sm ltrimnti (stti omptiili) Murizio Plsi 19 Mhin non ompltmnt spifit Tll ll Implizioni 1 /0 /0 /- /1 /- 0 /0 /0 /- /1 /- Vinoli s s s s s, s, s Murizio Plsi 20 10

11 Mhin non ompltmnt spifit Grfo i Comptiilità Grfo i Comptiilità (GC) I noi orrisponono gli stti Du noi n i n j sono tr loro ollgti s gli stti ssi ssoiti sono omptiili o l loro omptiilità ipn ll omptiilità l loro stto prossimo Pr ogni ro vono ssr riportti i vinoli sull omptiilità gli stti prossimi Murizio Plsi 21 Mhin non ompltmnt spifit Dfinizioni Clss i omptiilità (CC) Un insim i stti omptiili tr loro oppi Sul GC è rpprsntt un poligono omplto L lssi i omptiilità tr stti non sono nssrimnt isgiunt,,,,,,,, Sono tutti smpi i lssi i omptiilità Murizio Plsi 22 11

12 Mhin non ompltmnt spifit Dfinizioni Clss i mssim omptiilità (CMC) Clss i omptiilità non ontnut in nssun ltr lss Sul GC è iniviut un poligono omplto non ontnuto in nssun ltro {,,}: è un CMC {,,}: è un CMC {,,}: è un CMC Murizio Plsi 23 Mhin non ompltmnt spifit Dfinizioni Insim hiuso i lssi i omptiilità Insim i lssi i omptiilità i ui vinoli sino ontnuti in lmno un lss ll insim. Ciò grntis h tutti i vinoli sono rispttti Non è un insim hiuso i CC prhé il vinolo non è ontnuto in nssun CC E un insim hiuso i CC prhé tutti i vinoli sono ontnuti in lmno un CC Murizio Plsi 24 12

13 Mhin non ompltmnt spifit Dfinizioni Coprtur ll tll gli stti Insim i CC pr ui ogni stto ll tll gli stti è ontnuto in lmno un CC { {,,},{,,},{,,} } { {,},{,},{,,,},{,,} } Sono tutti smpi i oprtur Murizio Plsi 25 Mhin non ompltmnt spifit Minimizzzion l Numro i Stti Minimizzr il numro gli stti signifi Trovr il più piolo insim hiuso i lssi i omptiilità h opr l insim i stti su ui l mhin è finit L insim i tutt l lssi i mssim omptiilità è hiuso opr l insim gli stti ll mhin S si ssoi uno stto ogni lss i mssim omptiilità si ottin un nuov mhin on un numro i stti Possiilmnt minor i qullo i prtnz Non nssrimnt minimo Murizio Plsi 26 13

14 Mhin non ompltmnt spifit Rir ll Clssi i Mssim Comptiilità Un oprtur mmissiil è t ll insim ll lssi i mssim omptiilità: α={,,} β ={,,} γ ={,,} Tl oprtur non è minim L lssi i qust oprtur oniviono ivrsi stti Murizio Plsi 27 Mhin non ompltmnt spifit Un uristi pr l rir ll oprtur minim 1. Inizilizzr un list L1 vuot 2. Finhè il grfo non è vuoto:. Iniviur orinr l lssi i mssim omptiilità prsnti sul grfo pr imnsion. Iniviur l lss i omptiilità mssim i imnsion mssim prsnt sul grfo. Insrir nll list L1 tutti i vinoli prsnti nll lss i omptiilità onsirt. Eliminr ll list L1 l grfo i vinoli soisftti ll lss onsirt. Eliminr l grfo tutti i noi ( i rltivi rhi) pprtnnti ll lss i omptiilità onsirt h non pprtngono nssun vinolo prsnt nll list L1 /o nl grfo 3. L lssi osì iniviut formno un prtizion i omptiilità (insim i lssi i omptiilità hiuso) Murizio Plsi 28 14

15 Mhin non ompltmnt spifit Un uristi pr l rir ll oprtur minim Grfo i prtnz Psso 1 Psso 1 ),, ) ) L1={} ) L1={} ) Murizio Plsi 29 Mhin non ompltmnt spifit Un uristi pr l rir ll oprtur minim Grfo i prtnz Psso 2 Psso 2 ) ) ) L1={} ) L1={} ) grfo vuoto Coprtur iniviut: {, } Tll gli stti inizil 0 1 /0 /0 /0 /0 /- /- /1 /1 /- /- Clssi omptiilità h oprono tutti gli Tll gli stti stti h formno riott un insim hiuso 0 1 α = {,,} β = {,} α β /0 α/0 β α /1 α /1 Murizio Plsi 30 15

16 Mhin non ompltmnt spifit Esmpio Grfo i prtnz Psso 1 C CD CD CD F D E Psso 1 ) CDE, EF,, D ) CDE ) L1={, CD} ) L1={} ) F CD E CD CD D C F Murizio Plsi 31 Mhin non ompltmnt spifit Esmpio Grfo i prtnz Psso 2 F Psso 2 ) F, ) F ) L1={} ) L1={} F ) Murizio Plsi 32 16

17 Mhin non ompltmnt spifit Esmpio Grfo i prtnz Psso 3 Psso 3 ) ) ) L1={} ) L1={} ) Grfo vuoto Coprtur iniviut: {, f, } Murizio Plsi 33 17

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone. Macchine non completamente specificate

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone. Macchine non completamente specificate Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 9/12/03 Mhin non ompltmnt spifit Sono mhin in ui pr lun onfigurzioni

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 15/01/05 Sono mhin in ui pr lun onfigurzioni

Dettagli

Sintesi: Assegnamento degli stati. Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone. Sintesi: Scelta del codice

Sintesi: Assegnamento degli stati. Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone. Sintesi: Scelta del codice Sintsi: Assgnmnto gli stti Sintsi Squnzil Sinron Sintsi Comportmntl i rti Squnzili Sinron L riuzion l numro gli stti minimizz il numro i lmnti i mmori quini i vriili i stto h srivono l mhin sinttizzr A

Dettagli

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi:

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi: Ciruiti Nl progttr un iruito stinto svolgr un rt funzion normlmnt si hnno isposizion i sgunti lmnti: NODO )Uno o più sorgnti i f..m. not (ttri, gnrtor i tnsion) )Filo mtllio (onuttor) ) intrruttori )sistnz

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

Esempio 1 Consideriamo un grafo G con insieme di nodi. mentre l insieme di archi é il seguente sottinsieme di coppie di nodi in V

Esempio 1 Consideriamo un grafo G con insieme di nodi. mentre l insieme di archi é il seguente sottinsieme di coppie di nodi in V 1 Tori i grfi Pr prim os imo l finizion i grfo. Dfinizion 1 Un grfo G é ostituito un oppi i insimi (V, A) ov V é tto insim i noi A é tto insim i rhi é un sottinsim i tutt l possiili oppi i noi in V. S

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A Inggnri Sinz Informtih - Csn A.A. 3- iln@s.unio.it, pitro.iln@unio.it : psuooi Clol il osto l mmino minimo un vrti sorgnt s tutti i rstnti vrtii nl grfo. Clol un lro i oprtur i mmini minimi (shortst pth

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 5/12/02 Sintsi La sintsi si svol

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica Modlli di Sistmi di Produzion Modlli Algoritmi dll Logisti 000- Prolm dl ommsso viggitor: EURISTICHE CARLO MANNINO Spinz Univrsità di Rom Diprtimnto di Informti Sistmisti Euristih pr il TSP simmtrio Considrimo

Dettagli

Una relazione R in un insieme A si dice relazione d'ordine (o ordinamento) se e solo se è riflessiva, antisimmetrica e transitiva.

Una relazione R in un insieme A si dice relazione d'ordine (o ordinamento) se e solo se è riflessiva, antisimmetrica e transitiva. F0 RELZIONI D'ORDINE. Rlzioni 'orin Un rlzion R in un insim si i rlzion 'orin (o orinmnto) s solo s è rilssiv, ntisimmtri trnsitiv. Prsi u lmnti x, y, s R è un orinmnto in, si i h «x pr y» si sriv x y,

Dettagli

Aquadue Duplo. Guida all utilizzo. click! NEW! ON! c. Collegare il programmatore al rubinetto.

Aquadue Duplo. Guida all utilizzo. click! NEW! ON! c. Collegare il programmatore al rubinetto. Collgr il progrmmtor l ruintto. quu Duplo Pg. Gui ll utilizzo DY DY DY lik! DY Pr quu Duplo volution (o.): 80 prir il moulo i progrmmzion prmno sui u pulsnti ltrli insrir un ttri llin. ppn ollgt l ttri,

Dettagli

The cost of the material maintenance is averaged over the last 3 years.

The cost of the material maintenance is averaged over the last 3 years. Anlisi i osti i un Diprtimnto 11 TABLE 4 Dprition n mintnn osts (unit: ITL) Ctgory Y Prio Inrs vlu Annul vlu 1 Furnitur 5 1.1.90{31.12.95 219 311 127 43 862 225 2 Lirry 5 1.1.90{31.12.95 542 832 793 108

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

$marina/did/mdis03/ $marina/did/md $marina/did/mdis03/

$marina/did/mdis03/   $marina/did/md   $marina/did/mdis03/ Avvrtnz Mtmti Disrt (lmnti) E-O CL Informti 0 imr 00 Qust fotoopi sono istriuit solo om inizion gli rgomnti svolti lzion NON sostituisono in lun moo il liro i tsto: A. Fhini, Algr mtmti isrt, Dil Znihlli

Dettagli

1 a. 1 b. Rappresenta i seguenti numeri su una retta orientata, scegliendo autonomamente una opportuna unità di misura. b 1

1 a. 1 b. Rappresenta i seguenti numeri su una retta orientata, scegliendo autonomamente una opportuna unità di misura. b 1 Rpprsnt i sgunti numri su un rtt orintt, sglino utonommnt un opportun unità i misur. 0 0 f g 7 0 h 0 Si noti h il m..m i nomintori è 0, quini un slt opportun è siurmnt qull i utilizzr 0 qurtti om unità

Dettagli

Aquadue Duplo Pag. 1

Aquadue Duplo Pag. 1 Collgr il progrmmtor l ruintto. Pg. 1 4 5 6 TIME DY 4 5 6 STRT STOP CNCEL TIME DY lik! 4 5 6 STRT STOP CNCEL TIME DY Pr (o.): 8410 prir il moulo i progrmmzion prmno sui u pulsnti ltrli insrir un ttri llin

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto Grmmtich Rgol pr spcificr frsi corrtt in itlino Un frs un soggtto sguito d un vrbo sguito d un complmnto oggtto Un soggtto un nom o un rticolo sguito d un nom Uso dll rgol: pr gnrr frsi corrtt Esmpio:

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO ALLEGATO: N. 1 PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO MANUTENZIONE ORDINARIA E RIPARATIVA DEGLI EDIFICI PATRIMONIALI DESTINATI AD UFFICI DELLA PROVINCIA. IMPIANTI ELETTRICI

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

Esercizi per il corso di Calcolatori Elettronici

Esercizi per il corso di Calcolatori Elettronici Eserizi per il orso i loltori Elettronii svolti Muro IOVIELLO & io LUDNI Prte prim : mppe i Krnugh, metoo QM ESERIZIO : Mppe i Krnugh Minimizzre l rete rppresentt ll funzione: = {,,, 3, 4, 5,, } D = Ø

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spnnin Tr LASD 00-05 Un pplizion: ostruzion i un iruito Si vuol rr un iruito lttronio onnttno n omponnti lttronii mint n- ili isuno i quli è posto tr un oppi i omponnti Solo lun oppi i omponnti

Dettagli

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spnnin Tr LASD 00-05 Un pplizion: ostruzion i un iruito Si vuol rr un iruito lttronio onnttno n omponnti lttronii mint n- ili isuno i quli è posto tr un oppi i omponnti Solo lun oppi i omponnti

Dettagli

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 Sgnli i siurzz pr fontnll o i mrgnz pr l ontminzion UNI 7546/3. Symols for sfty signs-ys wshing - mrgny showr. 332 Normtiv in mtri i tutl ll slut siurzz

Dettagli

Che cosa c è nella lezione. Questa lezione si occupa di tecniche avanzate di risoluzione dei problemi: il backtracking. il paradigma greedy.

Che cosa c è nella lezione. Questa lezione si occupa di tecniche avanzate di risoluzione dei problemi: il backtracking. il paradigma greedy. Algoritmi Progrmmzion Avnzt - tori /9 Ch cos c è nll lzion Qust lzion si occup i tcnich vnzt i risoluzion i problmi: il bcktrcking il prigm gry. 2/9 Algoritmi Progrmmzion Avnzt - tori 3/9 Tipologi i problmi

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2 www.mtfili.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 27 - PROBLEMA 2 L funzioni g, g 2, g, g 4 sono dfinit nl modo sgunt: g (x) = 2 x2 2 g 2 (x) = x g (x) = 2 π cos (π 2 x) ) g 4 (x) = ln( x ) Vrific

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognom Nom: Numro i Matriola: Spazio risrvato alla orrzion 1 2 3 6 Total /25 /27 /28 /20 /100 1. a) Si finisa formalmnt il ontto i orin topologio i un grafo irzionato alilio. In assnza i qusta finizion

Dettagli

Euristiche per il Problema del Commesso Viaggiatore

Euristiche per il Problema del Commesso Viaggiatore Spinz Univrsità di Rom - Diprtimnto di Inggnri Informti, Automti Gstionl Euristih pr il Problm dl Commsso Viggitor Rnto Bruni bruni@dis.unirom.it Il mtril prsntto è drivto d qullo di proff. A. Sssno C.

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto Dipartimnto fdral dlla difsa, dlla protzion dlla popolazion dllo sport DDPS Uffiio fdral di topografia swisstopo Elno uffiial dll loalità on il numro postal d avviamnto il primtro Informazioni sul prodotto

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a Esm di Stto 7 sssion strordinri Prolm Utilizzndo l formul di sdoppimnto, l tngnt ll lliss nl punto ; x y x x y y x y Imponndo il pssggio pr (; ) si ottin: x ch, sostituito nll quzion dll lliss, prmtt di

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Esercizi di matematica

Esercizi di matematica Esrizi i mtmti Gli srizi h trovi in qust pgin ti srvirnno pr vrifir h punto è l TUA prprzion in qust mtri: risponi solo ll omn S non risi risolvr qulh qusito, onsult i tuoi libri i tsto i tuoi qurni ll

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognom Nom: Numro di Matriola: Spazio risrvato alla orrzion 1 2 3 4 5 6 Total /18 /8 /20 20 /18 /16 /100 1. a) Indiar quali dll sgunti affrmazioni sono vr quali sono fals. 1. log(n n )= Θ((log n) n ) 2.

Dettagli

DETERMINA DI AGGIUDICAZIONE ARCA_2016_51 Gara per la fornitura di Dispositivi per Drenaggio Appalto Specifico

DETERMINA DI AGGIUDICAZIONE ARCA_2016_51 Gara per la fornitura di Dispositivi per Drenaggio Appalto Specifico DATA DI PUBBLICAZIONE 11/5/2018 Milno, 11 Mggio 2018 Prot. n. 2018.0006258 DETERMINA DI AGGIUDICAZIONE ARCA_2016_51 Gr pr l ornitur i Dispositivi pr Drnggio Applto Spiio Il Dirttor Gnrl ll Azin Rgionl

Dettagli

Strutture dati per insiemi disgiunti

Strutture dati per insiemi disgiunti Sopo Struttur ati pr insimi isiunti Gstir in moo iint una ollzion S = {S 1, S 2,..., S k } i insimi isiunti qualora l sol oprazioni onsntit siano: 1) rar un nuovo insim ontnnt un solo lmnto (tal lmnto

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

Algebra astratta +nsiemi Relazioni e funzioni Operazioni binarie e strutture algebriche Logica

Algebra astratta +nsiemi Relazioni e funzioni Operazioni binarie e strutture algebriche Logica lr strtt +nsimi Rlzioni unzioni Oprzioni inri struttur lrih Loi +nsimi Quli ll sunti sprssioni iniviuno un insim? SEZ. S h i l Gli otti sul mio tvolo. Tr iori proumti. L onn h vivono s tu. Cinqu rzz ll.

Dettagli

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 -

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 - Flornzi rriv il prmio: contrtto fino l 2016 stipno umntto CHIARA ZUCCHELLI Il prmio più mritto rrivto Com nnuncito si d Sbtini si dl suo gnt Alssndro Lucci rrivto il rinnovo dl contrtto Alssndro Flornzi

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

MACCHINE TRACCIALINEE ED ACCESSORI

MACCHINE TRACCIALINEE ED ACCESSORI MHIN TRILIN D SSORI D M PR SGNLTI ORIZZONTL G G N H I L F F ON MISURTOR STRDL INORPORTO FIGUR QT'. 2400MTRMT000 MHIN TRILIN 2400MTRMT0002 MHIN TRILIN 2400MTRMT0003 MHIN TRILIN D 2400MTRPM0005 PISTOL MNUL

Dettagli

ISTRUZIONI DI MONTAGGIO per controtelai SP

ISTRUZIONI DI MONTAGGIO per controtelai SP ISTRUZIONI DI MONTAGGIO pr ontrotli SP 100-125 Controtli vrsion rtonsso INCASTRO NOMENCLATURA: ontrotlio, inrio rrmnt Controtli pr port somprs i m l SET i ALLARGAMENTO pr SP 125 Montnti vrtili ntriori

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

COTA NSW SONDAGGIO CLIENTI 2016

COTA NSW SONDAGGIO CLIENTI 2016 COTA NSW SONDAGGIO CLIENTI 2016 Prlimo i om trsorrr il tuo tmpo. Complti il sonio prtipi ll strzion pr vinr un ip. Grzi pr il tmpo ito ompilr il nostro sonio su om trsorr il suo tmpo. L ssiurimo h tutt

Dettagli

Test di autovalutazione

Test di autovalutazione Tst i utovlutzion 0 10 20 0 0 0 60 70 80 90 100 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltntiv. n Confont l tu ispost on l soluzioni. n Colo, ptno sinist, tnt sll qunt sono

Dettagli

l apparecchio dalla confezione e controllare i componenti

l apparecchio dalla confezione e controllare i componenti Gui i instllzion rpi Inizio MFC-J6510DW MFC-J6710DW Lggr nzitutto l Opusolo su Siurzz rstrizioni lgli prim i onfigurr l pprhio. Quini, lggr l prsnt Gui i instllzion rpi pr onfigurr instllr orrttmnt il

Dettagli

MODELLI DEI SISTEMI ELETTROMECCANICI

MODELLI DEI SISTEMI ELETTROMECCANICI Ing Mrigrzi Dotoli Controlli Autotici NO (9 CFU) Modlli di Sisti Elttroccnici MODELLI DEI SISTEMI ELETTROMECCANICI Nl sguito ci occupio dll odllzion di sisti ibridi ch cobinno sisti lttrici con sisti ccnici,

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Cammini minimi in un grafo orientato pesato. Un problema di percorso. Problemi di ottimizzazione

Cammini minimi in un grafo orientato pesato. Un problema di percorso. Problemi di ottimizzazione Cmmn mnm n un gro orntto sto Algortm Dkstr Bllmn-For r l rolm l mmno mnmo sorgnt sngol Un rolm rorso Dt un m strl on stnz s. n lomtr un unto rtnz s tror rors ù r s sun ll ltr loltà Prolm ottmzzzon Prolm:

Dettagli

Distribuzione di corrente

Distribuzione di corrente Prov i tipo sono DN EN 439-1 Durnt l prov i tipo vngono sguiti i sgunti ontrolli sui sistmi i istriuzion srr Rittl su omponnti i instllzion Rittl RiLin rpprsnttivi: Grfii i tnut l orto iruito sono DN EN

Dettagli

Algoritmi e Strutture Dati. Grafi

Algoritmi e Strutture Dati. Grafi Algoritmi Struttur Dti Grfi Alrto Montrsor Univrsità i Trnto 08//7 This work is lins unr Crtiv Commons Attriution-ShrAlik 4.0 Intrntionl Lins. Sommrio Introuzion Dfinizioni Spifi Mmorizzzion Visit i grfi

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli