pdv + p ponendo v T v p

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "pdv + p ponendo v T v p"

Transcript

1 Nel aso artiolare in i δl sia esresso in fnzione delle oordinate e, è er trasformazione internamente reersibile ari a : δl d laoro di ariazione di olme, essendo d d d esso si ò osì esrimere δl d d onendo β e si ha he δl βd d Coeffiiente di dilatazione isobara Coeffiiente di omrimibilità isoterma

2 COEFFICIENI ELASICI ρ ρ Coeffiiente di dilatazione isobara: aratterizza la ariazione erentale di olme seifio (o della densità) onsegente alla la ariazione isobaria della temeratra. ρ ρ Coeffiiente di omrimibilità isoterma: aratterizza la ariazione erentale di olme seifio (o della otenza qarta della densità) onsegente alla ariazione isoterma della ressione. S s ρ ρ s Coeffiiente di omrimibilità isoentroia: aratterizza la ariazione erentale di olme seifio (o della otenza qarta della densità nsità) onsegente alla ariazione isoentroia della ressione.

3 CAPACIA EMICA E CALOE SPECIFICO Per n sistema he sbisa na trasformazione termodinamia si definise Caaità termia er qella trasformazione il raorto tra la qantità di alore sambiata dal sistema e la onsegente ariazione di temeratra del sistema stesso. C dq d in termini infinitesimi [J/K] C Q he è in realtà na aaità media. La aaità termia di n oro raresenta l oosizione di n oro alla ariazione di temeratra in segito ad no sambio di energia termia: tra de ori he rieono na stessa qantità di alore, qello a aaità termia minore arà n maggiore amento di temeratra. La relatia grandezza estensia è detta alore seifio: dq md in termini infinitesimi [J/gK] Q m alore seifio medio.

4 Calori seifii e oeffiienti elastii Calore seifio a olme ostante Per na trasformazione internamente reersibile: δ l d er i la forma differenziale della rima legge er n sistema hiso he eole in modo internamente reersibile è: Se la trasformazione è isoora (ost): d δ q d d δ q er i ( q) d Qantità elementare di energia termia seifia trasferita a olme seifio ostante. è na orrelazione tra la definizione matematia e fenomenologia del alore seifio:orrela il alore seifio (rorietà seifia) a olme ostante on il raorto tra la qantità di energia termia seifia trasferita al sistema e la orrisondente ariazione della temeratra, in na trasformazione internamente reersibile a olme ostante.

5 h Calore seifio a ressione ostante Per na trasformazione internamente reersibile: er i ( q) d dh δq d Qantità elementare di energia termia seifia trasferita a ressione ostante. Correla la definizione formale della rorietà seifia a qella fenomenologia. β e s

6 Un altro modo er definire i alori seifii a ressione e olme seifio ostanti si ottiene sfrttando le eqazioni di Gibbs ds d d d d d ; ds d dh d d d er i se è ost s se è ost s h

7 GAS Una sostanza è in fase gassosa (gas) se ale la relazione: z è la ostante del gas J gk z è il fattore di omrimibilità r z ( 0) si riaa l'eqazione dei gas ideali o erfetti in genere è z < er alori eleati di e :noto z è ossibile dall'eqazione riaare, ore.

8 PAAMEI IDOI iferiamo e allo stato ritio e introdiamo i arametri ridotti: π π è la ressione ridotta e θ è la ressione ritia θ è la temeratra ridotta e è la temeratra ritia Lo stato orrisondente è lo stato termodinamio aratterizzato dai arametri ridotti definiti. De sostanze dierse he hanno le stesse ondizioni di ressione e temeratra ridotta, si troano nello stesso stato orrisondente.

9 PAAMEI IDOI Van der Walls enniò il riniio degli stati orrisondenti: sostanze dierse resentano gli stessi z se si troano nello stesso stato di eqilibrio orrisondente (in ogni stato di eqilibrio l eqazione di stato f(,,) è del tio /ost). Per ttti i gas è alido lo stesso legame fnzionale z f(π, θ): nota la sostanza e noti ressione e temeratra, si ò altare z. Si ò arlare di gas ideale, ommettendo n errore < 8% se: π 0,5 er 0 θ er > ottenendo he il alore di z sia

10 GAS IDEALE ore V m ln ln ln ln d d d ostante f (,, ) 0 in na arte della serfiie aratteristia EQUAZIONE DI SAO

11 PE VIA SPEIMENALE: ESPEIENZA DI JOULE f() le notò he nell arire la alola di arazione tra il serbatoio ontenente ia e qello ontenente il oto, drante sansione dell aria, la temeratra ll aqa restaa ostante e non erano ambi di energia nel modo alore, bbene olme seifio e ressione riaano: AIA EMOMEO ACQUA LIQUIDA VUOO d δq δl δq 0 0, 0 Anhe se e sono ambiati, e non lo sono;ertanto essi selti insieme non aratterizzano lo stato, oero non

12 PE VIA ANALIICA PE VIA ANALIICA f() f() h() h h() h roede er analogamente si n differenziale esatto essendo ) ( ) ( 0 / 0 / 0 / / f ds d d d d ds

13 E era anhe l imliazione ontraria: h f ( ) g( ) eqazione di stato è ostante

14 Se il gas è ideale: d dh h d d ) ( ) ( ) ( ) ( β

15 Inoltre: MAYE ELAZIONE DI β

16 CALCOLO PE, h, s NEL CASO DI GAS IDEALE d ( ) d dh ( ) d ds d d ( ) d d ds dh d ( ) d d essendo d d d si ha ds ( ) d ( ) d

17 ( ) ( ) ln ln ln ln ln ln d d s d h d CALCOLO PE, h, s NEL CASO DI GAS IDEALE a alori seifii ostanti on

18 ASFOMAZIONI: ADIABAICA INENAMENE EVESIBILE ds 0 d d 0 er n gas ideale ale er i d d 0 se i alori seifii sono ostanti on, si ha ln ln ost oihè ln ln ost da i

19 ASFOMAZIONI: ADIABAICA INENAMENE EVESIBILE ( ) ost ost ost ost ost ost ost ln ln -

20 Adiabatia: ost Isoterma: ost, ost Sl iano la trasformazione isoentroia er gas ideale on alori seifii ostanti è raresentata da n ierbole non eqilatera

21 [ ] [ ] l d d l Per sistemi hisi e er Per sistemi hisi e er trasf trasf. Int. Int. e e : l area sottesa in senso ertiale a : l area sottesa in senso ertiale a tale ra raresenta il laoro sambiato on l ambiente da n tale ra raresenta il laoro sambiato on l ambiente da n sistema sistema hiso hiso

22 d d l Per sistemi aerti e er Per sistemi aerti e er trasf trasf. Int. Int. e.: e.: l area sottesa in senso orizzontale a l area sottesa in senso orizzontale a tale ra raresenta, ritenendo trasrabili le ariazioni di tale ra raresenta, ritenendo trasrabili le ariazioni di energia energia inetia e otenziale, il laoro sambiato da n V.C. on l ambi inetia e otenziale, il laoro sambiato da n V.C. on l ambiente. ente.

23 Basta onosere na delle de: f ( ) f ( ) f ( ) ore f ( ) In genere () è esresso ome na serie di otenze di : ( ) 3 a b d... a, b,, d, diendono dalla sostanza e deono altarsi serimentalmente a meno di teorie he ne onsentano la altazione er la sostanza in esame (ab.a.9). I orrisondenza di erti interalli non molto ami di temeratra (he diendono dalla sostanza) si ha he (e qindi ) non aria, è ratiamente ostante: in tal aso si arlerà di gas ideali a alori seifii ostanti. In genere nell interallo di temeratra [0,00] onsidereremo semre i alori seifii indiendenti da.

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

Termometria e calorimetria

Termometria e calorimetria ermometria e alorimetria Priniio zero della termodinamia: 2 ori, e, a temerature differenti ( < ) osti a ontatto raggiungono l equilibrio termio. Se e sono in equilibrio termio on un terzo oro C allora

Dettagli

Legge del gas perfetto e termodinamica

Legge del gas perfetto e termodinamica Scheda riassuntia 5 caitoli 9-0 Legge del gas erfetto e termodinamica Gas erfetto Lo stato gassoso è quello di una sostanza che si troa oltre la sua temeratura critica. La temeratura critica è quella oltre

Dettagli

6. I GAS IDEALI. 6.1 Il Gas perfetto

6. I GAS IDEALI. 6.1 Il Gas perfetto 6. I GAS IDEALI 6. Il Gas erfetto Il gas erfetto o ideale costituisce un modello astratto del comortamento dei gas cui tendono molti gas reali a ressioni rossime a quella atmosferica. Questo modello di

Dettagli

Sperimentalmente si verifica che per una massa di gas segue alcune leggi valide per tutti i tipi di gas generalmente indicate come:

Sperimentalmente si verifica che per una massa di gas segue alcune leggi valide per tutti i tipi di gas generalmente indicate come: Gas perfetti Fisica Tecnica G. Grazzini Sperimentalmente si erifica che per una massa di gas segue alcune leggi alide per tutti i tipi di gas generalmente indicate come: Legge di Boyle V = cost. Legge

Dettagli

FISICA. V [10 3 m 3 ]

FISICA. V [10 3 m 3 ] Serie 5: Soluzioni FISICA II liceo Esercizio 1 Primo rinciio Iotesi: Trattiamo il gas con il modello del gas ideale. 1. Dalla legge U = cnrt otteniamo U = 1,50 10 4 J. 2. Dal rimo rinciio U = Q+W abbiamo

Dettagli

CAPITOLO 4 EQUAZIONI di CONSERVAZIONE

CAPITOLO 4 EQUAZIONI di CONSERVAZIONE CAPIOLO 4 EQUAZIONI di CONSERVAZIONE 4. Cassifiazione dee ahine Chiamasi mahina a sede di una trasformazione energetia oerante mediante uno o iù fuidi in azione dinamia o inematia; detti fuidi sono i ettori

Dettagli

PRESSIONE, VOLUME, TEMPERATURA

PRESSIONE, VOLUME, TEMPERATURA ER M O D I N A M I CA È la branca della fisica che descrive le trasformazioni subite da un SISEMA MACROSCOPICO a seguito di uno scambio di energia con altri sistemi o con l'ambiente. IL sistema macroscoico

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I rocessi termodinamici che vengono realizzati nella ratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA TRASMISSIONE DEL CALORE PER CONVEZIONE

TERMODINAMICA E TERMOFLUIDODINAMICA TRASMISSIONE DEL CALORE PER CONVEZIONE TERMODINAMICA E TERMOFUIDODINAMICA TRASMISSIONE DE CAORE PER CONVEZIONE h C T Q ( T ) m ( ) ρ = V T V ost T = A T S Trasmissione del alore per onvezione Indie 1. a onvezione termia forzata e naturale 2.

Dettagli

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V LEGGI DEI GS Per gas si intende un fluido rivo di forma o volume rorio e facilmente comrimibile in modo da conseguire notevoli variazioni di ressione e densità. Le variabili termodinamiche iù aroriate

Dettagli

Progettazione di un motore Ringbom Stirling per la produzione di energia elettrica nei paesi in via di sviluppo

Progettazione di un motore Ringbom Stirling per la produzione di energia elettrica nei paesi in via di sviluppo Progettazione di un motore Ringbom Stirling er la roduzione di energia elettrica nei aesi in via di sviluo C. M. Invernizzi, G. Incerti, S. Parmigiani, V. Villa Diartimento di Ingegneria Meccanica e Industriale

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

Capitolo 2 - Sostanze pure e gas

Capitolo 2 - Sostanze pure e gas Aunti di FISICA ECNICA Caitolo 2 - Sostanze ure e gas Sostanze ure... 2 Generalità e definizioni... 2 Fasi di un sistema... 3 arianza e regola delle fasi... 4 Equilibrio liquido-aore: la tensione di aore...

Dettagli

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T CICLI MOORI Utilizzando un motore (sorgente di lavoro meccanico oerante in maniera ciclica) che evolve secondo il ciclo isotermo-adiabatico di Carnot in maniera internamente reversibile, scambiando calore

Dettagli

Impianto di pressurizzazione e condizionamento

Impianto di pressurizzazione e condizionamento IMPIANTI E SISTEMI Disense del orso, versione 2014 Caitolo 9 Imianto di ressurizzazione e ondizionamento Caitolo 9 Imianto di ressurizzazione e ondizionamento Queste disense ossono essere liberamente sariate

Dettagli

Lavoro e Potenza, Unità di misura. 1 unità di Potenza = 1 kg f m /s. 1 HP = 33000 lb f ft / min

Lavoro e Potenza, Unità di misura. 1 unità di Potenza = 1 kg f m /s. 1 HP = 33000 lb f ft / min Laoro e Potenza, Unità di misura om è noto, la Potenza è definita come Laoro ( Forza sostamento) nell unità di temo. L unità SI della otenza è dunque: Watt N m /s Nelle unità MKS, la otenza (la cui unità

Dettagli

Sistemi energetici. 1 Esercitazioni SISTEMI ENERGETICI

Sistemi energetici. 1 Esercitazioni SISTEMI ENERGETICI Esercitazioni SISTEMI ENERGETICI Sistemi ed nità di misra Il sistema di misra tilizzato è il Sistema Internazionale (S.I.). Le grandezze fisiche che in esso sono assnte come fondamentali sono: Grandezza

Dettagli

Formulario di Termodinamica

Formulario di Termodinamica Formulario di Termodinamica Punto triplo dell acqua: T triplo = 273.16 K. Conversione tra gradi Celsius e gradi Kelvin (temperatura assoluta): t( C) = T (K) 273.15 Conversione tra Caloria e Joule: 1 cal

Dettagli

3. Le Trasformazioni Termodinamiche

3. Le Trasformazioni Termodinamiche 3. Le Trasformazioni Termodinamiche Lo stato termodinamico di un gas (perfetto) è determinato dalle sue variabili di stato: ressione, olume, Temperatura, n moli ffinché esse siano determinate è necessario

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

SISTEMI E STATI TERMODINAMICI

SISTEMI E STATI TERMODINAMICI ittorio Mussino: vittorio.mussino@olito.it SISEMI E SI ERMODINMICI Nel corso di Fisica I (meccanica), si sono determinate le leggi che governano il moto dei sistemi di articelle (discreti e continui) e

Dettagli

Corso di TECNOLOGIE DELLE ENERGIE RINNOVABILI. L energia eolica: il vento

Corso di TECNOLOGIE DELLE ENERGIE RINNOVABILI. L energia eolica: il vento POLITECNICO DI BARI - FACOLTA DI INGEGNERIA CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA MECCANICA Corso di TECNOLOGIE DELLE ENERGIE RINNOABILI L energia eolia: il vento A.A. 203/4 Tenologie delle Energie

Dettagli

CONTROLLO TERMICO DEI SISTEMI DI CALCOLO Fluidodinamica UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B)

CONTROLLO TERMICO DEI SISTEMI DI CALCOLO Fluidodinamica UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B) U.07/0 UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B) 7. BILANCIO DELL ENERGIA 7.. Bilancio dell energia stazionario er sistemi a due correnti 7... Bilancio dell energia

Dettagli

CONTROLLO DEglI impianti termici

CONTROLLO DEglI impianti termici CONTROLLO DEglI imianti termii Parte 3 CSIE - Corso di Studi in Ingegneria Elettria CSIEo - Corso di Studi in Ingegneria ElettrONia CSIEn - Corso di Studi in Ingegneria Energetia - Diartimento di Ingegneria

Dettagli

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA LE MACCHINE TERMICHE Sono sistemi termodinamici che trasformano il calore in lavoro. Operano ciclicamente, cioè

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO CM a.s. /3 PROLEMA DELL TILE DEL CONSMATORE CON IL VINCOLO DEL ILANCIO Il consumatore è colui che acquista beni er destinarli al rorio consumo. Linsieme dei beni che il consumatore acquista rende il nome

Dettagli

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Termodinamica Equazione di Stato: p = pressione ; V = volume ; T = temperatura assoluta ; n = numero di moli ; R = costante

Dettagli

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza 5 LAVR ED ENERGIA La valutazione dell equazione del moto di una articella a artire dalla forza agente su di essa risulta articolarmente semlice qualora la forza è costante; in tal caso è ossibile stabilire

Dettagli

Elementi di meccanica dei fluidi

Elementi di meccanica dei fluidi IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 Caitolo 3 Elementi di meccanica dei fluidi 3. IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 3. Introduzione In molti imianti il collegamento

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

f Le trasformazioni e il trattamento dell aria

f Le trasformazioni e il trattamento dell aria f Le trasformazioni e il trattamento dell aria 1 Generalità Risolvendo il sistema (1) rispetto ad m a si ottiene: () Pertanto, il punto di misela sul diagramma psirometrio è situato sulla ongiungente dei

Dettagli

Compressori e ventilatori. Impianti frigoriferi

Compressori e ventilatori. Impianti frigoriferi Sheda riassuntiva 10 apitolo 13 Compressori e ventilatori. Impianti frigoriferi Compressori e ventilatori I ompressori si possono lassifiare seondo lo shema seguente: Volumetrii alternativi rotativi Dinamii

Dettagli

Le Macchine a Fluido. Tutor Ing. Leonardo Vita

Le Macchine a Fluido. Tutor Ing. Leonardo Vita Le Macchine a Fluido Tutor Ing. Leonardo Vita Introduzione Si uò definire macchina, in senso lato, un qualsiasi convertitore di energia cioè, in generale, una scatola chiusa in cui entra e da cui esce

Dettagli

Appunti di Termodinamica

Appunti di Termodinamica ullio Paa unti di ermodinamica Per arofondire consultare il testo: Paa; Lezioni di Fisica-ermodinamica, edizioni Kaa, Roma 1 Sistemi e variabili termodinamiche Equazioni di stato 1 Introduzione La termodinamica

Dettagli

Marketing - Unità Didattica 03 Le decisioni strategiche di distribuzione

Marketing - Unità Didattica 03 Le decisioni strategiche di distribuzione LA DISTRIBUZIONE Il sistema distributivo raresenta un gruo di soggetti he intervengono nel roesso di sambio. Tale roesso è di natura onorrenziale e revede la reazione di un valore aggiunto, er il distributore

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Aunti ed Esercizi di Fisica ecnica e Macchine ermiche Ca. 2. ermodinamica degli stati Paolo Di Marco Versione 2009.03 30.10.09. La resente disensa è redatta ad esclusivo uso didattico er gli allievi dei

Dettagli

Capitolo 1 - La termodinamica

Capitolo 1 - La termodinamica Auni di FISICA ECNICA Caiolo Caiolo - La ermodinamia Generalià e definizioni... Sisemi ermodinamii... Equilibrio ermodinamio... 3 Prorieà e sao di un sisema... 4 Sisemi semlii: diagrammi di sao e suerfii

Dettagli

FORMULARIO DI TERMODINAMICA

FORMULARIO DI TERMODINAMICA Formularo d ermodnama e eora neta Pagna d 5 FORMURIO DI ERMODINMIC Denzone d alora: la CORI e' la quanttà d alore eduta da un grammo d aqua nel rareddars da 5.5 C a 4.5 C alla ressone d una atmosera alora

Dettagli

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 5.1 Schematizzazione di una macchina a fluido

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 5.1 Schematizzazione di una macchina a fluido Corso di Laurea: INGEGNERIA INFORMATICA (lasse 09) Le equazioni del moto dei fluidi L equazione di onservazione dell energia in forma termodinamia V M Ω Ω Fig. 5. Shematizzazione di una mahina a fluido

Dettagli

P 1. Area A. P atm P 2. F = (P P atm ) A. Spostamento l. Il Compressore Alternativo

P 1. Area A. P atm P 2. F = (P P atm ) A. Spostamento l. Il Compressore Alternativo Il Compressore Alternativo Ipotesi : > > atm ; Spostamenti del pistone molto lenti; Serbatoi molto grandi = ( e costanti) Area A atm Forza F = ( atm ) A ( ) ( l 0) A L0 = atm ( ) L = atm A dl ( ) ( 0 l

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale Aunti ed Esercizi di Fisica Tecnica e Macchine Termiche Ca. 0. Elementi di sicrometria, condizionamento dell aria e benessere ambientale Nicola Forgione Paolo Di Marco Versione 0.0.04.0. La resente disensa

Dettagli

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia Secondo principio della termodinamica Macchine termiche Rendimento Secondo principio della ermodinamica Macchina di arnot Entropia Introduzione al secondo principio della termodinamica Da quanto studiato

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

APPUNTI del CORSO di MACCHINE I

APPUNTI del CORSO di MACCHINE I APPUNI del CORSO di MACCHINE I Motori a combustione interna A cura del dott. ing. Daniele Scatolini dalle lezioni del rof. Cinzio Arrighetti Introduzione Il motore a combustione interna (m.c.i.) ha origine

Dettagli

Gli autori saranno grati a chiunque segnali loro errori, inesattezze o possibili miglioramenti.

Gli autori saranno grati a chiunque segnali loro errori, inesattezze o possibili miglioramenti. Diloma Universitario in Ingegneria Corso di Fisica ecnica Paolo Di Marco e Alessandro Franco Esercizi di ermodinamica Alicata Versione 99.00 //99. La resente raccolta è redatta ad esclusivo uso didattico

Dettagli

Turbomacchine Radiali -Compressori Centrifughi -Turbine Centripete

Turbomacchine Radiali -Compressori Centrifughi -Turbine Centripete Turbomahine Radiali -Compressori Centrifughi -Turbine Centripete Testi di Riferimento Cumpsty, N.A. Compressor Aerodynamis, ISBN 0-470-334-5 Japikse, D. Centrifugal Compressor Design and Performane, ISBN

Dettagli

Prof. Giuseppe Lanzo

Prof. Giuseppe Lanzo CORSO DI LAUREA SPECIALISTICA QUIQUEALE I ARCHITETTURA UE Laboratorio di Costruzioni Modulo di GEOTECICA E FODAZIOI Prof. Giuseppe Lanzo Dipartimento di Ingegneria Strutturale e Geotenia Via A. Gramsi

Dettagli

Esercitazione X - Legge dei gas perfetti e trasformazioni

Esercitazione X - Legge dei gas perfetti e trasformazioni Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16 Sommario Pa. 1. Scoo dell eserienza 2 2. Presuosti teorici 3 3. Aarato Strumentale 6 4. Descrizione dell eserimento 8 5. Dati serimentali e loro elaborazione 9 5.1 Resistenza interna del triodo 9 5.2 Conduttanza

Dettagli

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale

Dettagli

Indirizzo : Scientifico Tecnologico. Corso sperimentale Progetto Brocca. Primo Quesito

Indirizzo : Scientifico Tecnologico. Corso sperimentale Progetto Brocca. Primo Quesito Indirizzo : Sientifio Tenologio Primo Quesito Corso sperimentale Progetto Broa Con la storia memoria dal titolo Teoria della legge di distribuzione dell energia dello spettro normale presentata all Aademia

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 3 TERMODINAMICA E LAVORO MECCANICO

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 3 TERMODINAMICA E LAVORO MECCANICO TERMODINMIC E TERMOFLUIDODINMIC Ca. 3 TERMODINMIC E LVORO MECCNICO d 0 stato finae 0 stato iniziae F V m 0 / 0 G. Cesini Termodinamica e termofuidodinamica - Ca. 3_TD e aoro meccanico Ca. 3 TERMODINMIC

Dettagli

Corso di MISURE E CONTROLLI IDRAULICI STRUMENTI PER LA MISURA DELLE VELOCITÀ CHE SI BASANO SULL EFFETTO DOPPLER

Corso di MISURE E CONTROLLI IDRAULICI STRUMENTI PER LA MISURA DELLE VELOCITÀ CHE SI BASANO SULL EFFETTO DOPPLER Corso di MIUE E CONTOLLI IDAULICI TUMENTI E LA MIUA DELLE VELOCITÀ CHE I BAANO ULL EFFETTO DOLE a ura di Andrea DEFINA Lua CANIELLO EFFETTO DOLE 3 Eetto Doppler L eetto Doppler (J.C.A. Doppler 83-853)

Dettagli

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Gas, liquidi, solidi Tutti i gas raffreddati liquefano Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Sostanza T L ( C) T E ( C) He - -269 H 2-263

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

14/05/2013. Onde sonore

14/05/2013. Onde sonore Onde sonore valutazione del fenomeno acustico 1 Cos è il suono? Una erturbazione di carattere oscillatorio che si roaga in un mezzo elastico Alla roagazione corrisonde una roagazione di energia ma non

Dettagli

CALCOLO DELL'ENERGIA INTERNA

CALCOLO DELL'ENERGIA INTERNA CALCOLO DELL'ENERGIA INTERNA Enrico Valenti Matricola 145442 29 novembre ore 10,30-12,30 ( trasformazione a temperatura costante ) U 0 = 0 J energia ( J ) p 0 = 1 bar pressione ( Pa ) T 0 = 273 K temperatura

Dettagli

AREA 1: FUNZIONI E LIMITI

AREA 1: FUNZIONI E LIMITI AREA : FUNZIONI E LIMITI INSIEMI NUMERICI E FUNZIONI Per ricordare H Un insieme E si dice: itato sueriormente se esiste un numero k, non necessariamente aartenente a E, che eá maggiore o uguale di tutti

Dettagli

5. FLUIDI TERMODINAMICI

5. FLUIDI TERMODINAMICI 5. FLUIDI TERMODINAMICI 5.1 Introduzione Un sistema termodinamico è in genere rappresentato da una quantità di una determinata materia della quale siano definibili le proprietà termodinamiche. Se tali

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Modelli di base per la politia eonomia Capitolo Marella Mulino Modelli di base per la politia eonomia Corso di Politia eonomia a.a. 22-23 Modelli di base per la politia eonomia Capitolo Capitolo Modello

Dettagli

Risk Italia. Sondaggio esclusivo I migliori operatori in derivati sul mercato italiano

Risk Italia. Sondaggio esclusivo I migliori operatori in derivati sul mercato italiano MAGGIO 23 www.risk.net Risk Italia CURRENCIES INTEREST RATES EQUITIES COMMODITIES CREDIT Sondaggio eslusivo I migliori oeratori in derivati sul merato italiano L'esordio di Cofiri nel settore dell'investment

Dettagli

4.3.1. Stato limite di fessurazione.

4.3.1. Stato limite di fessurazione. DM 9/1/1996 4.3.1. Stato limite di fessurazione. 4.3.1. STATO LIMITE DI FESSURAZIONE. 4.3.1.1. Finalità. Per assiurare la funzionalità e la durata delle strutture è neessario: - prefissare uno stato limite

Dettagli

CALCOLO INERZIA TERMICA E CONSUMO LEGNA DEL TERMOCAMINO MERCURY

CALCOLO INERZIA TERMICA E CONSUMO LEGNA DEL TERMOCAMINO MERCURY Pag. 1 di 7 CALCOLO INERZIA TERMICA E CONSUMO LEGNA DEL TERMOCAMINO MERCURY Premessa La resente relazione ha l obiettivo di verificare quale sia il consumo di legna ed il temo necessario affinché il termocamino

Dettagli

05_Generatori di vapore

05_Generatori di vapore Università degli studi di Bologna D.I.E.M. Diartimento di Ingegneria delle Costruzioni Meanihe, Nuleari, Aeronautihe e di Metallurgia 05_Generatori di vaore rev. Ottobre 2009 1 Programma Bilanio della

Dettagli

PROPRIETÀ DEI FLUIDI TECNICI

PROPRIETÀ DEI FLUIDI TECNICI Materiale didattico di supporto al corso di COMPLEMENTI DI MACCHINE PROPRIETÀ DEI FLUIDI TECNICI ultimo aggiornamento: 9 ottobre 2012 Michele Manno Dipartimento di Ingegneria Industriale Università degli

Dettagli

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao)

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao) Trigonometria (tratto dal sito Comito in classe di Matematica di Gilberto Mao) Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al

Dettagli

LEZIONE II LA RELATIVITA' RISTRETTA DI EINSTEIN

LEZIONE II LA RELATIVITA' RISTRETTA DI EINSTEIN LEZIONE II LA RELATIVITA' RISTRETTA DI EINSTEIN Nel suo famoso artiolo del 905. Einstein propose un punto di ista del tutto rioluzionario. Partendo da un numero estremamente limitato di Postulati egli

Dettagli

Impianto di pressurizzazione e condizionamento

Impianto di pressurizzazione e condizionamento Capitolo 8 Impianto di pressurizzazione e ondizionamento Capitolo 8 Impianto di pressurizzazione e ondizionamento Queste dispense possono essere liberamente sariate dal sito internet del Politenio di Milano.

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

Teoria normativa della politica economica

Teoria normativa della politica economica Teoria normativa della politica economica La teoria normativa si occpa di indicare il metodo e, di consegenza, le scelte che n atorità pbblica (policy maker) razionale dovrebbe assmere per persegire il

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

CAP.3 LA LEGGE COSTITUTIVA ELASTO-PLASTICA

CAP.3 LA LEGGE COSTITUTIVA ELASTO-PLASTICA ECNOLOGE E MAERAL AEROSPAZAL CAP. LA LEGGE COSUVA ELASO-PLASCA CAPOLO LA LEGGE COSUVA ELASO-PLASCA. ntroduzione Le microstruttura dei materiali olicristallini è all origine del comortamento elasto-lastico

Dettagli

Alcune conseguenze della prima legge Macchine termiche Frigoriferi Ciclo di Carnot Macchina di Carnot

Alcune conseguenze della prima legge Macchine termiche Frigoriferi Ciclo di Carnot Macchina di Carnot Alcune conseguenze della prima legge Macchine termiche rigoriferi iclo di arnot Macchina di arnot Energia accumulata nel corpo umano Il corpo umano immagazzina energia chimica grazie agli alimenti. L'energia

Dettagli

Dilatazione termica. Δl=α l o Δt. ΔA = 2 α A o Δt. ( ) Δl=α l o Δt. α = coefficiente di dilatazione termica lineare

Dilatazione termica. Δl=α l o Δt. ΔA = 2 α A o Δt. ( ) Δl=α l o Δt. α = coefficiente di dilatazione termica lineare Acroolis Atene Eretteo: sostituzione di armature in acciaio con strutture in itanio. Esemi di restauro negativo acciaio contro ferro sigillato in iombo. Recuero di restauri inoortuni con sostituzione mediante

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Aunti ed Esercizi di Fisica ecnica e Macchine ermiche Ca.7. I cicli termici delle macchine motrici Paolo Di Marco Versione 006.0 0.0.07 La resente disensa è redatta ad esclusivo uso didattico er gli allievi

Dettagli

CORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A.

CORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A. ORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A. 2006/07 FISIA TENIA Esercizi Prof. Ing. Marco Beccali Ing. Fulvio Ardente Si ringrazia il Prof. Giuliano Dall O Esercizi di Fisica Tecnica pag. 1 Simbologia Simbolo

Dettagli

Unità di apprendimento programmata di termodinamica n.1

Unità di apprendimento programmata di termodinamica n.1 ermodinamica 9 Unità di apprendimento programmata di termodinamica n. Equazione di stato dei gas Esercizi su Rappresentazione degli stati e delle trasformazioni di un sistema termodinamico Lavoro esterno

Dettagli

Chimica Fisica I. a.a. 2012/2013 S. Casassa

Chimica Fisica I. a.a. 2012/2013 S. Casassa a.a. 2012/2013 S. Casassa 1 Note Tecniche 2 Testi consigliati: G.K. Vemulapalli, Chimica Fisica", EdiSES, Napoli (1995). D.A. Mc Quarrie e J.D. Simon, Chimica Fisica: un approccio molecolare", Zanichelli,

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

Impianto idraulico. Capitolo 4 4.1

Impianto idraulico. Capitolo 4 4.1 Caitolo 4 Imianto idraulico 4.1 4.1 Introduzione L'imianto idraulico è un imianto che consente la distribuzione di energia meccanica ed il suo controllo attraverso un fluido incomrimibile. Nell'imianto

Dettagli

Nella lezione precedente abbiamo visto che l'energia totale posseduta da un corpo di massa a riposo m 0 che viaggia con velocità v è pari a

Nella lezione precedente abbiamo visto che l'energia totale posseduta da un corpo di massa a riposo m 0 che viaggia con velocità v è pari a LEZIONE VI Il quadriettore Energia - quantità di moto. Nella lezione preedente abbiamo isto he l'energia totale posseduta da un orpo di massa a riposo m he iaggia on eloità è pari a m E = m = (1) D'altra

Dettagli

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi Comlementi ed esercizi di Idrodinamica I arte.. Prorietà fisiche dei fluidi. Densità e modulo di elasticità a comressione cubica. Come è noto la densità di massa ρ misura la massa contenuta nell unità

Dettagli

6. CAMPO MAGNETICO ROTANTE.

6. CAMPO MAGNETICO ROTANTE. 6 CAMPO MAGNETICO ROTANTE Il camo magnetico monofase Il funzionamento delle macchine elettriche rotanti alimentate in corrente alternata si basa sul rinciio del camo magnetico rotante: il suo studio viene

Dettagli

Università degli Studi di Cassino Polo di Frosinone Facoltà di Ingegneria Corso di Laurea in Ingegneria dell Ambiente e del Territorio

Università degli Studi di Cassino Polo di Frosinone Facoltà di Ingegneria Corso di Laurea in Ingegneria dell Ambiente e del Territorio Università degli Stdi di Cassino Polo di Frosinone Faoltà di Ingegneria Corso di Larea in Ingegneria dell Ambiente e del Territorio PROFILI DI CORRENTE Corso di Idralia A.A. 011-01 1 Università degli Stdi

Dettagli

Calcolo di integrali

Calcolo di integrali 7 Maggio 2012 - Lab. di Complementi di Matematica e Calcolo Numerico Calcolo di integrali Indice 1 Teoria cinetica dei gas: la distribuzione delle velocità di Maxwell [1] 1 2 Lavoro associato a una trasformazione

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale progetto didattica in rete Fisica Tecnica Ambientale Parte I: termodinamica applicata G.V. Fracastoro getto Politecnico di Torino, maggio 2003 Dipartimento di Energetica didattica in ret otto editore PARTE

Dettagli

Modello di Greitzer (1976) Simulazione del comportamento dinamico di compressori

Modello di Greitzer (1976) Simulazione del comportamento dinamico di compressori Modello di Greitzer (1976) Simulazione del comortamento dinamico di comressori Iotesi del modello. Si consideri un sistema fisico comosto, nell ordine, da un comressore, un lenum ed una valvola di strozzamento.

Dettagli

Ing. Guido Bellagamba Allegretti. Quaderno 1

Ing. Guido Bellagamba Allegretti. Quaderno 1 Ing. Guido Bellagamba Allegretti Quaderno 1 onsolidazione edimenti proa edometria proe in sito: SPT CPT Cedimenti ammissibili Cario limite delle fondazioni Fattori di siurezza INDICE 1. CONSOLIDAMENTO...

Dettagli

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze.

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze. Università degli Studi di erugia Corso di Laurea Magistrale in Scienze della olitica e dell'mministrazione Lezione n. Riasso di microeconomia CONOMI FINNZ ULIC nza Caruso Le referenze Come i consumatori

Dettagli

Istituto di Istruzione Superiore Minerario Giorgio Asproni Enrico Fermi PROGRAMMAZIONE DIDATTICA ANNUALE DEL DOCENTE

Istituto di Istruzione Superiore Minerario Giorgio Asproni Enrico Fermi PROGRAMMAZIONE DIDATTICA ANNUALE DEL DOCENTE Istituto di Istruzione Superiore Minerario Giorgio Asproni Enrico Fermi PROGRAMMAZIONE DIDATTICA ANNUALE DEL DOCENTE Anno scolastico 2014\/2015 Classe IV Corso Tecnologie Chimiche DOCENTE: Ritano Riccardo

Dettagli

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo 5 eondo rno della termodnama... 5. Motor term... 5.. Rendment term... 3 5. eondo rno della termodnama eondo Ke-Plan... 4 5.3 Mahne frgorfere... 4 5.3. Coeffente d retazone (COP... 4 5.4 Pome d alore...

Dettagli

Corso di Chimica Fisica A. Tutoraggio

Corso di Chimica Fisica A. Tutoraggio Università di orino Corso di Studi in Chimica - Laurea riennale Anno Accademico 2004-2005 Corso di Chimica Fisica A utoraggio Bartolomeo Civalleri Roberto Dovesi /home/mimmo/testitex/tut cf-a 05/tuto/tut

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli