! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE"

Transcript

1 IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI, DtI, Q) to un rio i lvoro Q, quli viste mterilizzre SELECT FROM GROUP BY NegozioI, ProutI, SUM(Q) AS TQ Venite NegozioI, ProutI; Si mterilizz :V ome ggiornre le viste quno si moifino i ti (non si onsier) t un'interrogzione, ome risriverl per usre un vist mterilizzt SELECT FROM GROUP BY NegozioI, SUM(Q) AS TQ Venite NegozioI; SELECT FROM GROUP BY Si risrive NegozioI, SUM(TQ) AS TQ V NegozioI; 1 2 APPROCCIO NOZIONE DI PATTERN DI AGGREGAZIONE Le interrogzioni el rio i lvoro sono nell form: q = A! SUM(m) AS m (per revità q = A!) oppure q = A! $ B on A e B insiemi isgiunti i ttriuti e restrizioni AND i preiti (Att = ). Interrogzioni Q Il pttern (i ggregzione) P(v) i un vist v = A! è l'insieme A egli ttriuti i rggruppmento. Viste nite Il pttern P(q) i un'interrogzione q = A! $ B è l'insieme A " B Vinoli e oiettivi Algortimo i selezione Moello ei osti Diremo he q è lolile ll vist v (q << v) se il risultto i q può essere Viste mterilizzte selezionte trovto usno v. Se P(q) = A " B e P(v) = C, q << v sse A " B # C Dte ue viste v1 e v2 e un'interrogzione q, se v1 < v2 e q << v1, llor q << v2 3 4 IPOTESI SEMPLIFICATIVE I ti sono sttii on on n imensioni, prive i ttriuti, e un misur m Le viste nite sono i possiili uoii el uo esteso (retiolo ei uoii = retiolo elle possiili viste), iversi ll rie F, efiniti on espressioni tipo: A! SUM(m) AS m (F). Gli ttriuti i rggruppmento el uoie v si enotno on g(v) Il rio i lvoro sono le interrogzioni qi he efinisono i uoii iversi ll rie F. Diremo he q è lolile ll vist v (q << v) se il risultto i q può essere trovto usno v. IL RETICOLO DEL DW A B M A B C M A C M B C M SELECT B, C SUM(M) AS M FROM R GROUP BY B, C; Dte ue viste v1 e v2 e un'interrogzione q, se v1 < v2 e q << v1, llor q << v2 Il osto i eseuzione i q usno l vist v è v, il numero i reor i v. 5 A M B M M C M SELECT C SUM(M) AS M FROM R GROUP BY C; 2 90 SELECT SUM(M) AS M FROM R; 6 le interrogzioni el rio i lvoro sono nell form: q = A! oppure q = A! $ B on A e B insiemi isgiunti i ttriuti e restrizioni AND i preiti (Att = ).

2 DAL RETICOLO DEI CUBOIDI AL RETICOLO DELLE VISTE STIMA DIMENSIONE DI UNA VISTA (ProottoI, DtI, NegozioI) DtI) (ProottoI, NegozioI) (DtI, (ProottoI, NegozioI) (ProottoI) (DtI) (NegozioI) ( ) pn 6M p 0.8M pn 6M n 6M p 0.2M 0.1M n 0.01M none 1 vist v = A! F (R) Stim i v on l formul i Crens (uniforme istriuzione ei ti): v = n n(1 1/n) r ove n è il numero i possiili vlori i A e r = R. Esempio. Si R(B,C,D), on Nre(R), Nkey(B) e Nkey(C). L stim i un vist v rggruppno R su (B, C) si ottiene poneno Come stimre l imensione i un vist? n = Nkey(B) * Nkey(C) r = Nre(R) 7 8 PERCHE' MATERIALIZZARE LE VISTE PERCHE' NON MATERIALIZZARE TUTTE LE VISTE? pn 6M pn 6M p 0.8M pn 6M n 6M p 0.8M pn 6M n 6M p 0.2M 0.1M n 0.01M p 0.2M 0.1M n 0.01M none 1 none 1 Query: totle elle venite rggruppte per ProottoI Cso 1: ti (pn) = 6M Cso 2: vist mterilizzt (p) = 0.8M Cso 3: vist mterilizzt (p) = 0.2M Complet mterilizzzione: ~19M reor Meglio przile: - inluere: pm, il DW - esluere: pn, n totle: ~ 7M, pri prestzioni 9 10 SCELTA DELLE VISTE DA MATERIALIZZARE BENEFICIO DI UNA VISTA pn 1000 Si C(qi, M) il osto i eseuzione ell'interrogzione qi usno le viste mterilizzte M. L'oiettivo è i selezionre il sottoinsieme M elle viste nite V he minimizzi il osto omplessivo i eseuzione elle interrogzioni Q: %(V, M) = & i = 1.. Q C(qi, M) rispettno un vinolo he verrà speifito più vnti. Il prolem i ottimizzzione è NP-ompleto. Pertnto si er un soluzione pprossimt on un lgoritmo i tipo greey he proee selezionno un opo l'ltr l vist he proue il mssimo enefiio, finhé le viste selezionte non superno un vinolo prefissto. Informlmente, il enefiio i un vist è l riuzione el osto i eseuzione el rio i lvoro he proue. 1. Per ogni vist w isenente i v (w ' v): ) Si u l vist i osto minimo in M tle he w ' u ) Se C(v) < C(u), llor B w = C(u) C(v), ltrimenti B w = Si pone B(v, M) = & w ' v B w pn 1000 p 500 p 0 n Dto un insieme M i viste mterilizzte, per ogni vist v el retiolo, il enefiio B(v, M) i v rispetto M è efinito : n

3 ALGORITMO BASE ESEMPIO pn 1000 Vinolo: numero k i viste mterilizzre fr le V nite pn 1000 p 500 n 700 Algoritmo HRU(k) 1. M = {Top}; 2. A = V M; 3. for i = 1 to k o 3.1. v = l vist in A, tle he B(v, M) è mssimo 3.2. M = M " {v}; 3.3. A = A {v}; 4. return M; p 0 n pn p n p n ( ) Prim selt 0 500! 4 = ! 4 = ! 2 = ! 2 = ! 2 = Soluzione M = {pn, p, n, } Seon selt 0 300! 2 = ! 2 = = ! 2 = Terz selt Per ogni vist w isenente i v (w ' v): ) Si u l vist i osto minimo in M tle he w ' u ) Se C(v) < C(u), llor B w = C(u) C(v), ltrimenti B w = Si pone B(v, M) = & w ' v B w HRU NON TROVA LA MIGLIORE SOLUZIONE PRESTAZIONI K = 2 A 0 B 100 C 99 D 100 Complessità i tempo O(kn 2 ), ove k è il numero i viste selezionte e n il numero elle viste el retiolo. In generle l'lgoritmo non trov l soluzione ottim, m è stto imostrto he esso fornise uoni risultti e vle l seguente proprietà: Prim selt B = *100 = 4100 C = *101 = 4141 Seon selt B = 100+*100 = 2100 Greey M = {A, C, B} B(M) = 6241 Ottimo M = {A, B, D} B(M) = 0 + (0-100) * 80 = 80 Per ogni retiolo, si B greey il enefiio i k viste selte on l'lgoritmo greey e B opt il enefiio i un insieme ottimo i k viste, llor B greey non è inferiore 0,63 * B opt. D = *100 = 4100 D = 100+*100 = /80 = 0, VARIANTE 1 PGA: ESEMPIO pm 1000 Algoritmo HRU h omplessità i tempo polinomile nel numero elle viste n, m esponenzile nel numero elle imensioni! O(kn 2 ) = O(k2 2 ) pm 1000 p 500 m 700 Con n = 10, il retiolo h 1024 noi e HRU seglie 1 viste in un or! L omplessità esponenzile ipene ue selte: A ogni iterzione si lol il enefiio i tutte le viste non mterilizzte A ogni iterzione si onsierno tutti i isenenti i un vist Cnite i prim nomin = {p},, p 0 m fse i nomin: si selgono le viste più promettenti, fr quelle non nor prese in onsierzione, he si ggiungono ll'insieme elle viste nite, inizilmente vuoto. Le viste promettenti sono le più piole i ogni fmigli. Nel 02 è stto proposto un lgoritmo Polynomil Greey Algorithm (PGA) i omplessità polinomile nelle imensioni. fse i selt: si seglie l vist v fr quelle nite on il mssimo enefiio e si ritorn l psso preeente. Prim selt: {p} 17 18

4 PGA: ESEMPIO pm 1000 VARIANTE 2 pm 1000 p 500 m 700 Crio i lvoro on interrogzioni non equiproili p 0 m Cnite i prim nomin = {p},, Cnite i seon nomin = {m},, {m}, Cnite i terz nomin = {m}, {pm},, {p}, Prim selt: {p} Seon selt: {m} Terz selt: {m} Invee i fissre il numero k i viste mterilizzre, si impone il vinolo he l'insieme M non oupi più i un erto spzio S. L soluzione in questo so è ivers HRU, m ll umentre elle imensioni i solito è l stess. 19 ALGORITMO CON VINCOLO DI SPAZIO BPUS ALGORITMO CON VINCOLO DI SPAZIO PBS (Pik By Size) Algoritmo BPUS(S) Benefiio per unità i spzio B s (v, M) = B(v, M)/S(v) = & w ' v B w /S(v) 1. M = {Top}; 2. A = V M; 3.w h i l e (S > 0) o 3.1. v = vist in A on mx Bs; 3.2. if (S S(v) > 0) then {S = S S(v); M = M " {v}; A = A {v} }; else S = 0; 4.r e t u r n M; Algoritmo PBS(S) 1. M = {Top}; 2. A = V M; 3.w h i l e (S > 0) o 3.1. v = l vist più piol in A; 3.2. if (S S(v) > 0) then {S = S S(v); M = M " {v}; A = A {v} }; else S = 0; 4.r e t u r n M; Si omport ome PBUS per retioli Size Restrite: per ogni vist v on k figli e per ogni suo genitore z, z! (1+k) v, quno z " Top Risultti sperimentli mostrno he il risultto trovto è uono nhe se il retiolo non è Size Restrite VARIANTE 3 VISTE CANDIDATE Il rio i lvoro è un prtiolre insieme i interrogzioni Q. Sono le v on ssoit lmeno un q v q 1 q 1 2 {ProottoI, NegozioI, DtI} q v q 1 q 1 2 {ProottoI, NegozioI, DtI} q v 2 {ProottoI, NegozioI} 500 v q 3 3 q 4 {ProottoI, DtI} 700 v 4 {NegozioI, DtI} V2? NO 1000 v 2 {ProottoI, NegozioI} 500 v q 3 3 q 4 {ProottoI, DtI} 700 v 4 {NegozioI, DtI} 0 v 5 {ProottoI} q v 6 {NegozioI} 150 v 7 {DtI} 0 v 5 {ProottoI} q v 6 {NegozioI} 150 v 7 {DtI} 1 v 8 1 v 8 { } { } Ogni q si ssoi ll minim vist v he ne onsente il lolo

5 CRITERIO PER STABILIRE SE UNA VISTA E CANDIDATA ALGORITMO PER TROVARE LE VISTE CANDIDATE Algoritmo BPT(Q) Dto uno shem i DW e un rio i lvoro Q, un vist v è ett nit se soisf un elle seguenti onizioni: ( esiste un interrogzione q ) Q tle he g(q) = g(v), ( esiste un oppi i viste nite v i e v j tli he g(v) = g(v i ) * g(v j ), on * estremo superiore Cnite = insieme ei g(v) tli he g(v)=g(q), per ogni q ) Q; while (Cnite mi) o for (g(v i ) ) Cnite with g(v i )! Top) o for (g(v j ) ) Cnite with (g(v j )! Top) n (g(v i ) + g(v j )) n (g(v j ) * g(v j ), Cnite)) o Cnite = Cnite " (g(v j ) * g(v j )); return Cnite; ALGORITMO DI SCELTA DELLE VISTE CON CARICO DI LAVORO DIMENSIONI CON ATTRIBUTI D Q si trov l insieme elle possiile viste nturli Si etermin l insieme elle viste nite V Si trov l insieme elle viste mterilizzre on uno egli lgoritmi Ipotetio Riotto visti in preeenz Ipotetio: ome se si prtisse i ti ell giunzione i F on tutte le D. Si puo semplifire: - ome rie st F - se > un vist su h gli stessi gruppi i un su DIMENSIONI CON GERARCHIE MODIFICA DELLE VISTE CANDIDATE IN PRESENZA DI GERARCHIE Città NegozioI ProottoI Q1 ProottoI, NegozioI ProottoI, Città NegozioI Q2 Provini Q3 ProottoI, Provini In un vist v si sostituise un ttriuto più generle (Provini) on uno più speifio (Città) se si ottiene un vist v' i "poo" più grne: -S(v') < S(v). E' stto mostrto sperimentlmente he, on - = 0.95, si ottiene un sensiile riuzione el numero elle viste. ProottoI, NegozioI Q1 ProottoI, Città NegozioI Q2 Q

6 CONCLUSIONI GLI INDICI SU VISTE MATERIALIZZATE Su un vist on ttriuti (, ) si possono efinire 4 inii: I, I I o I Gli inii efiniti su tutti gli ttriuti i un vist (I o I ) sono etti ompleti. Oorre un uon lgoritmo pprossimto per trovre le viste mterilizzre, prtire l rio i lvoro e rispettno i vinoli In presenz i gerrhie, oorre riurre l rinlità ell'insieme elle viste nite. Utilità egli inii: si onsieri l'interrogzione q = $ sull vist v on ttriuti (, ). In ssenz i inii il osto i eseuzione i q ipene v. Se esiste l'inie I il osto i eseuzione si stim on quello i esso i ti: C D = v(,) / Nkey(I ) = v(,) / v() SCELTA DEGLI INDICI SU VISTE MATERIALIZZATE APPROCCIO CONSIDERATO Due iverse strtegie per risolvere il prolem Crio i lvoro Q Crio i lvoro Q Crio i lvoro Q Inii niti IniiC Viste nite V Selezione viste mterilizzte M Selezione viste mterilizzte M e inii I Vinoli e Oiettivi Algoritmo i selezione Moello ei osti Selezione inii memorizzre I Viste e inii M! I Viste M e Inii I Viste e inii M! I REGOLE DI BUON SENSO Costruire un inie sugli ttriuti ell vist usti nelle restrizioni e he sono molto selettivi. Costruire un inie sugli ttriuti ell vist he sono hive estern ell tell sull qule è efinit l vist. 35

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale.

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale. Gerarhie Riorsive! Una gerarhia riorsiva eriva alla presenza i una riorsione o ilo (un anello nel aso più semplie) nello shema operazionale.! Esempio i shema operazionale on anello:! Rappresentazione sullo

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Il problema da un milione di dollari

Il problema da un milione di dollari Il prolem un milione i ollri SienzOrient: Informti Ginlu Rossi www.informti.unirom2.it (www.informti.unirom2.it) Prolem $ 000 000 / 9 Algoritmi Requisiti i un uon lgoritmo: Correttezz; Effiienz ovvero

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

Allegato 3 Elenco BAT ed esempio interventi efficientamento

Allegato 3 Elenco BAT ed esempio interventi efficientamento Allegto 3 Eleno BAT e esempio interventi effiientmento LINEE GUIDA per l onuzione ell ignosi energeti nel settore rtrio Pg. 1 i 6 Riepilogo BAT sul onsumo e sull effiienz energetii estrtte ll DECISIONE

Dettagli

Unità D1.2 Selezione e proiezione

Unità D1.2 Selezione e proiezione (A) CONOSCENZA TEMINOLOGICA Dre un reve esrizione ei termini introotti: ienominzione Selezione Proiezione Composizione i operzioni (B) CONOSCENZA E COMPETENZA isponere lle seguenti omne proueno nhe qulhe

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca Brriere ll entrt e modello del Prezzo imite onomi industrile Università Bio Christin Grvgli - Giugno 006 Brriere ll entrt definizioni Condizioni he permettono lle imprese opernti in un industri di elevre

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Il piano cartesiano e la retta

Il piano cartesiano e la retta Cpitolo Eserizi Il pino rtesino e l rett Teori p. Coorinte rtesine nel pino Stilisi ove si trov isuno ei punti ti. (I I qurnte, II II qurnte, III III qurnte, IV IV qurnte, x sse x, y sse y) A(0, 8) B(,

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA Politecnico i Milno Fcoltà i Ingegneri ell Automzione INFORMATICA INDUSTRIALE Appello COGNOME E NOME ebbrio 2008 RIGA COLONNA MATRICOLA Il presente plico pinzto, composto i quttro ogli (ronte/retro)eve

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Esercizio Planning. Dati:

Esercizio Planning. Dati: Eserizio Plnning Dti: - lo stto inizile rppresentto in figur 1 e esritto lle seguenti formule tomihe: [ontle(,p1), ontle(,p2), ontle(,p3), on(,), ler(), ler(), ler(), hnempty] (,, rppresentno ei lohi e

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1

PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1 PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1 PUNTEGGIO PARAMETRI INTERURBANO NORMALE Punteggio Vlutzioni 1 PREZZO DEL VEICOLO COMPLETO (vesi

Dettagli

Icone, finestre e strutture dati

Icone, finestre e strutture dati u t o n e n i t à i m r e n i p p Ione, finestre e strutture ti Competenze speifihe Il signifito elle prinipli ione, il loro spostmento e orinmento sul esktop I prinipli elementi elle finestre elle pplizioni

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

QUESITI DI PSICOLOGIA

QUESITI DI PSICOLOGIA QUESITI DI PSICOLOGIA appunti 23 TEST DI VERIFICA 1 Che osa si intene on il onetto i atteniilità? a L effiaia he un test ha nel preveere i renimenti i un soggetto nelle ailità speifihe misurate Il grao

Dettagli

Capitolo 3. Modelli. Macchine combinatorie Macchine sequenziali asincrone sincrone

Capitolo 3. Modelli. Macchine combinatorie Macchine sequenziali asincrone sincrone Capitolo 3 Moelli Mahine ominatorie Mahine sequenziali asinrone sinrone Il moello el loo o satola nera i I: alfaeto i ingresso u U: alfaeto i usita ingresso ei ati i F u usita ei risultati F: relazione

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Calcolo del costo unitario FASE 1

Calcolo del costo unitario FASE 1 ESERCIZIO Definizione el pino ei entri i osto e eterminzione el osto unitrio i prootto Clolo el osto unitrio FASE 1 Azien i prouzione: proue i eni,,, Il proesso prouttivo prevee 3 fsi o proessi prinipli:

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Millenium 3 Interfaccia di comunicazione M3MOD Guida all'uso della Directory operativa 04/2006

Millenium 3 Interfaccia di comunicazione M3MOD Guida all'uso della Directory operativa 04/2006 Millenium 3 Interfi i omunizione M3MOD Gui ll'uso ell Diretory opertiv 04/2006 160633105 Pnormi AGui ll'uso ell Diretory opertiv Introuzione L Diretory opertiv è un file i testo generto l softwre i progrmmzione

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

Sistemi di comando per la sicurezza delle macchine Norma EN ISO 13849-1

Sistemi di comando per la sicurezza delle macchine Norma EN ISO 13849-1 Sistemi i omano per la siurezza elle mahine Norma EN ISO 13849-1 Gianfrano Ceresini www.elektro.it Aprile 2010 Valutazione el rishio All interno ella proeura per la maratura CE i una mahina, il ostruttore

Dettagli

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2 Tenihe i Progettzione Digitle Progettzione e lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali Lezione Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets Lezione 1 Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

PROVE DI CARICO SU SOLAIO

PROVE DI CARICO SU SOLAIO .5. PROVE DI CARICO SU SOAIO Pg. di PROVE DI CARICO SU SOAIO. Sopo prov intende testre le strutture orizzontli, in termini di resistenz e di rispost elsti, sottoponendole lle mssime solleitzioni possiili

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Le proprietà fondamentali del campo magnetico

Le proprietà fondamentali del campo magnetico 1) Ftti sperimentli. Le proprietà fonmentli el mpo mgnetio Riportimo ue ftti sperimentli: ) Un filo rettilineo infinito perorso orrente I gener un mpo mgnetio on le seguenti proprietà: l intensità ument

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

4.5 Il Parco dello Sport del Lambro e il PLIS della Media Valle del Lambro

4.5 Il Parco dello Sport del Lambro e il PLIS della Media Valle del Lambro PGT Pino di Governo del Territorio 212 4.5 Il Pro dello Sport del Lmbro e il PLIS dell Medi Vlle del Lmbro Tngenile Est Nuovo pro Cresengo pro Vill Fini Nviglio dell Mrtesn pro Prdisi Lmbro pro dell Mrtesn

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

T16 Protocolli di trasmissione

T16 Protocolli di trasmissione T16 Protoolli di trsmissione T16.1 Cos indi il throughput di un ollegmento TD?.. T16.2 Quli tr le seguenti rtteristihe dei protoolli di tipo COP inidono direttmente sul vlore del throughput? Impossiilità

Dettagli

La piattaforma Next Generation Guida rapida

La piattaforma Next Generation Guida rapida Gui rpi Quest gui rpi è stt ret on l oiettivo i iutrti fmilirizzre rpimente on le numerose rtteristihe e strumenti isponiili sull pittform Next Genertion. Sopri ove trovre i prootti isponiili e le notizie

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i ontrollo Come già etto, in generale, un sistema è solo potenialmente in grao i soisfare gli obiettivi per i quali è stato ostruito, e ioè i omportarsi nella maniera esierata. Per onseguire

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore Lezione 5 Argomenti Premessa Vincolo di bilancio La scelta ottima del consumatore 5.1 PREESSA Nonostante le preferenze portino a desiderare quantità crescenti di beni, nella realtà gli individui non sono

Dettagli

Estensioni del linguaggio SQL per interrogazioni OLAP

Estensioni del linguaggio SQL per interrogazioni OLAP Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Estensioni del linguaggio SQL per interrogazioni OLAP Outline! Esempio introduttivo e motivazioni! Introduzione al modello

Dettagli

Biglietti e Ritardi: schema E/R

Biglietti e Ritardi: schema E/R Biglietti e Ritardi: schema E/R Ritardi: Progettazione dello schema di Fatto! Definire uno schema di fatto per analizzare i ritardi; in particolare l analisi deve considerare l aeroporto di partenza, mentre

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE ALGEBRA LINEARE Operzioni tr mtrici Sino A = { ij } e B = {b ij } venti l stess imensione. L loro somm è l mtrice C i cui elementi sono {c ij

Dettagli

Piero Gallo Fabio Salerno. Task. Corso di informatica. Gli archivi sequenziali. il libro si estende sul web

Piero Gallo Fabio Salerno. Task. Corso di informatica. Gli archivi sequenziali. il libro si estende sul web Piero Gllo Fio Slerno Tsk Corso i informti 2 il liro si estene sul we Gli rhivi sequenzili il liro si estene sul we LEZIONE L orgnizzzione sequenzile L orgnizzzione logi sequenzile Con rhivio logio sequenzile

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

GESTIONE della BASE di DATI

GESTIONE della BASE di DATI GESTIONE della SE di DTI I dati sono una componente fondamentale di un GIS Devono essere valutati con attenzione gli strumenti usati per: creare l archivio dei dati manipolare le informazioni contenute

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

Test di autovalutazione

Test di autovalutazione Test di utovlutzione 0 0 0 0 0 50 0 70 0 0 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle 5 lterntive. n Confront le tue risposte on le soluzioni. n Color, prtendo d

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli