COMBINAZIONI DI CARICO SOLAI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COMBINAZIONI DI CARICO SOLAI"

Transcript

1 COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle derivnti dll pplizione dell formul: G1 G1 G2 G2 Q Qk1 Q Σ(ψ Qki) (i=2,p) (1) in ui: G1 = Crio Permnente (Peso Proprio) G2 = Crio Permnente non Strutturle Qk = Crihi vriili p = Numero omplessivo di rihi vriili Per determinre l ondizione di rio he ingener le mssime solleitzioni su un singol mpt di un solio, si osservi he pplindo l (1) si hnno le seguenti p Condizioni di Crio: 1 1 G1 G1 G2 G2 Q Qk1 Q ψo2 Qk2 Q ψo3 Qk3 + Q ψop Qkp 2 2 G1 G1 G2 G2 Q Qk2 Q ψo1 Qk1 Q ψo3 Qk3 + Q ψop Qkp 3. p p G1 G1 G2 G2 Q Qkp Q ψo1 Qk1 Q ψo2 Qk2 + Q ψop-1 Qkp-1 Nel so dei soli, poihé le solleitzioni mssime nelle vrie mpte e/o negli ppoggi possono verifirsi l vrire del rio omplessivo he gise su isun mpt, è neessrio onsiderre diverse ondizioni di rio. A tle sopo si studino nel seguito diversi tipi di solio.

2 Solio 2 Cmpte on 1 solo rio vriile Al fine di determinre le possiili ominzioni di rio d onsiderre nel lolo di un solio, si onsideri momentnemente il solio due mpte riportto nell figur 1., rito on un solo rio Vriile (Qk) oltre i rihi permnenti. Figur 1 Solio 2 mpte Indindo on G 1k, e G 1k, il peso proprio dell struttur di isun mpt, on G 2k il peso degli elementi non strutturli permnenti, on Q 1k il rio vriile (di reve durt) ostituito dl rio identle, le possiili ominzioni di rio tli d risultre più sfvorevoli i fini delle singole verifihe possono essere: CONDIZIONE I Condizione he indue le mssime tensioni nell ppoggio entrle Le mssime tensioni nell ppoggio entrle si ottengono rindo entrme le mpte on i rihi vriili, oltre ovvimente i rihi permnenti. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: ondizione I - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, Q 1 k, CONDIZIONE II Condizione he indue le mssime tensioni nell mpt Le mssime tensioni nell mpt si ottengono rindo solo l stess on i rihi vriili, e onsiderndo il solo rio permnente nell mpt. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: ondizione II - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k,

3 CONDIZIONE III Condizione he indue le mssime tensioni nell mpt Anlogmente, le mssime tensioni nell mpt si ottengono rindo solo l stess on i rihi vriili, e onsiderndo solo i rihi permnenti nell mpt. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: ondizione III - sull mpt : 1k, 2k, - sull mpt : 1k, 2k, Q 1 k, Al solo sopo di verifire unto sopr, si è studito un solio 2 mpte e si sono ottenuti i seguenti digrmmi he onfermno unto sopr. L ondizione 1 gener un momento mx superiore ll ppoggio entrle L ondizione 2 gener un momento mx inferiore nell mpt 1 L ondizione 3 gener un momento mx inferiore nell mpt 2

4 Solio 3 Cmpte on 1 solo rio vriile Nel so di solio tre mpte, rito on un solo rio Vriile (Qk) oltre i rihi permnenti. Figur 2 Solio 3 mpte Indindo on G 1k,, G 1k, e G 1k, il peso proprio dell struttur di isun mpt, on G 2k il peso degli elementi non strutturli permnenti, on Q 1k il rio vriile, le possiili ominzioni di rio tli d risultre più sfvorevoli i fini delle singole verifihe possono essere: CONDIZIONE I Condizione di rio omplessivo Considerndo he tutti i rihi gisono ontempornemente su tutte le mpte. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, Q 1 k, CONDIZIONE II Condizione he indue le mssime tensioni nell mpt e nell mpt (Cmpte di n pri) Le mssime tensioni nell mpt e nell mpt si ottengono rindo solo le stesse on i rihi vriili, e onsiderndo il solo rio dovuto l peso proprio nell mpt. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, - sull mpt : 1k, 2k, Q 1 k,

5 CONDIZIONE III Condizione he indue le mssime tensioni nell mpt Anlogmente, le mssime tensioni nell mpt si ottengono rindo solo l stess on i rihi vriili, e onsiderndo il solo rio dovuto l peso proprio nelle mpte e. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: - sull mpt : 1k, 2k, - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, CONDIZIONE IV Condizione he indue le mssime tensioni nell ppoggio 2 Le mssime tensioni nell ppoggio tr l mpt e l mpt si ottengono rindo solo le mpte e on i rihi vriili, e onsiderndo i rihi permnenti su tutte le mpte. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, CONDIZIONE V Condizione he indue le mssime tensioni nell ppoggio 3 Le mssime tensioni nell ppoggio tr l mpt e l mpt si ottengono rindo solo le mpte e on i rihi vriili, e onsiderndo i rihi permnenti su tutte le mpte. Dll (1), i rihi distriuiti omplessivi he isogn onsiderre sono: - sull mpt : 1k, 2k, - sull mpt : 1k, 2k, Q 1 k, - sull mpt : 1k, 2k, Q 1 k,

6 Come detto sopr, l ondizione di rio he indue le mssime tensioni nell mpt è uell in ui i rihi vriili vengono onsiderti si in he in (l II), l fine di verifire unto detto, si è studito un esempio di solio 3 mpte on le seguenti ondizioni di rio: 1) Crihi Permnenti e Vriili solo sull mpt 2) Crihi Permnenti e Vriili solo sull mpt 3) Crihi Permnenti e Vriili si sull mpt he sull mpt I digrmmi del momento flettente he si sono ottenuti sono:

7 Per lo stesso solio, è stto inoltre effettuto il lolo onsiderndo le 5 C.C. sopr indite, oltre ll C.C.n.6 (in ui si è rit solo l mpt ) e l C.C.n.7 (in ui si è rit solo l mpt ). I risultti ottenuti, in termini di solleitzioni, sono riportti nell figur seguente, D ui si evine he le mssime solleitzioni nelle mpte e si hnno on l C.C. n.2, e he pertnto non serve onsiderre le C.C. n.6 e 7. D tle digrmm si evine inoltre he l Condizione di Crio N. 1, in ui si ipotizz he tutti i rihi gisono ontempornemente su tutte le mpte, non produe le solleitzioni più elevte. In definitiv è neessrio e suffiiente onsiderre le seguenti N= 4 ondizioni di rio 1. C.C. he indue le mssime solleitzioni nelle mpte e mpte dispri 2. C.C. he indue le mssime solleitzioni nell mpt mpte pri 3. C.C. he indue le mssime solleitzioni nell ppoggio 2 4. C.C. he indue le mssime solleitzioni nell ppoggio 3

8 Solio 3 Cmpte on p rihi vriili Nel so di solio tre mpte, rito on p rihi Vriili (Qk) nell mpt, on p rihi Vriili (Qk) nell mpt e on p rihi Vriili (Qk) nell mpt, oltre i rihi permnenti. Figur 3 Solio 3 mpte on p Crihi Vriili Indindo on G 1k,, G 1k, e G 1k, il peso proprio dell struttur di isun mpt, on G 2k il peso degli elementi non strutturli permnenti, on Q 1k, Q 2k,. Q pk i rihi vriili, le possiili ominzioni di rio tli d risultre più sfvorevoli i fini delle singole verifihe possono essere: CONDIZIONE I Condizione di rio omplessivo Considerndo he tutti i rihi gisono ontempornemente su tutte le mpte. Detto p il numero di Crihi vriili genti sull mpt, dll (1) si determin il Mx vlore di he si ottiene ominndo tli rihi:,mx = MAX,1,2...,p 1k, 1k, 1k, 2k, 2k, 2k, Q Q 1, k, Q 2, k, p, k, ( ψ Qik, ) ( ψ Q ) ( ψ Q ) ik, ik, (2) nlogmente, si determinno i Mx vlori di per le mpte e,mx,mx = MAX = MAX,1,2...,p,1,2...,p 1k, 1k, 1k, 1k, 1k, 1k, 2k, 2k, 2k, 2k, 2k, 2k, Q Q 1, k, Q Q Q 2, k, p, k, 1, k, Q 2, k, p, k, ( ψ Qik, ) ( ψ Q ) ( ψ Q ) ik, ik, ( ψ Qik, ) ( ψ Q ) ( ψ Q ) ik, ik, (3) (4) tli rihi vengono uindi ppliti ontempornemente nelle vrie mpte.

9 CONDIZIONE II Condizione he indue le mssime tensioni nelle mpte dispri Le mssime tensioni nell mpt e si ottengono rindo solo le stesse on i rihi vriili, e onsiderndo il solo rio dovuto i rihi permnenti nelle mpte. In onsiderzione he i rihi vriili devono essere ominti seondo unto indito dll (1), nell mpt si onsider il rio,mx e nell mpt si onsider il rio,mx derivnti dll (2), mentre nelle ltre mpte si onsiderno solo i rihi permnenti: - sull mpt : =, mx - sull mpt : 1k, 2k, - sull mpt : =, mx CONDIZIONE III Condizione he indue le mssime tensioni nelle mpte pri Le mssime tensioni nell mpt si ottengono rindo solo l stess on i rihi vriili, e onsiderndo il solo rio dovuto i rihi permnenti nelle mpte e. - sull mpt : 1k, 2k, - sull mpt : =, mx - sull mpt : 1k, 2k, CONDIZIONE IV Condizione he indue le mssime tensioni nell ppoggio 2 Le mssime tensioni nell ppoggio tr l mpt e l mpt si ottengono rindo solo le mpte e on i rihi vriili, e onsiderndo i rihi permnenti su tutte le mpte. - sull mpt : =, mx - sull mpt : =, mx - sull mpt : 1k, 2k, CONDIZIONE V Condizione he indue le mssime tensioni nell ppoggio 3 Le mssime tensioni nell ppoggio tr l mpt e l mpt si ottengono rindo solo le mpte e on i rihi vriili, e onsiderndo i rihi permnenti su tutte le mpte. - sull mpt : 1k, 2k, - sull mpt : =, mx - sull mpt : =, mx

10 Anhe in uesto so, si evine inoltre he l Condizione di Crio N. 1, in ui si ipotizz he tutti i rihi gisono ontempornemente su tutte le mpte, non produe le solleitzioni più elevte. In definitiv è neessrio e suffiiente onsiderre le seguenti ondizioni di rio 1. C.C. he indue le mssime solleitzioni nelle mpte dispri 2. C.C. he indue le mssime solleitzioni nelle mpte pri 3. C.C. he indue le mssime solleitzioni nell ppoggio 2 4. C.C. he indue le mssime solleitzioni nell ppoggio 3 In relzione unto sopr possimo ffermre he, detto n il numero di mpte, le possiili ominzioni di rio sono: N = 2 + (n-1) = n+1 Si teng presente he omunue l determinzione dei vri rihi mx nelle mpte, omport lo studio di ulteriori p+p+p ominzioni di rio.

11 Solio 3 Cmpte e 2 slzi on p rihi vriili Nel so di solio tre mpte e 2 slzi, rito on p rihi Vriili (Qk) nell mpt, on p rihi Vriili (Qk) nell mpt, on p rihi Vriili (Qk) nell mpt, on p1 rihi Vriili (Qk) nello slzo 1 SX e on p2 rihi Vriili (Qk) nello slzo 2 DX, oltre i rihi permnenti. Figur 4 Solio 3 Cmpte e 2 Slzi on p Crihi Vriili Oltre lle Condizioni di rio previste per il so preedente (fig.3), isogn prevedere ltre due ondizioni di rio: CONDIZIONE s1 Condizione he indue le mssime tensioni nell ppoggio 1 Le mssime tensioni nell ppoggio 1 si ottengono rindo solo lo slzo di SX, l mpt e l mpt on i rihi vriili, e onsiderndo i rihi permnenti su tutte le mpte. - sullo slzo 1: 1 = 1, mx - sull mpt : =, mx - sull mpt : 1k, 2k, - sull mpt : =, mx - sullo slzo 2: 2 1k,2 2k,2 CONDIZIONE s2 Condizione he indue le mssime tensioni nell ppoggio 4 Le mssime tensioni nell ppoggio 4 si ottengono rindo solo lo slzo di DX, l mpt e l mpt on i rihi vriili, e onsiderndo i rihi permnenti su tutte le mpte. - sullo slzo 1: 1 1k,1 2k,1 - sull mpt : =, mx - sull mpt : 1k, 2k, - sull mpt : =, mx - sullo slzo 2: 2 = 2, mx

12 A onferm di unto sopr, si è studito un esempio in ui si sono utilizzte le seguenti Condizioni di rio, in ui si sono rite on i rihi vriili solo i seguenti elementi: 1) slzo di SX e mpt 2) slzo di SX, mpt e mpt 3) slzo di SX, mpt e mpt e slzo DX 4) slzo di SX e mpt

13 5) slzo di SX, mpt e slzo di DX Come si evine dl reltivo digrmm del Momento Flettente, le mssime solleitzioni nell ppoggio n.1 si hnno on un ulsisi delle 5 C.C., mentre nell ppoggio 2 si hnno on le C.C. N.3 e 5

14 CONCLUSIONI In definitiv, dto un solio on n mpte e 2 slzi, rito on pn rihi Vriili (Qk) nell mpt n, oltre i rihi permnenti. Figur 5 Solio n mpte on p Crihi Vriili Indindo on G 1k,n il peso proprio dell struttur di isun mpt, on G 2k,n il peso degli elementi non strutturli permnenti, on Q 1k,n, Q 2k,n,. Q pk,n i rihi vriili, le possiili ominzioni di rio tli d risultre più sfvorevoli i fini delle singole verifihe possono essere determinte nel seguente modo: Detto pn il numero di Crihi vriili genti sull mpt n, dll (1) si determin il Mx vlore di n he si ottiene ominndo tli rihi (utilizzndo il vlore sfvorevole per i oeffiienti γ, γ, γ ): n,mx = MAX n,1 n,2... n,pn 1k,n 1k,n 1k,n 2k,n 2k,n 2k,n Q Q 1, k, n Q 2, k, n pn, k, n ( ψ Qik, n ) ( ψ Q ) ( ψ Q ) ik, n ik, n (5) Quindi si determin il Crio Minimo he deve essere pplito su ogni mpt, dovuto l peso proprio ed i sovrrihi permnenti non strutturli, utilizzndo il vlore fvorevole per i oeffiienti γ, γ, γ: n, min 1k,n 2k,n Infine si determinno le Cominzioni di Crio he induono le mssime solleitzioni nelle vrie prti del solio:

15 1. C.C. he indue le mssime solleitzioni nelle mpte dispri sullo slzo 1: sulle mpte dispri (i): s1, min i, mx sulle mpte pri (j): j, min sullo slzo 2: s2, min 2. C.C. he indue le mssime solleitzioni nelle mpte pri sullo slzo 1: sulle mpte dispri (i): s1, min i, min sulle mpte pri (j): j, mx sullo slzo 2: s2, min 3. C.C. he indue le mssime solleitzioni nell ppoggio 2 sullo slzo 1: sull mpt 1: s1, min 1, mx sull mpt 2: 2, mx sull mpte rimnenti: sullo slzo 2: i, min s2, min

16 j+1 ) C.C. he indue le mssime solleitzioni nell ppoggio j sullo slzo 1: sull mpt j-1: s1, min j-1, mx sull mpt j: j, mx sull mpte rimnenti: sullo slzo 2: i, min s2, min n+1 ) C.C. he indue le mssime solleitzioni nell ppoggio n sullo slzo 1: sull mpt n-1: s1, min n-1, mx sull mpt n: n, mx sull mpte rimnenti: sullo slzo 2: i, min s2, min n+2 ) C.C. he indue le mssime solleitzioni negli ppoggi 1 e n+1 sullo slzo 1: sulle mpte: sullo slzo 2: s1, mx j, min s2, mx

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

13. Caratterizzazione sperimentale

13. Caratterizzazione sperimentale B. Zurello rogettzione meni on mterili non onvenzionli 13.1. Generlità 13. Crtterizzzione sperimentle Nell progettzione on mterili ompositi è prssi piuttosto onsolidt vlutre le rtteristihe dell singol

Dettagli

PROVE DI CARICO SU SOLAIO

PROVE DI CARICO SU SOLAIO .5. PROVE DI CARICO SU SOAIO Pg. di PROVE DI CARICO SU SOAIO. Sopo prov intende testre le strutture orizzontli, in termini di resistenz e di rispost elsti, sottoponendole lle mssime solleitzioni possiili

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca Brriere ll entrt e modello del Prezzo imite onomi industrile Università Bio Christin Grvgli - Giugno 006 Brriere ll entrt definizioni Condizioni he permettono lle imprese opernti in un industri di elevre

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

SIMULAZIONE CATASTO A VALORI

SIMULAZIONE CATASTO A VALORI SIMULAZIONE CATASTO A VALORI Nelle tbelle è presentt un simulzione di un Ctsto di vlori per lcuni Comuni, si grndi che medi, in vrie prti d Itli. I conteggi sono stti così impostti: per ogni Comune sono

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

T16 Protocolli di trasmissione

T16 Protocolli di trasmissione T16 Protoolli di trsmissione T16.1 Cos indi il throughput di un ollegmento TD?.. T16.2 Quli tr le seguenti rtteristihe dei protoolli di tipo COP inidono direttmente sul vlore del throughput? Impossiilità

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE 0. Corso di LRONCA NDUSRAL 1 MODULAZON ORAL. CONROLLO D CORRN D NROR A NSON MPRSSA 0. 0. 4 Rppresentzione vettorile Rppresentzione vettorile rsformzioni dirett ed invers 0. 0. 5 6 Rppresentzione vettorile

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

KIT ESTIVO MATEMATICA A.S. 2018/19

KIT ESTIVO MATEMATICA A.S. 2018/19 ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 8/ CLASSI PRIME IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse seond, onsiglimo lo svolgimento piere di eserizi

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale pint su un superfiie inlint - Centro di pint Considerimo un superfiie pin inlint di un ngolo rispetto ll orizzontle e prendimo un sistem di riferimento on intersezione sse di intersezione tr l superfiie

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

14. Funzioni spline. 434 Capitolo 5. Interpolazione

14. Funzioni spline. 434 Capitolo 5. Interpolazione 44 Cpitolo 5. Interpolzione 14. Funzioni spline A cus del comportmento oscillnte dei polinomi di grdo elevto spesso non è possiile utilizzre l tecnic dell interpolzione per pprossimre le funzioni. Polinomi

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia.

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia. . Dt l'equzione: rppresentt in un sistem di oordinte rtesine ortogonli d prbole on sse prllelo ll'sse, determinre -in funzione del oeffiiente - i oeffiienti b e he individuno l fmigli delle prbole pssnti

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Ciro Baratto GONIOMETRIA TRIGONOMETRIA 799 ESERCIZI SVOLTI

Ciro Baratto GONIOMETRIA TRIGONOMETRIA 799 ESERCIZI SVOLTI Ciro Brtto GONIOMETRIA TRIGONOMETRIA 99 ESERCIZI SVOLTI INTRODUZIONE Gli eserizi (n. 99) he seguono sono stti svolti per un migliore omprensione dell goniometri e dell trigonometri, erndo, in lrg misur,

Dettagli

Diagrammi N, T, N analitici

Diagrammi N, T, N analitici igrmmi,, nlitici 1) ompito scritto del 10/0/201: R sx = 4 R dx = 4 = 4 2 F = 4 Rezioni vincolri R sup = 3 F = 4 R = 4 R inf = = 4 2 R = 3 = 28 2 R x = ; R y = 2 nlisi dell struttur L struttur è costituit

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Veneziane e tende tecniche

Veneziane e tende tecniche DECORAZIONE 04 Montre Venezine e tende tenihe 1 Gli ttrezzi LIVELLA A BOLLA RIGHELLO METRO TRAPANO VITI E TASSELLI MATITA CACCIAVITE SEGA PER METALLO TAGLIALAMELLE PER VENEZIANE FORBICI PER TENDE A RULLO

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

Risoluzione. dei triangoli. e dei poligoni

Risoluzione. dei triangoli. e dei poligoni UNITÀ Risoluzione dei tringoli e dei poligoni TEORI Relzioni tr lti e ngoli di un tringolo qulunque (sleno) riteri per risolvere i tringoli qulunque 3 re dei tringoli 4 erhi notevoli dei tringoli 5 ltezze,

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

5. La sintesi logica.

5. La sintesi logica. Mrello Slmeri - Progettzione Automti di Ciruiti e Sistemi Elettronii Cpitolo 5-1 5. L sintesi logi. Introduzione. L sintesi logi onsiste nel trsformre l desrizione omportmentle di lohi logii nell orrispondente

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

Misure ed incertezze di misura

Misure ed incertezze di misura Misure ed inertezze di misur Misurzione e Misur Misurre signii quntiire un grndezz isi himt misurndo trmite un proesso (misurzione) il ui risultto è detto misur. L misur deve poter essere ripetut nhe d

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI Pgin di 7 Rel. ermic soli Fscicolo tecnico per il clcolo delle prestzioni energetiche di soli lstre trliccite ( predlles ) IN ACCORDO ALLA NORMA UNI EN ISO 6946:008 0 07.0.00 Rev. Dt Descrizione Redtto

Dettagli

RELAZIONE STRUTTURALE

RELAZIONE STRUTTURALE RELAZIONE STRUTTURALE DESCRIZIONE DELL OPERA. Si prevede di realizzare una passerella pedonale in acciaio per l accesso secondario alla grotta. La struttura è costituita da due travi parallele in acciaio

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Mtemtii per l Fisi Prov sritt - 8 settemre Eseriio (4 punti) Si loli l integrle I = ln (x ) x + (x 3 + ) dx I poli del prte rionle sono d ui L integrle è quindi ugule x k = e i(+k)/3, k =,,, x 3

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2 Il 3 o psso è provto. 4 o psso Conludimo l dimostrzione: Dl o psso bbimo n! ( e n A = lim ; n n n) d ltronde risult, ome è file verifire, e pertnto di pssi 3 e segue 2 2n (n!) 2 (2n)! n = 2 n 2n 2, 2 π

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA)

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA) CONDUTTANZA ELETTICA DI UN ELETTOLITA IN SOLUZIONE (TEOIA) Se si ppli un differenz di potenzile elettrio fr due elettrodi iersi in un soluzione ioni, si verifi un igrzione risultnte di ioni in direzione

Dettagli

La normativa italiana e le condizioni di verifica della stabilità

La normativa italiana e le condizioni di verifica della stabilità La normativa italiana e le condizioni di verifica della stabilità La norma italiana che fornisce istruzioni per il calcolo, l esecuzione, il collaudo e la manutenzione delle costruzioni in acciaio è la

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

f Le trasformazioni e il trattamento dell aria

f Le trasformazioni e il trattamento dell aria f Le trasformazioni e il trattamento dell aria 1 Generalità Risolvendo il sistema (1) rispetto ad m a si ottiene: () Pertanto, il punto di misela sul diagramma psirometrio è situato sulla ongiungente dei

Dettagli

morte e i prodotti aziendali conservati per un futuro reimpiego

morte e i prodotti aziendali conservati per un futuro reimpiego QUESITI DI ESTIMO ppunti 13 TEST DI VERIFICA 1 Che os si intende per vlore nello perto di un fondo rustio? Il vlore del fondo omprese le sorte Il vlore del fondo senz le sorte Il vlore del fondo omprese

Dettagli