Trattamento e codifica di dati multimediali Esercizi svolti. Luca Chiodini

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trattamento e codifica di dati multimediali Esercizi svolti. Luca Chiodini"

Transcript

1 Trattameto e codiica di dati multimediali Eercizi volti Luca Chiodii A.A. 207/208

2 Eercizio Dato il egale già campioato ( ) π x() = 6.4 co 0. Si determii la requeza ormalizzata di tale egale e i rappreeti la ua traormata di Fourier. 2. Si calcoli il umero di bit eceari ella coverioe aalogico-digitale el cao i adotti u quatizzatore avete (a) = 0. (b) = 0.02 Ioltre, i calcoli il SNR i ciacua ituazioe.. Per determiare la requeza ormalizzata ci ricoduciamo alla orma tadard co(2π N ), da cui acilmete 2π N = /0π e quidi N = /20. Il egale ha quidi requeza ormalizzata N = [ ] 20 campioe Eedo il egale u coeo, la traormata di Fourier ha valori o ulli olo ella parte reale, rappreetata el eguete graico. R(F(x())) N 2. Per ua quatizzazioe corretta il rage diamico del quatizzatore deve eere ampio almeo tato quato quello del egale, ovvero dev eere D Dq 2A 2 b Nel cao i cui = 0. i ha 2 b 28, da cui b = 7. Siamo quidi ella ituazioe ideale: co pao di quatizzazioe pari a 0. e 7 bit i riece a coprire eattamete il rage diamico del egale. Per determiare il rapporto SNR poiamo utilizzare la ormula el cao di quatizzatore ideale: SNR QI = b 44 db

3 Nella ecoda ituazioe propota, co = 0.02 i ha 2 b 640, la cui equazioe aociata o ha oluzioi itere. Se decideimo di quatizzare uado 9 bit icorreremmo i aturazioe. Utilizziamo quidi 0 bit, coci che o iamo ella ituazioe ottimale. Determiiamo ache il SNR co la ormula geerale SNR Q = 0 log 0 P S P N = 0 log 0 A 2 /2 2 /2 58 db U rapido calcolo motra che e aveimo impiegato bee i 0 bit, avremmo otteuto u SNR acora migliore ( 62 db). Il pao di quatizzazioe ideale arebbe tato 2 b = 2A 2 0 = = Eercizio 2 Viee orita la parte reale della traormata di Fourier di u egale: R(F(x(t))) Si ricotruica l epreioe aalitica del egale di parteza x. 2. Si determii la requeza di campioameto che itroduce u alia tale che il uovo egale x abbia traormata di Fourier come di eguito: R(F(x (t))) Poiché la traormata ha valori o ulli olo ella parte reale, deduciamo che il egale è omma di coei. La ua epreioe aalitica è x(t) = 2 co(2π t) +.4 co(2π 2t) + co(2π 3t) 2

4 2. Il egale x ha ivece epreioe x (t) = 2 co(2π t) +.4 co(2π 2t) + co(2π.5t) Sicuramete la requeza di campioameto che ha itrodotto l alia è miore di 6 Hz, che arebbe tata ivece la requeza miima per o itrodurre alia. Oerviamo che la delta preete el primo graico a 3 i pota ella traormata del egale raiteo a.5, quidi la requeza di campioameto uata è tata 4.5: [ ] campioi C = 4.5 Hz Eercizio 3 Dato il egale già campioato rappreetato el eguete graico: x() Si determii l epreioe aalitica del egale campioato. 2. Si rappreeti u egale x avete requeza ormalizzata pari a /8. 3. Si ricotruica l epreioe aalitica del egale aalogico il cui campioameto è rappreetato al puto precedete, apedo che tale campioameto è tato eettuato co pao T = [ 6 campioe. L epreioe del egale campioato è della orma x() = co(2π N ) dove la requeza ormalizzata N è eprea i per campioe e vale 2 (ovvero occorroo 2 campioi per completare u periodo, ad eempio tra i due picchi a valore ). 2. Co ua miima variazioe poiamo rappreetare u egale imile ma co N = /8 ] 3

5 x () Coocedo che per quet ultimo egale il pao di campioameto è tato T = /6, la requeza di campioameto è tata [ ] campioi C = 6 Il egale origiale è della orma x (t) = co(2π t) Reta quidi olo da determiare la requeza origiale, i al ecodo: [ ] = N C = [ ] [ ] [ ] campioi 6 = 2 8 campioe L epreioe aalitica del egale riulta quidi x (t) = co(2π 2t). Eercizio 4 Si coideri il egale x(t) = 3 co(600π t) + 2 co(800π t) che viee trameo u u caale digitale co u bitrate di bit al ecodo ed è quatizzato co u quatizzatore a 024 livelli.. Si determii la requeza di campioameto. 2. Si dica e co tale requeza è oddiatto il teorema del campioameto. Nel cao o lo oe, i aalizzi il egale raiteo. 3. Si determii l epreioe aalitica del egale campioato i modo ottimale e i aalizzi l eetto che il campioameto ha ullo pettro di tale egale. 4

6 . Poiché il quatizzatore è a 024 livelli, igiica che utilizza 0 bit per ogi campioe. La requeza di campioameto o è altro che il umero di campioi tramei i u ecodo, quidi C = [ ] bit [ ] campioi 0 [ ] = 000 = khz bit campioe 2. Ricriviamo il egale mettedo i evideza la requeza delle due iuoidi: x(t) = 3 co(2π 300 t) + 2 co(2π 900 t) La requeza di Nyquit che garatice aeza di alia arà quidi N = 900 Hz, pertato la requeza di campioameto miima dovrebbe eere 2 N = 800 Hz. Ripetto alla requeza di campioameto determiata al puto precedete, queto campioameto o ripetta il teorema di Shao e itrodurrà quidi aliaig. Co 000 Hz poiamo rappreetare le requeze da -500 a 500 (cetrate ullo 0). Oerviamo la parte reale della traormata di Fourier del egale: R(F(x(t))) La requeza 900 Hz viee coua ella replica ucceiva co la requeza 00 Hz (eedo 000 Hz la requeza di campioameto). Aalogamete, la requeza 900 Hz viee coua ella replica precedete co la requeza 00 Hz. Il egale alterato viee iterpretato come x (t) = 3 co(2π 300 t) + 2 co(2π 00 t) 3. Il egale campioato viee epreo i campioi ed è x() = 3 co(2π N ) + 2 co(2π N2 ) Dobbiamo determiare le due requeze ormalizzate, i per campioe. N = C = 300 [ ] 000 [ campioi ] = 3 [ 0 campioe ] 5

7 N2 = 2 C = 900 [ ] 000 [ campioi ] = 9 [ 0 campioe ] Avremo x() = 3 co(2π 3/0 ) + 2 co(2π 9/0 ) Per capire l eetto del campioameto aalizziamo direttamete la traormata di Fourier del egale campioato, co le requeze ormalizzate. R(F(x())) N L epreioe aalitica del egale raiteo è x() = 3 co(2π 3/0 ) + 2 co(2π ( 9 /0 ) ) }{{} Notiamo che il ego di /0 o produce diereze, eedo coeo ua uzioe pari. =± /0 Eercizio 5 Si coiderio i egali aalogici x(t) = 5 i(π 60t) y(t) = 2 co(π 60t) 3 i(π 40t) e i coideri il egale omma z(t) = x(t) + y(t).. Si rappreeti la traormata di Fourier del egale omma z(t) e i motri l eetto del campioameto co requeza 50 Hz. Si ricotruica quidi l epreioe aalitica deumibile dalla traormata. 2. Si caratterizzi u quatizzatore per x(t) aiché il rapporto SNR valga 96 db. 3. Si determii il comportameto dello teo quatizzatore applicato al egale z(t), prima del campioameto.. Rappreetiamo parte reale e parte immagiaria della traormata di Fourier. 6

8 R(F(z(t))) I(F(z(t))) Ricotruiamo l epreioe aalitica del egale co alia, acedo attezioe al atto che ella parte immagiaria della traormata le repliche alle requeze ±20 oo da ommari. z (t) = 2 co(2π 20t) 8 }{{} 2(.5+2.5) i(2π 20t) 2. Le caratteritiche di u quatizzatore oo e umero di bit. Naturalmete, creiamo u quatizzatore ideale. Facilmete otteiamo da cui 6b = 96, b = b 96 db La diamica del quatizzatore vogliamo ia come quella del egale (cao ideale), quidi: D S = D Q = L Sappiamo che D S = 2 A = 0, allora 0 = 2 6 da cui =

9 3. È ragioevole peare che il egale z(t), eedo compoto da tre iuoidi di ampiezza 5, 2 e 3, i qualche itate uperi ampiezza 5 e che quidi la ua diamica ia maggiore di D S = 2 5 = 0. Utilizzado il quatizzatore progettato el puto precedete arriveremmo alla aturazioe. Eercizio 6 Dato u itema co ripota all impulo h() = δ( ) δ( 2) i determii la ripota y() del itema al egale x() = (u() u( 3)) dopo aver rappreetato graicamete i egali. Oerviamo che u() u( 3) rappreeta ua ietra ampia tre campioi (da 0 a 2). Il egale x() =, che è ua rampa, viee quidi coiderato olo i ua ua porzioe. h() x() La ripota del itema arà y() = x() h() dove deota la covoluzioe. Notiamo che el domiio traormato la covoluzioe è emplicemete u prodotto: Y() = X()H(). Ribaltiamo il egale x() e lo traliamo ogi volta: 2 2 Otteiamo y(0) = 0 y() = 0 y(2) = = y(3) = 2 + ( ) = y(4) = 2 ( ) = 2 y(5) = 0 8

10 quidi Graicamete y() = δ( 2) + δ( 3) 2δ( 4) y() Eercizio 7 Dato il egale aalogico x(t) = i(20π t). Si calcoli la requeza di campioameto miima ecodo il criterio di Nyquit per campioare correttamete il egale. 2. Si rappreeti graicamete la traormata di Fourier del egale. 3. Si deiica il pao di campioameto tale per cui il egale campioato abbia ua requeza ormalizzata pari a Si calcoli il SNR per il egale x(t) quado vega adottato u quatizzatore co 8 bit e = Facilmete i ottiee che la requeza di Nyquit è 60 Hz e quidi la requeza di campioameto ecearia per o itrodurre alia è almeo 20 Hz. 2. Rappreetiamo la traormata, acedo attezioe alla preeza della cotate. R(F(x(t))) 3 I(F(x(t))) Il egale campioato è della orma dove impoiamo N = /4. x(t) = i(2π N t) 9

11 Si ha = N C, quidi C = = 60 [ N 4 [ ] campioe Il pao di campioameto è quidi /240. ] = 240 [ ] campioi 4. A priori o poiamo tabilire e il quatizzatore è ideale e utilizziamo quidi la ormula geerale. La diamica del egale o dipede dalla cotate, ma olo dall ampiezza della iuoide (quidi 3 2 = 6). SNR Q = 0 log 0 A 2 /2 2 /2 44 db Poiamo tabilire che queto quatizzatore o è ideale i due modi. Ua prima trada prevede di uare la ormula del calcolo del SNR el cao ideale co il umero di bit: SNR QI = db 44 db U altro modo è ivece quello di corotare la diamica del quatizzatore co quella del egale. D Q = L = = 2 che è divera dalla diamica del egale D S = 2A = 6. Per avere u quatizzatore ideale il pao dovrebbe eere la metà: riporterebbe iatti la diamica del quatizzatore a 6. 0

FORMULARIO CAPITOLO 3 V.06 09/06/2005

FORMULARIO CAPITOLO 3 V.06 09/06/2005 FORMULARIO CAPITOLO 3 V.6 9/6/5 PULE-AMPLITUDE MODULATIO (PAM Campioameto aturale Campioameto itataeo CAMPIOAMETO ATURALE w w( t ( t + t k T (Treo di impuli ciacuo co durata τ Π k τ T B (Frequeza di campioameto

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE

SERVIZIO NAZIONALE DI VALUTAZIONE SERVIZIO NAZIONALE DI VALUTAZIONE 0 2010 11 Le rilevazioi degli appredimeti A.S. 2010 11 La rilevazioe degli appredimeti elle clai II e V primaria, elle clai I e III (Prova azioale) della uola ecodaria

Dettagli

Introduzione: funzioni razionali

Introduzione: funzioni razionali Apputi di Cotrolli Automatici Capitolo - parte III Atitraformata di Laplace ANTITRASFORMAZIONE I LAPLACE... Itroduzioe: fuzioi razioali... Atitraformazioe delle fuzioi razioali trettamete proprie... Applicazioe

Dettagli

Statistica. Capitolo 9. Stima: Ulteriori Argomenti. Cap. 9-1

Statistica. Capitolo 9. Stima: Ulteriori Argomenti. Cap. 9-1 Statitica Capitolo 9 Stima: Ulteriori Argometi Cap. 9-1 Obiettivi del Capitolo Dopo aver completato il capitolo, arete i grado di: Cotruire itervalli di cofideza per la differeza tra le medie di due popolazioi

Dettagli

Soluzione IC=[20.6,22.6]

Soluzione IC=[20.6,22.6] Eercizio 1 Suppoiamo di etrarre u campioe cauale di umeroità = da ua popolazioe ormale co deviazioe tadard pari a 5.1. Sapedo che la media campioaria x è pari a 21.6, cotruire u itervallo di cofideza al

Dettagli

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α=

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α= ESERCIZIO 7. U uovo modello di termotato per frigorifero dovrebbe aicurare, tado alle pecifiche teciche, ua miore variabilità ella temperatura del frigo ripetto ai modelli della cocorreza. I particolare

Dettagli

Teoria dei quadripoli

Teoria dei quadripoli 7 Teoria dei quadripoli Eercitazioi aggiutive Eercizio 7. Si determii l iduttaza dei due iduttori mutuamete accoppiati collegati i erie chematizzati i figura: I V C Si uppoga che il itema lieare e tempo-ivariate

Dettagli

(per popolazioni finite)

(per popolazioni finite) Se o è oto I geere lo carto quadratico medio della popolazioe, al pari della media μ, o è oto. Pertato, per otteere u itervallo di cofideza per la media della popolazioe, occorre utilizzare la deviazioe

Dettagli

(E, H) i n (E, H) (0, 0) 2. Teorema di equivalenza

(E, H) i n (E, H) (0, 0) 2. Teorema di equivalenza 2. Teorema di equivaleza Il teorema di equivaleza coete di otituire, ai fii del calcolo del campo i ua determiata regioe, la ditribuzioe di orgeti vera (, M) co ua ditribuzioe uperficiale equivalete. i

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

E possibile approssimare tale valore utilizzando la distribuzione normale. Dalle tavole della Z si ha infatti: = 1.645

E possibile approssimare tale valore utilizzando la distribuzione normale. Dalle tavole della Z si ha infatti: = 1.645 ESERCIZIO 6.1 Il tempo di occupazioe di ciacu paziete di u letto (durata di permaeza) è utilizzato dai maager di u opedale per l allocazioe ottimale delle riore. Si ritiee, da tudi effettuati durate gli

Dettagli

Risposte nel tempo di sistemi LTI del 1 e 2 ordine

Risposte nel tempo di sistemi LTI del 1 e 2 ordine Ripote el tempo di itemi LTI del e ordie Fodameti di Automatica Prof. Silvia Strada Coro di Studi i Igegeria Getioale (Cogomi H PO) Sitemi del ordie E molto comue crivere G () a b µ + a + τ b τ K τ G ()

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

[ H ] = 16.1 (a) Ponendo y = jωc+1/( jωl), il quadripolo equivale al seguente. I 1 y I 2 + V 2 V 1. Si ricava: dunque la matrice [Y] è:

[ H ] = 16.1 (a) Ponendo y = jωc+1/( jωl), il quadripolo equivale al seguente. I 1 y I 2 + V 2 V 1. Si ricava: dunque la matrice [Y] è: 6. (a Poedo ωc/( ωl, il quadripolo equivale al eguete. Si ricava: ( ( duque la matrice Y è: Y La matrice Y o è ivertibile quidi o eite. Per quato riguarda le matrici H e T quete i pooo otteere dalla Y

Dettagli

Controlli Automatici A

Controlli Automatici A Cotrolli Automatici A (Prof. Rocco) Ao accademico 03/04 Appello del Febbraio 04 Cogome:... Nome:... Matricola:... Firma:... Avverteze: Il preete facicolo i compoe di 8 pagie (comprea la copertia). Tutte

Dettagli

Statistica per la ricerca

Statistica per la ricerca CDL i IGIENE DENTALE Statitica per la ricerca gbarbati@uit.it A.A. 2018-19 Icriveri al coro e caricare il materiale didattico da Moodle: Di volta i volta troverete qui tutto il materiale volto a lezioe

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Daniela Tondini

Daniela Tondini Daiela Todii dtodii@uite.it Facoltà di Medicia Veteriaria C.L.M i Medicia Veteriaria Uiverità degli Studi di Teramo Nella ricerca cietifica e tecologica è importate miurare la reale efficacia di iterveti

Dettagli

2 2 cm. 3. area. Problema 2. É assegnata la funzione

2 2 cm. 3. area. Problema 2. É assegnata la funzione Seioe ordiaria / Liceo di Ordiameto Soluzioe di De Roa Nicola Maturità Scietifica - Seioe Ordiaria Tempo coceo: 5 ore La prova richiede lo volgimeto di uo dei due problemi propoti e le ripote a cique domade

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Corso di SEGNALI a.a

Corso di SEGNALI a.a Coro di SEGNALI anno accademico 008-009 Appunti u: Teorema del Campionamento Introduzione Il proceo di campionamento è di enorme importanza ai ini della realizzazione dei dipoitivi digitali per le telecomunicazioni.

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

FACOLTA DI INGEGNERIA

FACOLTA DI INGEGNERIA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 4 ARGOMENTO: ANALISI DI BASE DEI DATI CAMPIONARI A.A. 00- ANALISI DEI DATI Il primo

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

BREVE PREMESSA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 133

BREVE PREMESSA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 133 BREVE PREMEA FEDERAZIOE ITALIAA GIOCO BRIDGE QUADRO 133 ECODO LA CIRCOTAZA ELLA QUALE È UATO, U EGALE PUÒ PORTARE UO DEI TRE EGUETI MEAGGI: 1. IL EGALE DI GRADIMETO (COME-O IGAL) 2. IL EGALE DI DARE IL

Dettagli

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0 Esercitazioe 4 1 Serie di Taylor Esercizio 1: Verificare che la fuzioe f(x) { e 1/x se x 0 0 se x 0 pur essedo C o è sviluppabile i serie di Taylor i x 0. Sol.: Determiiamo le derivate di f: 0 f (0) lim

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Coro di Fondamenti di elecomunicazioni - SEGNALI E SPERI Pro. Mario Barbera [parte 3] Fondamenti di LC - Pro. M. Barbera - Segnali e pettri [parte 3] = 3 log Banda di un egnale Deinizione di banda di un

Dettagli

TEORIA E TECNICA DELLA CIRCOLAZIONE

TEORIA E TECNICA DELLA CIRCOLAZIONE UNIVERSITA' DI ROMA "TOR VERGATA" FACOLTA DI INGEGNERIA Dipartimeto Igegeria Civile TEORIA E TECNICA DELLA CIRCOLAZIONE DOCENTE Prof. Ig. UMBERTO CRISALLI Apputi delle lezioi RICHIAMI DI TEORIA DELLE CODE

Dettagli

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A.

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A. Coro di Teia delle Cotruzioi Eerizi Bozza del 1/11/005 Verifihe alle Teioi Ammiibili Verifia a preo-fleioe di ua Trave i C.A. a ura di Ezo Martielli 1 Ao aademio 004/05 Coro di Teia delle Cotruzioi Eerizi

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Esercizi commentati per il recupero - Modulo a

Esercizi commentati per il recupero - Modulo a Eercizi commetati per il recupero - Modulo a MODULO a LE IMPRESE INDUSTRIALI, ASPETTI STRUTTURALI, GESTIONALI E CONTABILI Scritture di aetameto e completameto del Coto ecoomico di bilacio ESERCIZIO Relativamete

Dettagli

Trasformata discreta di Fourier Ingegneria Clinica A.A

Trasformata discreta di Fourier Ingegneria Clinica A.A Uiversità di Roma La Sapieza Corso di Elaborazioe di Dati e Segali Biomedici Facoltà di Igegeria Trasformata discreta di Fourier Igegeria Cliica A.A. 7-8 Fracesco Ifariato, PhD Laboratorio di Bioigegeria

Dettagli

Verifica delle ipotesi

Verifica delle ipotesi Verifica delle ipotei U'ipotei tatitica è u'affermazioe o ua cogettura riguardate u parametro q che caratterizza il modello decrittivo della popolazioe, f(x;q), co qq, dove Q è lo pazio parametrico. olitamete,

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V Uiverità degli Studi di Napoli Partheope Facoltà di Scieze Motorie a.a. 0/0 Statitica Lezioe V E-mail: paolo.mazzocchi@uipartheope.it Webite: www.tatmat.uipartheope.it DISTRIBUZIONE DOPPIA di frequeze

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Esercizio no.1 soluzione a pag.4. Mediante un sistema a 4bit in un convertitorea/d con V FS =10 codificare in forma digitale A] 3,8V B] 8,4V C] 0,61V

Esercizio no.1 soluzione a pag.4. Mediante un sistema a 4bit in un convertitorea/d con V FS =10 codificare in forma digitale A] 3,8V B] 8,4V C] 0,61V Eduteia.it Coverioe aalogio-digitale eerizi riolti Eerizio o. oluzioe a pag.4 Mediate u itema a 4bit i u overtitorea/d o 0 odifiare i forma digitale A] 3,8 B] 8,4 C] 0,6 Eerizio o. oluzioe a pag.5 I u

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi 2/II

Politecnico di Milano Ingegneria Industriale Analisi 2/II Politecico di Milao Igegeria Idustriale Aalisi /II Test di autovalutazioe. Sia S = ( artg +. (a Stabilire se la serie data coverge assolutamete. (b Stabilire se la serie data coverge.. Sia L lo spazio

Dettagli

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati Capitolo 5 Il comportameto dei itemi i regime traitorio 5.1 Geeralità ulla ripota dei itemi el domiio del tempo 5. Ripota al gradio di u itema del primo ordie. 5.3 Eercizi - Ripota al gradio dei itemi

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzioe del primo compitio di Aalisi e 2 A.A. 20/205 Luca Ghidelli, Giovai Paolii, Leoardo Tolomeo 5 dicembre 20 Esercizio Testo. Calcolare, se esiste, + 3 + 5 + + (2 ). 2 + + 6 + + 2 Soluzioe. Al deomiatore

Dettagli

FIGURES TABLES. Figura 1 striscia critica e linea critica =1/ Oct :10:32 BST Version 1 - Submitted to JLMS 2

FIGURES TABLES. Figura 1 striscia critica e linea critica =1/ Oct :10:32 BST Version 1 - Submitted to JLMS 2 INDEX Itroduzioe...3 Riema Hypothei propota di oluzioe...4 Cogettura ulla molteplicità degli zeri - propota di oluzioe...0 Siti...3 Blog...3 FIGURES Figura tricia critica e liea critica =/...4 TABLES Oct

Dettagli

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS)

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS) Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema - soluzioe a cura di E. Castagola e L. Tomasi, co l uso della calcolatrice grafica TI-Nspire CX (o CAS) Soluzioe ) Co riferimeto

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Corso di Statistica Canale E Bini, Cutillo A.A. 2017/2018. Esercitazione di riepilogo n.8 Test di ipotesi Soluzioni

Corso di Statistica Canale E Bini, Cutillo A.A. 2017/2018. Esercitazione di riepilogo n.8 Test di ipotesi Soluzioni Corso di Statistica Caale E Bii, Cutillo A.A. 17/18 Esercitazioe di riepilogo.8 Test di ipotesi Soluzioi Esercizio 1 A seguito della sostituzioe di u macchiario per il cofezioameto di caffè, il resposabile

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18.

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18. Esercizio. Sia Soluzioi di esercizi del secodo esoero di Aalisi Matematica 207/8. a 3 2 + π si si +. a Determiare, al variare di a > 0, se esiste, lim 0 + u a. b Determiare, al variare di a > 0, se esiste,

Dettagli

campioni estratti da una popolazione finita e quelli che provengono da una popolazione infinita. Capitolo VII

campioni estratti da una popolazione finita e quelli che provengono da una popolazione infinita. Capitolo VII 37 38 Capitolo VII campioi etratti da ua popolazioe fiita e quelli che provegoo da ua popolazioe ifiita. ATTENDIBILITA' DELLE STATISTICHE CAMPIONARIE 1.1 Campioi etratti da ua popolazioe fiita 1. Ditribuzioe

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2009/10

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2009/10 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 9/1 Prova scritta del 13/1/1 Esercizio 1 Ua Ditta commerciale guadaga ogi ao ua somma X, ove si puo assumere che X N(µ, σ ). Ogi ao la Ditta paga ua tassa fissa

Dettagli

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n Limiti di Successioi Ifiiti ed Ifiitesimi Esercizio Calcolare se esistoo i segueti iti: + + ; log + + + 5 ;! + +! Soluzioe Riscrivedo oppportuamete la successioe si ha + a = = + / = + Poichè + = + + =

Dettagli

Algoritmi e Strutture Dati Esercizi Prima parte

Algoritmi e Strutture Dati Esercizi Prima parte Algoritmi e Strutture Dati Esercizi Prima parte Esercizio 1 Si cosideri il seguete codice: 1 i 1 2 k 0 3 while i 4 do if A[i] s 5 the k k + 1 6 A[k] A[i] 7 i i + 1 e si dimostri la sua correttezza rispetto

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

SULLE MEDIE DI CESÀRO IN SPAZI DI BANACH.

SULLE MEDIE DI CESÀRO IN SPAZI DI BANACH. Liuc Paper. 63, Serie Metodi quatitativi 9, maggio 999 SULLE MEDIE DI CESÀRO IN SPAZI DI BANACH. Roberto D Agiò. Itroduzioe. I Lemmi -3 u cui i articola la dimotrazioe del Teorema (qui otto riportato)

Dettagli

Oscillatore controllato in tensione (VCO)

Oscillatore controllato in tensione (VCO) //6 Oscillatore cotrollato i tesioe (O) Frequeza di oscillazioe jl Z jl[ L() L()] [L L ()] L () T L //6 3 Guadago del O / f () L () L 4 () L 4 / Logf f f 3 Lf f () () L 4 Log Logf 4 Guadago del O / j /

Dettagli

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x CAPITOLO -FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE X DEFINIZIONE DI FUNZIONE CONTINUA DEF Siao: X ua parte o vuota i R, f ua fuzioe reale efiita i X e u elemeto i Si ice che la fuzioe f è cotiua

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 008/009 Docete: R Argiolas Cogome Matricola 6 Geaio 009 ore 9 Aula C Nome Corso voto Esercizio Assegata la uzioe a Si determii il suo

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova di recupero 11 settembre 2006

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova di recupero 11 settembre 2006 METODI MATEMATII DELLA FISIA A.A. 2005/2006 Prof.. Presilla Prova di recupero settembre 2006 ogome Nome i sostituzioe delle prove i itiere (segare) 2 pealità esercizio voto 2 3 4 5 6 Esercizio Determiare

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

1 Esercizi tutorato 27/5

1 Esercizi tutorato 27/5 Esercizi tutorato 7/5 Esercizi tutorato 7/5 Esercizio.. Si cosideri u compoete elettroico costituito da compoeti collegate i serie. Ogi compoete ha u tempo di vita T i Expλ), i =,..., idipedete. Sia X

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scieza dei Materiali 1 Esercitazioi 10. Creep ver. 1.1 ESERCIZI Ex 10.1 Creep stazioario 1 Ua lega di rame viee sottoposta ad ua prova di creep. Si osserva che, el tratto di creep stazioario, dopo 200

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso ISTITUZIONI DI ANALISI SUPEIOE 2-2 Esercizi di metà corso Silvia Ghiassi 22 ovembre 2 Esercizio Diamo u esempio di fuzioe u: tale che u 6, u 6, u 6. se x

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Realizzazione, Raggiungibilità e Osservabilità

Realizzazione, Raggiungibilità e Osservabilità Prof. Carlo Cosetio Fodameti di Automatica, A.A. 26/7 Corso di Fodameti di Automatica A.A. 26/7 Realizzazioe, Raggiugiilità e Osservailità Prof. Carlo Cosetio Dipartimeto di Medicia Sperimetale e Cliica

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Prova d esame di Calcolo delle Probabilità 02/07/2011

Prova d esame di Calcolo delle Probabilità 02/07/2011 Prova d esame di Calcolo delle Probabilità 0/07/0 N. MATRICOLA... COGNOME e NOME... Esercizio Cosideriamo due ure ed ua moeta truccata. La prima ura (ura A) cotiee pallie rosse e 4 biache, la secoda ura

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Argomento: Applicazioni statistiche e analisi dei dati Esercitazioni

Argomento: Applicazioni statistiche e analisi dei dati Esercitazioni Argometo: Applicazioi tatitiche e aalii dei dati Eercitazioi Premea Le dipee elaborate per lo volgimeto dell attività didattica oo tratte dal teto Itroduzioe al rilevameto campioario delle riore foretali

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

FUNZIONI A PIU' VARIABILI. R, si definisce distanza tra A e B il numero. = +. La definizione si può estendere nello A B A B

FUNZIONI A PIU' VARIABILI. R, si definisce distanza tra A e B il numero. = +. La definizione si può estendere nello A B A B Dati due puti A( x, y ) e (, ) A A FUNZIONI A PIU' VARIABILI B x y del piao reale o egativo d( A B) ( x x ) ( y y ) B, A B A B B La stesura di queste dispese vata il cotributo dei miei carissimi amici

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

ANALISI 2 ESERCITAZIONE DEL 15/11/2010 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI

ANALISI 2 ESERCITAZIONE DEL 15/11/2010 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI ANALISI ESERCITAZIONE DEL 15/11/1 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI Nel corso dell esercitazioe della settimaa scorsa abbiamo utilizzato diverse volte il calcolo di lim cos, si L i modo uiorme, cioè,

Dettagli

Esercizi settimana 10

Esercizi settimana 10 y = = 0 0,5 0,5,5 x Esercizi settimaa 0 Esercizi applicati Esercizio. Siao X ) i.i.d. tali per cui X U0, ), si dimostri che X 0. Soluzioe. Per calcolare la covergeza i legge dobbiamo usare la fuzioe di

Dettagli

FEDERAZIONE ITALIANA GIOCO BRIDGE LA DIFESA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 220

FEDERAZIONE ITALIANA GIOCO BRIDGE LA DIFESA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 220 FEDERAZIOE ITALIAA GIOCO BRIDGE LA DIFEA CAPITOLO 10 A CURA DI EZO RIOLO FEDERAZIOE ITALIAA GIOCO BRIDGE QUADRO 220 CODIFICA, DECODIFICA E OLUZIOI IL COTRATTO È 3A (1A-3A), EDUTO I OVET ATTACCHI CO IL

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Modelli per l ottica

Modelli per l ottica Modelli per l ottica Ottica quatitica e i tracurao gli effetti quatitici Elettrodiamica di Maxwell e i tracurao le emiioi di radiazioe Ottica odulatoria per piccole lughezze d oda può eere otituita da

Dettagli

1. (solo nuovo ordinamento e diploma) Dato il sistema di controllo raffigurato, con

1. (solo nuovo ordinamento e diploma) Dato il sistema di controllo raffigurato, con Eame di Fondamenti di Automatica Coro di Laurea Nuovo e Vecchio Ord. in Ingegneria Elettronica Simulazione 9 Novembre 7 Cognome: Nome Matricola: E-mail: 1. (olo nuovo ordinamento e diploma) Dato il itema

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

Ottavio Serra La costante C di Eulero-Mascheroni e la funzione Gamma. 1. =

Ottavio Serra La costante C di Eulero-Mascheroni e la funzione Gamma. 1. = Ottavio Serra La costate C di Eulero-Mascheroi e la fuzioe Gamma la costate C di Eulero Mascheroi è defiita come il limite della seguete successioe: [] a = +/+/3+ +/ log(+) Il termie a è la differeza tra

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Esercitazione n Supponendo che i giorni lavorativi in un anno siano 340, quanti chilometri percorre mediamente un tir in un anno?

Esercitazione n Supponendo che i giorni lavorativi in un anno siano 340, quanti chilometri percorre mediamente un tir in un anno? Esercitazioe.4 1 Applicazioi del TCL 1.1 Ua ditta di trasporti iterazioali possiede 100 tir dello stesso tipo. Ogi tir percorre ua media di 600 km al gioro co ua deviazioe stadard di 50 km. 1. Suppoedo

Dettagli

I diagrammi di Bode. ad esempio la quantità 100 equivale a 40 decibel. Ricordando le altre regole dei logaritmi:

I diagrammi di Bode. ad esempio la quantità 100 equivale a 40 decibel. Ricordando le altre regole dei logaritmi: I diagrai di Bode Sia dato u itea lieare e tepo ivariate i regie iuoidale. Si vuole tudiare l adaeto dell ucita i fuzioe dell igreo al variare della frequeza. Detta quidi U la pria ed I il ecodo el cao

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Capitolo 0. Considerazioni preliminari. 0.1 scalari, vettori e tensori

Capitolo 0. Considerazioni preliminari. 0.1 scalari, vettori e tensori Capitolo 0 Coiderazioi prelimiari 0.1 calari, vettori e teori Nel campo cietifico, coì come ella vita quotidiaa, accade peo di defiire delle quatità per mezzo di u umero (di olito reale) eguito da u uità

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO

ELEMENTI DI CALCOLO COMBINATORIO ELEMENTI DI CALCOLO COMBINATORIO 1 Elemeti di calcolo combiatorio Si tratta di ua serie di teciche per determiare il umero di elemeti di u isieme seza eumerarli direttamete. Dati elemeti distiti ci chiediamo

Dettagli