Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve"

Transcript

1 Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr omi Prolm Prolm: mpp i str h onnttono ittà + istnz tr ittà inti rpprsntzion trmit G on vrtii=ittà rhi=str tihttti on l istnz (oppur. tmpo i prorrnz) tr i vrtii trovr l lunghzz l prorso più rv tr u ittà/vrtii trovr il prorso più rv tr un ittà/vrti tutti l ltr ittà/vrtii trovr il prorso più rv tr tutt l oppi i ittà/vrtii Politnio i Milno - Prof. Sr omi Notzioni pr il prorso più rv Notzioni: istnz (, ): prorso più rv tr i vrtii s il prorso non sist, llor (,) = pso w(, ): pso ll ro h onntt s tl ro non sist, llor w(, ) = Politnio i Milno - Prof. Sr omi 4

2 Prorso ll singol sorgnt osto minimo Prolm l prorso più rv i un singol sorgnt to un vrti s in un grfo G, trovr il prorso più rv s vrso ogni vrti i G smpio pplitivo: trovr i prorsi più rvi pr invir un mssggio in rost tutti i omputr i un rt Pr grfi non psti è suffiint pplir un rir in mpizz (FS) lgoritmo i ijkstr s vrti in ui si inizi il prosso Prossimo i vrtii in orin i istnz s Supponimo i vr prossto i- vrtii: S Prossimo il prossimo vrti più viino x Il prorso più rv s x v vr il suo pnultimo vrti in S: (s,x) = min ((s,u) + w(u,x)) u S Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr omi lgoritmo i ijkstr () lgoritmo i ijkstr () Inizio Pross Pross Pross Pross Pross s= Inizio Pross Pross Pross Pross Pross Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr omi

3 lgoritmo i ijkstr () lgoritmo i ijkstr () Inizio Pross Pross Pross Pross Pross Inizio Pross Pross Pross Pross Pross Politnio i Milno - Prof. Sr omi 9 Politnio i Milno - Prof. Sr omi lgoritmo i ijkstr () lgoritmo i ijkstr () Inizio Pross Pross Pross Pross Pross Inizio Pross Pross Pross Pross Pross Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr omi

4 lgoritmo i ijkstr () lgoritmo i ijkstr () Implmntzion: // omput shortst pth istns from s, // rturn thm in voi ijkstr(grph* G, int*, int s) { int i, v, w; for (i=; i<g->n(); i++) { // o vrtis v = minvrtx(g, ); if ([v] == INFINITY) rturn; G->stMrk(v, VISIT); for (w=g->first(v); w<g->n(); w = G->nxt(v,w)) if ([w] > ([v] + G->wight(v, w))) [w] = [v] + G->wight(v, w); } } [v] v s [w] w f Politnio i Milno - Prof. Sr omi g wight(v,w) g Prolm i trovr il vrti non visitto on vlor minimo (minvrtx): Mtoo : onsirr tutti i vrtii nll list V rr il vlor minimo i osto: Θ( V + ) = Θ( V ), poihè è in O( V ) Politnio i Milno - Prof. Sr omi 4 lgoritmo i ijkstr (4) Implmntzion i minvrtx on il mtoo : // Fin min ost vrtx int minvrtx(grph* G, int* ) { int i, v; // St v to n unvisit vrtx for (i=; i<g->n(); i++) if (G->gtMrk(i) == UNVISIT) { v = i; rk; } // Now fin smllst vlu for (i++; i<g->n(); i++) if ((G->gtMrk(i) == UNVISIT) && ([i] < [v])) v = i; rturn v; } Politnio i Milno - Prof. Sr omi lgoritmo i ijkstr () Prolm i trovr il vrti non visitto on vlor minimo (minvrtx): Mtoo : mmorizzr i vrtii non prossti in un min-hp in orin i osto: Θ(( V + ) log ) Prolm: i vlori ll istnz mino ogni psso --> ontinuo ggiornmnto l min-hp Soluzion: insrir nl min-hp ogni nuovo vlor trovto s il vlor insrito è < l vlor prnt vrrà prossto pr primo (qullo mggior vrrà ignorto) s il vlor insrito è > vrrà ignorto Politnio i Milno - Prof. Sr omi

5 Prorso più rv tutti tutti () lgoritmo i Floy Prolm l prorso più rv tutti tutti : to un grfo G pr ogni u,v V lol (u,v) Soluzion : ppli l lgoritmo i ijkstr V volt OK s G è sprso on l o i priorità s G è nso il osto è mggior Politnio i Milno - Prof. Sr omi Mtri i inz: Politnio i Milno - Prof. Sr omi pso pso prorso prorso (v v i,v k ) i (v v k,v j ) k v j pso prorso (v i,v j ) vin ggiunto s qusto pso è minor i qullo ttulmnt prsnt nll mtri lgoritmo i Floy lgoritmo i Floy Mtri i inz:? Politnio i Milno - Prof. Sr omi 9 Mtri i inz:? Politnio i Milno - Prof. Sr omi?

6 Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi < Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi < Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi > Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi 4 <

7 Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi < Mtri i inz: lgoritmo i Floy? Politnio i Milno - Prof. Sr omi? Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi = Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi =

8 Mtri i inz: lgoritmo i Floy? Politnio i Milno - Prof. Sr omi 9? Mtri i inz: lgoritmo i Floy Politnio i Milno - Prof. Sr omi 9 < 9 Mtri i inz: 9 lgoritmo i Floy Politnio i Milno - Prof. Sr omi 9 < 9 Mtri i inz: 9 lgoritmo i Floy Politnio i Milno - Prof. Sr omi >

9 9 Mtri i inz: 9 lgoritmo i Floy? Politnio i Milno - Prof. Sr omi? Implmntzion: lgoritmo i Floy //Floy's ll-pirs shortst pths lgorithm voi Floy(Grph* G) { int [G->n()][G->n()]; // Stor istns for (int i=; i<g->n(); i++) // Initiliz for (int j=; j<g->n(); j++) [i][j] = G->wight(i, j); // omput ll k pths for (int k=; k<g->n(); k++) for (int i=; i<g->n(); i++) for (int j=; j<g->n(); j++) if ([i][j] > ([i][k] + [k][j])) [i][j] = [i][k] + [k][j]; } Politnio i Milno - Prof. Sr omi 4 Informti Lzion - Moulo Spnning tr osto minimo Prolm Prolm: trminr lo spnning tr osto minimo i un grfo Input: grfo G onnsso non orintto on rhi psti Output: grfo h ontin i vrtii i G il sottoinsim i rhi i G pr ui: il osto totl minimo ottnuto sommno i vlori i tutti gli rhi l sottoinsim è minimo i vrtii sono onnssi smpio pplitivo: onnttr un insim i ittà trmit vo tlfonio in moo minimizzr l lunghzz l vo totl Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr omi

10 smpio Oss.: lo spnning tr minimo osto (MST) non ontin ili (è un fr tr) lgoritmo i Prim () lgoritmo: prti un vrti N nl grfo MST inizilmnt ontin N onsir l ro osto infrior onnsso N il vrti M ui è onnsso ggiungi M (N,M) MST Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr omi lgoritmo i Prim () lgoritmo: prti un vrti N nl grfo MST inizilmnt ontin N onsir l ro osto infrior onnsso N il vrti M ui è onnsso ggiungi M (N,M) MST onsir l ro osto infrior onnsso N o M ggiungi il vrti ui si onntt l ro orrisponnt MST ontinu il prosso fino quno tutti i vrtii sono stti inlusi lgoritmo i Prim () lgoritmo: prti un vrti N nl grfo MST inizilmnt ontin N onsir l ro osto infrior onnsso N il vrti M ui è onnsso ggiungi M (N,M) MST onsir l ro osto infrior onnsso N o M ggiungi il vrti ui si onntt l ro orrisponnt MST ontinu il prosso fino quno tutti i vrtii sono stti inlusi Politnio i Milno - Prof. Sr omi 9 Politnio i Milno - Prof. Sr omi 4

11 lgoritmo i Prim () lgoritmo: prti un vrti N nl grfo MST inizilmnt ontin N onsir l ro osto infrior onnsso N il vrti M ui è onnsso ggiungi M (N,M) MST onsir l ro osto infrior onnsso N o M ggiungi il vrti ui si onntt l ro orrisponnt MST ontinu il prosso fino quno tutti i vrtii sono stti inlusi lgoritmo i Prim () lgoritmo: prti un vrti N nl grfo MST inizilmnt ontin N onsir l ro osto infrior onnsso N il vrti M ui è onnsso ggiungi M (N,M) MST onsir l ro osto infrior onnsso N o M ggiungi il vrti ui si onntt l ro orrisponnt MST ontinu il prosso fino quno tutti i vrtii sono stti inlusi Politnio i Milno - Prof. Sr omi 4 Politnio i Milno - Prof. Sr omi 4 lgoritmo i Prim () Implmntzion: rry : istnz tr i vrtii ll lro i rioprimnto tutti gli ltri vrtii rry V: vrti risptto l qul vin trovt l istnz rpprsntt in V F 9 V lgoritmo i Prim () Implmntzion: rry : istnz tr i vrtii ll lro i rioprimnto tutti gli ltri vrtii rry V: vrti risptto l qul vin trovt l istnz rpprsntt in V F 9 V Politnio i Milno - Prof. Sr omi 4 Politnio i Milno - Prof. Sr omi 44

12 lgoritmo i Prim () Implmntzion: rry : istnz tr i vrtii ll lro i rioprimnto tutti gli ltri vrtii rry V: vrti risptto l qul vin trovt l istnz rpprsntt in V F 9 V lgoritmo i Prim () Implmntzion: rry : istnz tr i vrtii ll lro i rioprimnto tutti gli ltri vrtii rry V: vrti risptto l qul vin trovt l istnz rpprsntt in V F 9 V Politnio i Milno - Prof. Sr omi 4 Politnio i Milno - Prof. Sr omi 4 lgoritmo i Prim () Implmntzion: rry : istnz tr i vrtii ll lro i rioprimnto tutti gli ltri vrtii rry V: vrti risptto l qul vin trovt l istnz rpprsntt in V F V F lgoritmo i Prim () Implmntzion: rry : istnz tr i vrtii ll lro i rioprimnto tutti gli ltri vrtii rry V: vrti risptto l qul vin trovt l istnz rpprsntt in V F V F Politnio i Milno - Prof. Sr omi 4 Politnio i Milno - Prof. Sr omi 4

13 lgoritmo i Prim () Implmntzion: rry : istnz tr i vrtii ll lro i rioprimnto tutti gli ltri vrtii rry V: vrti risptto l qul vin trovt l istnz rpprsntt in V F V F Politnio i Milno - Prof. Sr omi 49 Implmntzion: lgoritmo i Prim () voi Prim(Grph* G, int*, int s) { int V[G->n()]; // Who's losst int i, w; for (i=; i<g->n(); i++) {// o vrtis int v = minvrtx(g, ); G->stMrk(v, VISIT); if (v!= s) gtomst(v[v], v); if ([v] == INFINITY) rturn; for (w=g->first(v); w<g->n(); w = G->nxt(v,w)) if ([w] > G->wight(v,w)) { [w] = G->wight(v,w);// Upt ist V[w] = v; // Upt who it m from } } } Politnio i Milno - Prof. Sr omi lgoritmo i Kruskl () lgoritmo: Prtizion l insim i vrtii in V lssi i quivlnz, ostituit un singolo vrti Pross gli rhi in orin i pso S l ro onntt u vrtii pprtnnti lssi i quivlnz ivrs llor ggiungi l ro MST omin l u lssi i quivlnz Ripti il prosso fino ottnr un uni lss i quivlnz lssi inizili Psso Pross (,) Psso Pross (,F) Psso Pross (,F) lgoritmo i Kruskl () Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr omi

14 lgoritmo i Kruskl () Gli rhi possono ssr prossti in orin i pso utilizzno un min-hp Prolm: trminr s u vrtii pprtngono ll stss lss i quivlnz lgortimo pr gli lri UNION/FIN sto sull rpprsntzion i punttori l pr Politnio i Milno - Prof. Sr omi

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

Euristiche per il Problema del Commesso Viaggiatore

Euristiche per il Problema del Commesso Viaggiatore Spinz Univrsità di Rom - Diprtimnto di Inggnri Informti, Automti Gstionl Euristih pr il Problm dl Commsso Viggitor Rnto Bruni bruni@dis.unirom.it Il mtril prsntto è drivto d qullo di proff. A. Sssno C.

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

The cost of the material maintenance is averaged over the last 3 years.

The cost of the material maintenance is averaged over the last 3 years. Anlisi i osti i un Diprtimnto 11 TABLE 4 Dprition n mintnn osts (unit: ITL) Ctgory Y Prio Inrs vlu Annul vlu 1 Furnitur 5 1.1.90{31.12.95 219 311 127 43 862 225 2 Lirry 5 1.1.90{31.12.95 542 832 793 108

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete Trsormzioni gomtrih +somtri Omotti similituin Tormi i Euli torm i Tlt +somtri Stilisi s l sgunti rmzioni sono vr o ls. SEZ. N g h i l pplino un isomtri un igur, ss si orm. L simmtri ntrl è un prtiolr rotzion.

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 Sgnli i siurzz pr fontnll o i mrgnz pr l ontminzion UNI 7546/3. Symols for sfty signs-ys wshing - mrgny showr. 332 Normtiv in mtri i tutl ll slut siurzz

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

ELABORAZIONE di DATI SPERIMENTALI

ELABORAZIONE di DATI SPERIMENTALI ELABORAZIONE DATI SPERIMENTALI Prof. Giovnn CATANIA Prof. Rit DONATI Dr. Tibrio T DI CORCIA L stribuzion norml o gusn com modlità borzion dti sprimntli qtittivmnt numro I N T R O D U Z I O N E Un Un dll

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albri di coprtura minimi Albro di coprtura (spanning tr) Dato un grafo G=(V, E, w) non orintato, connsso psato, un albro di coprtura di G è un sottografo X=(V, T) tal ch X è un albro (quindi connsso) T

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11)

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11) orso di Laura in Inggnria Informatica orso di Rti di alcolatori (a.a. /) Robrto anonico (robrto.canonico@unina.it) Giorgio Vntr (giorgio.vntr@unina.it) lgoritmo di ijkstra novmbr I lucidi prsntati al corso

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2 Tenihe i Progettzione Digitle Progettzione e lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

Albero di supporto di costo minimo

Albero di supporto di costo minimo Algortm Struttur Dat II Alro supporto osto mnmo Nl prolma lla struzon ll nrga lttra sono vrs as h vono rvr nrga a una ntral lttra. Pr rvr nrga, ogn asa v ssr ollgata alla ntral attravrso un ammno fatto

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà.

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà. Corpo di Polizia Provincial 3 Corso di Formazion pr Opratori Volontari pr Cntri di Primo Soccorso Cntri di Rcupro Animali Slvatici Friti o in difficoltà. (Opratori da impigar prsso il Cntro di Rcupro Animali

Dettagli

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi L nsm N l nsm Z L r numr L quttro oprzon l potnz n N L sprsson L msur prolm L r numr 1 Stls s l sunt rmzon sono vr o ls. SEZ. A l m n o p q 39 è un numro spr. 112 è un numro pr. In 79, 9 è un r. 10 è un

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

ELENCO PREZZI AREE VERDI

ELENCO PREZZI AREE VERDI ALLEGATO B) AL CAPITOLATO SPECIALE D APPALTO ELENCO PREZZI AREE VERDI MANO D OPERA I przzi ll no opr pplir sono qulli i sguito lnti sunti l Przzirio ll Assoizion Itlin Costruttori l Vr (www.ssovr.it) Dsrizion

Dettagli

Test di autovalutazione

Test di autovalutazione Tst i utovlutzion 0 10 20 0 0 0 60 70 80 90 100 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltntiv. n Confont l tu ispost on l soluzioni. n Colo, ptno sinist, tnt sll qunt sono

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ 2 GLI ELEMENTI FONMENTLI ELL GEOMETRI T T i uovluzion 0 10 20 30 40 0 0 70 80 90 100 n Il mio punggio, in nimi, è 1 2 3 Ov l figu gn l uni popoizion o. ppin L. ppin l. ppin l. ppin l ppin l. l ppin.

Dettagli

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo)

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo) Oittivo: srizion sintti Oittivo n. 1 Costruzion iplntzion l Pino ll Prorn sono l isposizioni introott l D.Ls. 150/2009, inlità prsuir, olità, lin ui i ttuzion Vriili L'oittivo h il in i rniontr i ittini

Dettagli

Test di autovalutazione

Test di autovalutazione Tst i autovalutazion Tst 0 0 0 30 0 50 60 70 80 90 00 n Il mio puntggio, in ntsimi, è n Risponi a ogni qusito sgnano una sola ll 5 altrnativ. n Confronta l tu rispost on l soluzioni. n Colora, partno a

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

RIDUTTORI TIPO 65 TIPO. Numero stadi Tipo entrata Giri Max entrata n1 (min -1 ) VERSIONE LINEARE MASCHIO RR 65 M... - RR 65D M... - RR 65T M...

RIDUTTORI TIPO 65 TIPO. Numero stadi Tipo entrata Giri Max entrata n1 (min -1 ) VERSIONE LINEARE MASCHIO RR 65 M... - RR 65D M... - RR 65T M... RIUTTORI 65 Numero stadi Tipo entrata Giri Max entrata n1 (min 1 ) Tab. RR 65 M... RR 65 M... RR 65T M... RR 65 FS RR 65 FS RR 65T FS 1 2 3 35 35 35 VRSION INR HIO RR 65 M... RR 65 M... RR 65T M... UNI

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Min. per il conteggio kg. mm PCE-PB 60 60 20 - - 20 ±50-325 x 315 PCE-PB 150 150 50 - - 50 ±100-325 x 315

Min. per il conteggio kg. mm PCE-PB 60 60 20 - - 20 ±50-325 x 315 PCE-PB 150 150 50 - - 50 ±100-325 x 315 Bilanc inustriali tmpratura umiità Ristratori i tmratura umiità tmp., umi., aria prssion iri vibrazion forza matrial Misurator ii raiazioni Bilancia inustrial lla sri PCE-PB Bilancia psapacchi molto conomica

Dettagli

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO ALLEGATO: N. 1 PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO MANUTENZIONE ORDINARIA E RIPARATIVA DEGLI EDIFICI PATRIMONIALI DESTINATI AD UFFICI DELLA PROVINCIA. IMPIANTI ELETTRICI

Dettagli

(x, y) R, x, y A. def

(x, y) R, x, y A. def 1 F0 RELAZIONI DI EQUIVALENZA 1. Proprità ll rlzioi i u isim Si him rlzio i u isim A, o vuoto, ogi R A. S (x, y) R, iimo h «x è ll rlzio R o y». Normlmt, ll'sprssio (x, y) R si prfris l'sprssio xry, ismt

Dettagli

Min. per il conteggio kg. mm PCE-PB 60 60 20 - - 20 ±50-325 x 315 PCE-PB 150 150 50 - - 50 ±100-325 x 315

Min. per il conteggio kg. mm PCE-PB 60 60 20 - - 20 ±50-325 x 315 PCE-PB 150 150 50 - - 50 ±100-325 x 315 Bilanc inustriali Sri PCE-PB Bilancia psapacchi molto conomica con intrfaccia Qusta bilancia psapacchi è ial pr ralizzar spizioni, p.. con la bilancia psapacchi PCE-PB 60 (campo i psata i 0... 60 k), potrà

Dettagli

COTA NSW SONDAGGIO CLIENTI 2016

COTA NSW SONDAGGIO CLIENTI 2016 COTA NSW SONDAGGIO CLIENTI 2016 Prlimo i om trsorrr il tuo tmpo. Complti il sonio prtipi ll strzion pr vinr un ip. Grzi pr il tmpo ito ompilr il nostro sonio su om trsorr il suo tmpo. L ssiurimo h tutt

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI,

Dettagli

T R I BU N A L E D I T R E V IS O A Z I E N D A LE. Pr e me s so

T R I BU N A L E D I T R E V IS O A Z I E N D A LE. Pr e me s so 1 T R I BU N A L E D I T R E V IS O BA N D O P E R L A C E S S IO N E C O M P E TI TI V A D EL C O M P E N D I O A Z I E N D A LE D E L C O N C O R D A T O PR EV E N T I V O F 5 Sr l i n l i q u i da z

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albr d coprtur mnm Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

.CE 1BH=JEL +6 4,1)41 ) +57 +J?HHAJA =?IK HEIAHL=J =E?EAJE?IK=JHE 1.4)11 57) *)+) +0 +5 1 +6 +446 54811 +/)61 ) +6 +446 +,111 +1+0 )64 +,111 +1+0 *1.1+1 1 2)46) )4) 75 *1.1+1 1 2)46) )4) :64) 75 *1.1+1

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

XXX SPA Stabilimento di xxx (xx) REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO.

XXX SPA Stabilimento di xxx (xx) REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO. Pag. 1/10 REGISTRO FORMAZIONE/ADDESTRAMENTO CONTINUI LAVORATORI CAPIREPARTO PREPOSTI VICE CAPIREPARTO REPARTO. Pr form azion/ addst ram nt o cont inui si intnd la attività di addstramnto, vrbal / o pratico,

Dettagli

Costruiamo un aquilone SLED

Costruiamo un aquilone SLED Costruimo un quon SLED Sgnr sul sgmnto cod du rifrimnti 3 cm dgli spigoli (vrso l'trno) poi sul bordo ntrior dll du li 11 cm dgli spigoli (vrso l'strno); qusto punto si dvono pplicr l du mnich sul bordo

Dettagli

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 -

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 - Flornzi rriv il prmio: contrtto fino l 2016 stipno umntto CHIARA ZUCCHELLI Il prmio più mritto rrivto Com nnuncito si d Sbtini si dl suo gnt Alssndro Lucci rrivto il rinnovo dl contrtto Alssndro Flornzi

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 1 SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 21 Luglio 2008 2 SPERIMENTAZIONE TELELAVORO Contct Cntr coinvolti: Rom (2 prson) Npoli (8 prson) Srvizi gstiti in tllvoro: 186 Rom Off Lin Npoli

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Pesatura Obiettivo. Indicatori di risultato (Efficacia - Efficienza - Tempo)

Pesatura Obiettivo. Indicatori di risultato (Efficacia - Efficienza - Tempo) Coun i: ORTACESUS Pino li oittivi i Prornc INDIVIDUALE nnulità 2017 Srvizio Ainistrtivo OBIETTIVI PERFORMANCE INDIVIDUALE Trinnio 2017 2018 2019 X Oittivo n. 1 Mission Vriili Pror Oittivo Oprtivo Oittivo

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

ISTRUZIONI DI MONTAGGIO per controtelai SP

ISTRUZIONI DI MONTAGGIO per controtelai SP ISTRUZIONI DI MONTAGGIO pr ontrotli SP 100-125 Controtli vrsion rtonsso INCASTRO NOMENCLATURA: ontrotlio, inrio rrmnt Controtli pr port somprs i m l SET i ALLARGAMENTO pr SP 125 Montnti vrtili ntriori

Dettagli

Ordina per: orario di partenza tempo di percorrenza numero di cambi Staz. Partenza: Latina Staz. Arrivo: Roma ( Tutte Le Stazioni ) Data: 16/12/2010

Ordina per: orario di partenza tempo di percorrenza numero di cambi Staz. Partenza: Latina Staz. Arrivo: Roma ( Tutte Le Stazioni ) Data: 16/12/2010 http://orario.trenitalia.com/b2c/npppricetravelsolutions.do?car=0&stazin=latina&stazout=roma&dat... 1 di 1 08/12/2010 23.20 04:50 05:08 05:25 05:45 06:13 05:35 06:00 06:05 06:23 06:58 00:45 12282 ND ND

Dettagli

Ordina per: orario di partenza tempo di percorrenza numero di cambi Staz. Partenza: Roma ( Tutte Le Stazioni ) Staz. Arrivo: Latina Data: 16/12/2010

Ordina per: orario di partenza tempo di percorrenza numero di cambi Staz. Partenza: Roma ( Tutte Le Stazioni ) Staz. Arrivo: Latina Data: 16/12/2010 http://orario.trenitalia.com/b2c/npppricetravelsolutions.do?car=0&stazin=roma&stazout=latina&dat... 1 di 1 08/12/2010 23.15 04:52 04:59 RO TIB 05:41 06:12 06:27 05:29 05:38 06:17 06:48 06:56 00:37 12293

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

la confezione e controllare i componenti Gruppo tamburo (compresa la cartuccia toner iniziale)

la confezione e controllare i componenti Gruppo tamburo (compresa la cartuccia toner iniziale) Guid di instllzion rpid Inizio MFC-8370DN MFC-8380DN Prim di potr utilizzr l pprcchio, lggr qust Guid di instllzion rpid pr l corrtt impostzion instllzion. Pr consntir un utilizzo immdito dll'pprcchio,

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

A.A. 2016/17 Graduatoria corso di laurea in Scienze e tecniche di psicologia cognitiva

A.A. 2016/17 Graduatoria corso di laurea in Scienze e tecniche di psicologia cognitiva 1 29/04/1997 V.G. 53,70 Idoneo ammesso/a * 2 27/12/1997 B.A. 53,69 Idoneo ammesso/a * 3 18/07/1997 P.S. 51,70 Idoneo ammesso/a * 4 12/05/1989 C.F. 51,69 Idoneo ammesso/a * 5 27/01/1997 P.S. 51,36 Idoneo

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Il piano cartesiano e la retta

Il piano cartesiano e la retta Cpitolo Eserizi Il pino rtesino e l rett Teori p. Coorinte rtesine nel pino Stilisi ove si trov isuno ei punti ti. (I I qurnte, II II qurnte, III III qurnte, IV IV qurnte, x sse x, y sse y) A(0, 8) B(,

Dettagli

MACCHINE TRACCIALINEE ED ACCESSORI

MACCHINE TRACCIALINEE ED ACCESSORI MHIN TRILIN D SSORI D M PR SGNLTI ORIZZONTL G G N H I L F F ON MISURTOR STRDL INORPORTO FIGUR QT'. 2400MTRMT000 MHIN TRILIN 2400MTRMT0002 MHIN TRILIN 2400MTRMT0003 MHIN TRILIN D 2400MTRPM0005 PISTOL MNUL

Dettagli

i. n t. a v u l l e d a t s e . w

i. n t. a v u l l e d a t s e . w 5FE75STA DE L L ' UVA A VEGRIOLVO DI 7.2r8 26.t2 b t www.ft.t.t 5FE7STA DE L L ' UVA 57 l U ' l l t Ftt è r, tt l 57t t t t L f r br l l V C. 7 5 t r f r t q r f t. Cb r t r V f L lb t t tt r r t r rr

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto Dipartimnto fdral dlla difsa, dlla protzion dlla popolazion dllo sport DDPS Uffiio fdral di topografia swisstopo Elno uffiial dll loalità on il numro postal d avviamnto il primtro Informazioni sul prodotto

Dettagli

GUIDA ALL USO Gestione Ricambi e Ordini

GUIDA ALL USO Gestione Ricambi e Ordini GUI LL USO Gestione Ricambi e Ordini INI GSTION RIMI ORINI pag. 1 SLT MHIN pag. 2 INI LL TVOL pag. 3 TVOL pag. 5 INSRIMNTO PRTIOLR pag. 6 ORIN PRTO pag. 8 GGIUNGI RTIOLO pag. 9 OMPLT ORIN pag. 10 STORIO

Dettagli