Misure ed incertezze di misura

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Misure ed incertezze di misura"

Transcript

1 Misure ed inertezze di misur Misurzione e Misur Misurre signii quntiire un grndezz isi himt misurndo trmite un proesso (misurzione) il ui risultto è detto misur. L misur deve poter essere ripetut nhe d ltri e quindi v omunit in modo inequivoile. Pertnto, on l misur isogn ornire lmeno il vlore, l inertezz e l unità di misur: 1

2 Vlore, Inertezz e Unità Il vlore he quntii il misurndo è il risultto del onronto tr il misurndo e un grndezz di rierimento (CAMPIONE). L inertezz dell misur è il grdo di dispersione dei vlori ttriuiti l misurndo in osione di diverse misurzioni ed è, quindi, inditiv del pregio (e nhe del osto) dell strumentzione di misur e nhe dell metodologi dottt. L unità di misur he deve essere internzionlmente rionosiut i ini di un migliore omunizione del risultto. Esempi di Misur Tensione vuoto di un tteri (9,6 ±,) V Resistenz di un resistore (1,5 ±,1) Si omuni il vlore, l inertezz, e l unità di misur.

3 Errori e inertezze (eetti suli) Nel proesso di misur intervengono molti ttori (grndezze) di inluenz: l tempertur, l umidità, virzioni o disturi di tipo elettrio e elettromgnetio dell miente in ui si svolge l misur, et. Tutti questi ttori (grndezze di inluenz) intergisono in vri modi nel proesso di misur, per ui se questo è ripetuto si ottengono risultti diversi determinndo un dispersione dei vlori misurti. Questi ttori itti intervengono in modo sule nel proesso di misur pertnto se si ripete N volte l misur (on N ) e si oper un medi il loro eetto tende d nnullrsi (eetti suli). Errori e inertezze (eetti sistemtii) L misur è nhe inluenzt di omportmenti non ideli dei vri elementi del sistem di misur (dietti nei modelli e nei mpioni) he dnno luogo srti sempre nell stess direzione (eetti sistemtii) (non si possono rimuovere on un proesso di medi). Con rierimento questi ultimi, in luni si si è in grdo di stimre l entità e il segno dello srto e pertnto si è in grdo di orreggere l misur (trtur) in questo so si prl di errori (errori sistemtii). Tuttvi, nhe qundo è possiile eetture un trtur permngono sempre degli errori residui dovuti lle non idelità degli stndrd di trtur usti. Inine, in ltri si, gli srti non si possono quntiire e quindi orreggere (es. prmetri menii o mgnetii in un mperometro nlogio). 3

4 Espressione dell misur In onlusione, l misur srà sempre ett d un ert inertezz he quindi rtterizz l dispersione dei vlori he possono essere rgionevolmente ttriuiti l misurndo. Per eetto dell inertezz il risultto di un misur non è espresso d un vlore, m d un intervllo per ui l misur di un grndezz m srà espress ome: M dove M, vlore entrle dell intervllo, è l stim migliore del misurndo ed è l semimpiezz dell si di inertezz. Vlore ssoluto e reltivo I = I o I I = I o I % 4

5 Legme db -> % x db % x db log log x % 1 1 x 1 1 x db x % 1 1 x % 11 x db 1 Srittur del risultto di un misur Per srivere orrettmente il risultto di un misur isogn re lune onsiderzioni: Cire deimli di un numero sono le ire dopo l virgol (es 7, > ire deimli = 54364) Cire signiitive di un numero sono le ire dopo gli zeri (es,54 ire signiitive = 54) 5

6 Misur on inertezz ssolut Qundo si eettu un misur si riport inizilmente il vlore letto sullo strumento on tutte le sue ire deimli (es 7,54364). In seguito si vlut l inertezz on tutte le sue ire deimli (es,54). Si srive l inertezz onsiderndo l mssimo due ire signiitive rrotondndo l vlore superiore (es,6). Si srive il vlore on le stesse ire deimli dell inertezz rrotondndo l più viino (es 7,5436) Si srive l misur: m = 7,5436,6 Vlutzioni di tipo A Se si suppone he l misur si ett solo d inertezze di tipo sule, l inertezz può essere vlutt on metodi sttistii. Questi metodi di vlutzione dell inertezz si diono di tipo A. Se si ripete l misur nelle stesse ondizioni per molte volte e si tri l istogrmm si vede he questo tende d un gussin (Teorem del limite entrle) p x 1 exp on x m vlore medio e vrinz. l proilità he un vlore preso so tr le misurzioni eettute d nell intervllo x m è del 68.4%. x x m 6

7 Stime L teori sttisti dimostr he, per qulunque p(x), l stim migliore del vlor medio (x m ) è dt dll medi sperimentle (o mpionri) m N ottenut su N osservzioni indipendenti x k ome: m 1 N N N x k k1 L stim migliore dell vrinz è dt dll vrinz del vlor medio delle misure deinit ome: N 1 M N( N 1) k 1 m m k N Volendo quindi quntiire l inertezz si ssume M ome stim sperimentle dell inertezz. M è dett srto o inertezz stndrd di tipo A sperimentle ed è indit on l letter u. Come noto si h he l proilità he un vlore preso so d nell intervllo è del 68.4%. Se non si ritiene suiiente l proilità del 68.4% si può umentre questo vlore introduendo l inertezz estes K u dove K è detto ttore di opertur. Con K = si h un proilità del 95.4% (u). Con K = 3 si h un proilità del 99.7% (3u). Quindi si può esprimere l misur ome: x m N Ku 7

8 Vlutzioni di tipo B In quest lsse, rientrno tutte le vlutzioni di inertezze he non vengono rivte trmite l devizione stndrd di misure ripetute (ome per quell di tipo A). Proedur per vlutzioni di tipo B Nelle vlutzioni di tipo B in primo luogo si un stim dei limiti delle vrizioni sull misur uste d un sorgente d inertezz, ovvero si vlut lo srto mssimo. In seguito si ssume un ert distriuzione di proilità tr questi limiti. Inine, si lol un devizione stndrd equivlente he rppresent l inertezz stndrd di tipo B. 8

9 Distriuzione rettngolre L distriuzione rettngolre si utilizz qundo si onosono i limiti di vrizione e si può ssumere he tutti i vlori sino equiproili ovvero qundo non si hnno inormzioni sull distriuzione tr questi limiti. - + In questo so l relzione tr inertezz stndrd u e i limiti di vrizione (srto mssimo ) è : 1 p(x)(x xm ) dx x dx u x Altre distriuzioni distriuzione normle u.5 distriuzione tringolre u distriuzione d U u

10 Inertezz per misure dirette Le misure dirette si distinguono tr misure singole e misure ripetute. L prim strtegi di solito si dott qundo si utilizzno metodi e strumenti non troppo sensiili, osihé i si spett di ottenere sempre lo stesso risultto L seond strtegi si dott on strumenti e metodi tnto sensiili d mettere in evidenz le vrizioni indotte sull misur dlle numerose grndezze di inluenz. misure singole Nelle misure singole l inertezz si ottiene, dopo ver orretto eventuli errori sistemtii, ominndo le inertezze di tipo B dovute ll strumentzione e d ltre use. Per l vlutzione dell inertezz oorre speiire se si è lolto l errore mssimo o l inertezz stndrd. Per ui nel primo so si vrà: δy i δy N i1 Mentre nel seondo so si h: u y u i N i1 1

11 misure ripetute Nelle misure ripetute l stim migliore è dt dll medi delle vrie misure e l inertezz totle v lolt ominndo le inertezze suli e quelle sistemtihe. Anhe in questo so si deve speiire se si è lolto l errore mssimo: δy tot δy o l inertezz stndrd A δy B u tot u A u B Vlutzione di so peggiore (pproio deterministio) per l errore di misure indirette (propgzione dell errore) In luni si, il misurndo y non è stimile trmite un misur dirett m è un unzione di ltre N quntità x i orrelte d esso ttrverso un relzione unzionle: Nel so di tre grndezze di ingresso possimo srivere: y Per le grndezze di ingresso il vlore srà noto ll interno di un si di inertezz; quindi si vrà: m m, m y vlore dell misur 11

12 1 sviluppo in serie di Tylor y y y, Srto mssimo Nel so di vlutzione pessimisti (deterministi) si prendono tutte le derivte in modulo, e l errore mssimo oinide on lo srto mssimo su y, per ui si h: Formul di propgzione dell errore y,

13 Vlutzione proilisti dell inertezz per misure indirette (propgzione dell inertezz) Se è rihiest un vlutzione di tipo proilistio, in ssenz di orrelzione tr le grndezze, l vrinz è lolile ome: y E il modello he deve essere utilizzto nell stim delle inertezze nell emissione di ertiiti uiili; è nhe il modello suggerito dll Guid ll espressione dell inertezz di misur (CEI UNI). Pssndo dlle vrinze lle inertezze si h: u y u u u Poihé sono oinvolte più grndezze, l distriuzione tende quell gussin e l y ssume il signiito di inertezz tipo u y on un idui del 68.4%. Se si vogliono vere proilità più elevte isogn moltiplire u y per un ttore di opertur. 13

Misure ed incertezze di misura

Misure ed incertezze di misura Misure ed incertezze di misur Misurzione e Misur Misurre signiic quntiicre un grndezz isic chimt misurndo trmite un processo (misurzione) il cui risultto detto misur. L misur deve poter essere ripetut

Dettagli

Misure ed incertezze di misura

Misure ed incertezze di misura Misure ed incertezze di misur Misurzione e Misur Misurre signific quntificre un grndezz fisic chimt misurndo trmite un processo (misurzione) il cui risultto è detto misur. L misur deve poter essere ripetut

Dettagli

Variabili Casuali e Distribuzioni di Probabilità Definizione: VARIABILI CASUALI VARIABILI CASUALI PROBABILITÀ

Variabili Casuali e Distribuzioni di Probabilità Definizione: VARIABILI CASUALI VARIABILI CASUALI PROBABILITÀ Vriili Csuli e Distriuzioni di Proilità Un vriile csule X è un vriile numeric il cui vlore misurto può cmire ripetendo lo stesso esperimento di misur X può essere un vriile continu o discret 1 Esempi di

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Capitolo 13. Tecniche di misura

Capitolo 13. Tecniche di misura Cpitolo 3 Tenihe di misur 3. Introduzione Questo pitolo è dedito lle tenihe di misur he si utilizzno lle frequenze delle miroonde. In questo intervllo di frequenze, ome nhe lle più sse, le misure si utilizzno

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze.

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze. Generlità sulle Misure di Grndezze Fisiche - Misurzioni indirette - Esempi di stim di incertezze 1 Testi consigliti Norm UNI 4546 - Misure e Misurzioni; termini e definizioni fondmentli - Milno - 1984

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

Frequenza relativa e probabilità

Frequenza relativa e probabilità Frequenz reltiv e roilità L roilità e' un numero che indic con qule frequenz si resentno eventi ssociti d un insieme di ossiili risultti di un eserimento. Esemio: Eserimento: Lncio csule di un ddo Risultto:

Dettagli

Frequenza relativa e probabilità

Frequenza relativa e probabilità Frequenz reltiv e probbilità L probbilità e' un numero che indic con qule frequenz si presentno eventi ssociti d un insieme di possibili risultti di un esperimento. Esempio: Esperimento: Lncio csule di

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

4 - TRASFORMAZIONI DI VARIABILI CASUALI

4 - TRASFORMAZIONI DI VARIABILI CASUALI 4 - RASFORMAZIONI DI VARIABILI CASUALI 4 rsformzioni i vriili suli Cominimo un esempio Si l vriile sule lnio i un o non truto : / / / 4 / 5 / / e g() si l orrisponenz: pri test ispri roe Poihé g()g(4)g()test

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

quattro trasformazioni

quattro trasformazioni ilo di rnot e un ilo termio ostituito d quttro trsformzioni p() reversibili di un gs perfetto : un espnsione isoterm d tempertur un espnsione dibti d un ompressione isoterm d tempertur un ompressione dibti

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

Propagazione degli Errori e regressione lineare. Note e consigli d uso. -Termine covariante -- estrapolazione e/o interpolazione

Propagazione degli Errori e regressione lineare. Note e consigli d uso. -Termine covariante -- estrapolazione e/o interpolazione Propgzione degli Errori e regressione linere Note e consigli d uso -Termine covrinte -- estrpolzione e/o interpolzione Qundo devo usre il termine di covrinz nell propgzione? Qundo l errore delle vriili..

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

FM#05 Cenni su Probabilità e Leggi di Distribuzione

FM#05 Cenni su Probabilità e Leggi di Distribuzione Centro Interdiprtimentle Mgn Greci - Trnto Corso di Fondmenti dell Misurzione FM#05 Cenni su Probbilità e Leggi di Distribuzione - Appliczione lle Misure e ll Teori degli Errori Teori dell Probbilità pplict

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Daniela Tondini

Daniela Tondini Dniel Tondini dtondini@unite.it Fcoltà di Medicin veterinri CdS in Tutel e benessere nimle Università degli Studi di Termo 1 IDICI DI FORMA Dopo ver nlizzto gli indici di posizione e di vribilità di un

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 10 settembre 2015 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 10 settembre 2015 SOLUZIONI Esperimentzioni di Fisic 1 Prov scritt del 10 settembre 015 SOLUZIONI Esp-1 Prov di Esme Secondo ppello - Pge of 8 10/09/015 1. (1 Punti) Quesito. I lti di un foglio di crt di form rettngolre sono misurti

Dettagli

Cambiamenti climatici e malattie delle piante

Cambiamenti climatici e malattie delle piante Cmimenti climtici e mlttie delle pinte Dr. Mssimo Pugliese 25 gennio 2016 Centro Incontri Regione Piemonte Corso Stti Uniti, 23. Torino CAMBIAMENTI CLIMATICI DEFINIZIONE: Vrizioni sttisticmente significtive

Dettagli

morte e i prodotti aziendali conservati per un futuro reimpiego

morte e i prodotti aziendali conservati per un futuro reimpiego QUESITI DI ESTIMO ppunti 13 TEST DI VERIFICA 1 Che os si intende per vlore nello perto di un fondo rustio? Il vlore del fondo omprese le sorte Il vlore del fondo senz le sorte Il vlore del fondo omprese

Dettagli

Soluzione del problema Un generatore IDEALE

Soluzione del problema Un generatore IDEALE Esmi di Mturità Lieo Sientiio 11 mrzo 15 Soluzione del problem Un genertore IDEALE y A R B L O d Prim di ollegre l resistenz R tr i due poli A e B, nel iruito non irol orrente; l brrett è soggett ll sol

Dettagli

Trasformatori amperometrici e Shunt

Trasformatori amperometrici e Shunt Trsformtori mperometrii e Shunt L presente sezione present un vst gmm di trsformtori mperometrii T e Shunt dediti ll misur di orrente C e CC, d utilizzre in inmento i misurtori, nlizztori, onttori presentti

Dettagli

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato)

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato) Integrli impropri. Introduzione Abbimo introdotto il onetto di integrle onsiderndo unzioni ontinue (o ontinue trtti) in un intervllo limitto. Quest restrizione viene or rimoss onsiderndo dpprim unzioni

Dettagli

1. Integrali impropri (o generalizzati)

1. Integrali impropri (o generalizzati) Corso di Lure in Ingegneri delle Teleomunizioni - A.A.- Tri del orso di Anlisi Mtemti L-B. Integrli impropri (o generlizzti) Riferimenti. Brozzi: PCAM, pr..8; Minnj: Mtemti Due, pr.. http://eulero.ing.unibo.it/~brozzi/scam/scam-tr.pdf.

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

Appendice 2B: Probabilità e densità di probabilità

Appendice 2B: Probabilità e densità di probabilità Appendice B: Proilità e densità di proilità Concetto di proilità normlmente pplicto eventi csuli non predeterminili! Esempi di eventi cusli: Vlori limite: P A 0 : A P : A uscit dell fcci 6 nel lncio di

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi sttistici per l nlisi dei dti Introduzione In ogni esperimento, possono essere presenti diversi fttori di disturo che mplificno l vriilità presente nei dti. In genere, si definisce fttore di disturo

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

+ numeri reali Numeri decimali e periodici Estrazione di radice

+ numeri reali Numeri decimali e periodici Estrazione di radice numeri reli Numeri deimli e periodii Estrzione di rdie Numeri deimli e periodii SEZ. G Clol il vlore delle seguenti espressioni. 0 (, ), Trsformimo i numeri deimli nell orrispondente frzione genertrie

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i!

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i! Esercitzioni di Sttistic Mtemtic A Lezione 6 Appliczioni dell legge dei grndi numeri e dell formul di Chebicev 1.1) Si {X i } i N un successione di vribili letorie i.i.d. (indipendenti ed identicmente

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2 Il 3 o psso è provto. 4 o psso Conludimo l dimostrzione: Dl o psso bbimo n! ( e n A = lim ; n n n) d ltronde risult, ome è file verifire, e pertnto di pssi 3 e segue 2 2n (n!) 2 (2n)! n = 2 n 2n 2, 2 π

Dettagli

1 Lavoro sperimentale (di Claudia Sortino)

1 Lavoro sperimentale (di Claudia Sortino) 1 Lvoro sperimentle (di Cludi Sortino) Prtendo d un nlisi epistemologic del prolem, ho preprto un test che ho successivmente proposto due quinte clssi di un istituto industrile. QUESTIONARIO SULL INTEGRAZIONE

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Elementi di matematica

Elementi di matematica Moltiplizione L moltiplizione è un proedimento he onsiste nel sommre sé stesso un numero (o un grndezz) per un erto numero di volte. Per esempio, «4 per 2» orrisponde «4 sommto due volte» o «2 sommto quttro

Dettagli

SISTEMA MISTO. Confronto tra le radici di un'equazione parametrica di secondo grado e un numero reale α. Se > 0 si possono verificare i seguenti casi:

SISTEMA MISTO. Confronto tra le radici di un'equazione parametrica di secondo grado e un numero reale α. Se > 0 si possono verificare i seguenti casi: SISTEMA MISTO Chimimo sistem misto un sistem ormto d un'equzione generlmente prmetric e d un o più disequzioni. Le soluzioni del sistem sono dte dlle rdici dell'equzione che veriicno le disequzioni. Tli

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Clcolo Numerico con elementi di progrmmzione (A.A. 2014-2015) Appunti delle lezioni sull qudrtur numeric Integrzione numeric Problem: pprossimre numericmente integrli definiti I(f) = f(x) dx L intervllo

Dettagli

A questo punto, ricordiamo le definizioni di: I) Errore assoluto nella misura yz del misurando z: Ez yz

A questo punto, ricordiamo le definizioni di: I) Errore assoluto nella misura yz del misurando z: Ez yz REGOLE PRATICHE PER LA VALUTAZIONE DELL INCERTEZZA NELLE MISURE INDIRETTE Ricordimo preliminrmente il concetto di misure indirette :

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

d: sf. 180 Shem di luni ollegmenti Yy di un trsformtore trifse: sopr = shem on vvolgimenti disegnti prllelmente; sotto = shem on orientzione elettri degli vvolgimenti. Nell ordine, d sinistr destr: Yy0,

Dettagli

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m Corso di Potenzimento.. 009/010 1 Potenze e Rdicli Dto un numero positivo, negtivo o nullo e un numero intero positivo n, si definisce potenz di se ed esponente n il prodotto di n fttori tutti uguli d

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Numeri nello spazio n dimensionale

Numeri nello spazio n dimensionale Numeri nello spzio n dimensionle Niol D Alfonso Riertore indipendente niol.dlfonso@hotmil.om Sommrio Questo pper introdue i numeri nello spzio n dimensionle. Vle dire, se nell prim dimensione bbimo i numeri

Dettagli

TOPOGRAFIA. Prima parte. Prof. Roma Carmelo

TOPOGRAFIA. Prima parte. Prof. Roma Carmelo TOPOGRFI Prim prte TOPOGRFI Sommrio onversione tr sistemi di misur ngolri Funzioni goniometrihe tngente e otngente Teorem dei seni (o di Eulero) Teorem di rnot onversione tr sistemi di misur ngolri Sistemi

Dettagli

FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012

FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012 FISIC ELL ERI CONENS Proff. P. Clvni e. Cpizzi II prov di esonero - 4 ennio 0 Esercizio. Un cristllo di Pb, l cui densità è 40 /m, h un struttur cubic fcce centrte con bse monotomic. L bnd custic, che

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

14. Funzioni spline. 434 Capitolo 5. Interpolazione

14. Funzioni spline. 434 Capitolo 5. Interpolazione 44 Cpitolo 5. Interpolzione 14. Funzioni spline A cus del comportmento oscillnte dei polinomi di grdo elevto spesso non è possiile utilizzre l tecnic dell interpolzione per pprossimre le funzioni. Polinomi

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Università degli Studi di ssino sercitzioni di lettrotecnic: circuiti in regime stzionrio prof ntonio Mffucci Ver ottore 007 Mffucci: ircuiti in regime stzionrio ver -007 Serie, prllelo e prtitori S lcolre

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO Esercizio : ESERCIZI DI CALCOLO UMERICO Formule di qudrtur Costruire l ormul di qudrtur interpoltori del tipo d ( ) ( ) ( ) clssiicndol e determinndone l ordine di ccurtezz polinomile Mell Per costruzione

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

Chapter 1. Integrali doppi

Chapter 1. Integrali doppi Chpter 1 Integrli doppi Nelle presenti note esporremo un pproccio semplificto ll teori degli integrli doppi. efiniremo tli integrli direttmente su domini normli, come limiti di opportune somme integrli.

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

Esercitazioni Capitolo 12 Carichi termici estivi attraverso il perimetro

Esercitazioni Capitolo 12 Carichi termici estivi attraverso il perimetro Esercitzioni Cpitolo 12 Crichi termici estivi ttrverso il perimetro 1) Si vluti il crico termico estivo trsmesso il 21 luglio lle ore 6.00 e lle ore 15.00, ttrverso un prete con esposizione Ovest e Est

Dettagli