Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)"

Transcript

1 Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope 8-4. Sistemi di disequazioni 8-5. sistemi Determinati e Indeterminati 8-6. Problemi Classici in Due Variabili 8-7. Proprietà delle Potenze: Moltiplicazione di Monomi 8-8. Proprietà delle Potenze: Potenza di una Potenza 8-9. Proprietà delle Potenze: Divisione di Monomi Esponenti Negativi e Nullo Addizione e Sottrazione di Polinomi Moltiplicazione di Polinomi Moltiplicazione tra Binomi Fattori Comuni Scomposizione di Polinomi Speciali Scomposizione di Trinomi Quadratici Risolvere Equazioni per Scomposizione Rappresentazione Grafica di Parabole Risoluzione di Equazioni Mediante Radici Quadrate Completamento del Quadrato Risolvere Equazioni della Forma x 2 +bx+c= Rappresentazione Grafica di Disequazioni Quadratiche Proporzionalità Inversa Espressioni Razionali e Funzioni Semplificazione di Espressioni Razionali Operazioni con Expressioni Razionali Soluzione di Equazioni Razionali Dimostrazione in Algebra Funzioni con coefficienti Irrazionali e Risoluzione di Equazioni con Radicali Funzioni Irrazionali e Equazioni con Radicali Tabelle e Grafici di Equazioni Lineari Pendenze e Intercette Equazioni Lineari in Due Variabili Proporzionalità Diretta e Proporzione Introduzione alla Risoluzione Equazioni Introduzione alla Risoluzione di Disequazioni Operazioni con Funzioni Funzioni Inverse Disuguaglianze Lineari in Due Variabili Equazioni Parametriche Introduzione alla Risoluzione di Equazioni Quadratiche Scomposizione di Espressioni Quadratiche Completamento del Quadrato Introduzione alle Funzioni Quadratiche Equazioni Quadratiche e Numeri Complessi Curve Fitting con Modelli Quadratici Risolvere Disuguaglianze Quadratiche Funzioni Logaritmiche Proprietà delle Funzioni Logaritmiche Applicazioni di Logaritmi Comuni Risoluzione di Equazioni Esponenziali Un Introduzione ai Polinomi Prodotto e Scomposizione di Polinomi Risoluzione di Equazioni Polinomiali Zeri delle Funzioni Polinomiali

2 8-62. Funzioni Razionali e loro Grafico Moltiplicazione e Divisione di Espressioni Razionali Addizione e Sotttrazione di Espressioni Razionali Risolvere Equazioni e Disequazioni Razionali Espressioni e Funzioni Radicali Risolvere Equazioni e Disequazioni Radicali Risolvere Sistemi Nonlineari Serie Geometriche Infinite La Legge dei Seni Risolvere Equazioni Trigonometriche

3 Ordine Algebrico delle Operazioni Calcolare la seguente espressione ( ) 4 x 2 Inserire l espressione così come appare [EXE] 2. Problemi con Percentuali Scrivere la percentuale 65% sotto forma di decimale e di frazione. Inserire la percentuale scritta come 65/100 Per ottenere il risultato sotto forma di decimale [EXE] [F1] (TRNS) [B] (Approx) [SHIFT + (-)] (Ans) [EXE] 3. Le Forme Standard e Point-Slope Scrivere nella forma standard l equazione 5x - 7y = 9x - 2y + 4 Inserire l equazione L introduzione delle lettere avviene con il tasto ALPHA L introduzione del simbolo di = con SHIFT +. L inserimento di un equazione è identificato con la comparsa sul lato dx del display di un numero crescente con i passaggi eseguiti Applicare il primo criterio di equivalenza [F4] (eqn) (1) 9x + 2y

4 4. Sistemi di Disequazioni Risolvere graficamente il sistema 8x + 2y > 1 x 3y < 4 Introdurre la prima disequazione Manipolare la disequazione per esplicitarla rispetto alla y [F4] (eqn) (1) 8x [EXE] [F4] (eqn) (2)/2 [EXE] Svolgere separando incognita e termine noto [F1] (TRNS) [1] (expand) [F4] (eqn) (3) [EXE] Inserire la seconda disequazione e ripetere le procedure Le procedure vengono svolte separatamente, ma possono anche essere eseguite in forma concatenata Assegniamo le disequazioni così ottenute a delle variabili per poterle rappresentare graficamente nel MENU grafico. Facciamo sempre attenzione all uso del segno meno, distinguendo il simbolo di operazione dal segno del numero! [F4] (eqn) [4] -4x+1/2 [VARS] [F1] [1] [EXE] Ripetere la procedura per la seconda disequazione [F4] (eqn) [8] x/3+4/3 [VARS] [F1] [2] [EXE] Rappresentazione grafica intermedia [ESC] [F5] (GRPH) [F6] (DRAW) Nel menu grafico le assegnazioni vanno convertite in relazioni di maggioranza e minoranza [MENU] [3] (STAT-GRPH) per la Y1 : [F3] (TYPE) [6] (CONV) [2]

5 per la Y2 : [F3] (TYPE) [6] (CONV) [3] Selezionare ora entrambe le funzioni per il grafico [F1] (SEL) Rappresentazione grafica finale [F5] (DRAW) 5. Sistemi Determinati e Indeterminati Determinare se il sistema 2x + y = 1 è determinato o indeterminato risolvendolo algebricamente. 6x + 3y = 8 Introdurre le due equazioni Per confermare ogni immissione concludere con [EXE] Manipolare l equazione 1 risolvendola rispetto a y La sintassi è visibile in figura Operare la sostituzione, applicando il metodo del confronto. [F1] [9] (substitute) (eqn(2),eqn(3))

6 6. Problemi Classici in Due Variabili Una cassetta di frutta del peso di 65 kg contiene 30 frutti. Ogni melone pesa 1,5 kg e ogni cocomero 3,5 kg. Quante cocomeri, C, e quanti meloni, M, vi sono nella cassetta? Il problema può essere riassunto nelle due equazioni C + M = 30 3,5C + 1,5M = 65 Risolviamo mediante il comando solve [F1](TRNS) [4] (solve)({eqn(1),eqn(2)},{p,m}) 7. Proprietà delle Potenze: Moltiplicazioni di monomi Semplificare (5x 3 )(-8y 7 x 2 ) Introdurre l operazione con le stesse modalità con cui è scritta Per assegnare esponenti maggiori di 2 si fa uso del tasto 8. Proprietà delle Potenze: Potenza di un Monomio Semplificare (x 3 y 4 ) 2 Introdurre l operazione con le stesse modalità con cui è scritta Per assegnare esponenti maggiori di 2 si fa uso del tasto

7 9. Proprietà delle Potenze: Divisione tra Monomi Semplificare (-x 2 y 5 )/(xy 6 ) Introdurre l operazione con le stesse modalità con cui è scritta Per assegnare esponenti maggiori di 2 si fa uso del tasto 10. Esponente Negativo Semplificare (2a 4 )(8a 7 )(3a -3 ) Introdurre l operazione con le stesse modalità con cui è scritta Per assegnare esponenti maggiori di 2 si fa uso del tasto Il segno negativo di un numero va introdotto con (-) 11. Addizione e Sottrazione tra Polinomi Trovare la somma di (3x 2 +4x 4-5x+5)+(2x 3 -x 2-2x 4 +2) Introdurre l operazione con le stesse modalità con cui è scritta Per assegnare esponenti maggiori di 2 si fa uso del tasto 12. Moltiplicazione tra Polinomi Trovare il prodotto di (3x - 7)+(3x + 7) Introdurre l operazione con le stesse modalità con cui è scritta Per assegnare esponenti maggiori di 2 si fa uso del tasto Manipolare per ottenere il risultato [F1](TRNS) [1] (expand) [SHIFT + (-)] (Ans)

8 14. Fattori Comuni Scomporre 2x x Introdurre l operazione con le stesse modalità con cui è scritta e [F1](TRNS) [8] (collect) (espressione,fattore manipolare per ottenere il risultato comune) Scomporre Polinomi Speciali Scomporre x 2-14x + 49 Introdurre l operazione con le stesse modalità con cui è scritta e [F1](TRNS) [3] (factor) (espressione) manipolare per ottenere il risultato Altro esempio con trinomi notevoli 17. Risolvere Equazioni mediante Scomposizione Risolvere scomponendo x 2 + 8x = 9 Introdurre l operazione con le stesse modalità con cui è scritta Portare il termine noto al primo membro [F4] (eqn)(1) - 9 Scomporre il polinomio al primo membro Le soluzioni sono pertanto x = 1 e x = -9 [F1] [3] (factor) (eqn) 2

9 18. Rappresentazione Grafica di Parabole Trovare il vertice di y = x 2-12x + 20 Introdurre l operazione con le stesse modalità con cui è scritta Manipolare la funzione scrivendo il secondo termine come completamento di un quadrato, supponendo che X 2 sia il quadrato del primo termine -12x sia il doppio prodotto [F1] (TRNS) [8] (collect) Assegnare il secondo membro della funzione alla variabile Y1 per la rappresentazione grafica. Mostrare la funzione Cancellare, spostandosi col cursore Y= Assegnare a tale trinomio la variabile Y1 Impostare la rappresntazione grafica [F6] [F3] (R-ANS) [VARS] [F1] (1) [ESC] [F5] (GRPH) Scegliere la scala di visualizzazione degli assi cartesiani Xmin = - 5 xmax = 20 scale = 5 Ymin = -50 ymax = 50 scale = 10 [SHIFT+OPTN] (v-windows) seguito da [EXE] Rappresentare [F6] (DRAW) La parabola è rivolta verso l alto e l ordinata del vertice è il valore minimo [F3] (G-SOLV) [3] (min)

10 19. Risolvere Equazioni mediante Radici Quadrate Solve the equation (x - 3) 2 16 = 0 Introdurre l operazione con le stesse modalità con cui è scritta Portare il trmine noto a secondo membro La sintassi appare nella figura a lato Estrarre la radice quadrata dell equazione così scritta [SHIFT + X 2 ] Risolvere le due equazioni [F1] (TRNS) [4] (solve) [F4](eqn) Completamento del Quadrato Scrivere y = x x 18 come completamento di un quadrato Introdurre l operazione con le stesse modalità con cui è scritta Manipolare la funzione scrivendo il secondo termine come completamento di un quadrato, supponendo che X 2 sia il quadrato del primo termine 46x sia il doppio prodotto

11 21. Risoluzione di Equazioni della Forma x 2 + bx + c = 0 Trovare i punti dove i grafici di ogni sistema si intersecano. Rappresentare graficamente per la verifica. y = x + 3 y = x 2 4x + 3 Applicando il concetto di sistema, introduciamo l equazione risolvente che uguaglia i due secondi membri. Manipolare l equazione portando tutto a primo membro e sommando X 2 sia il quadrato del primo termine 46x sia il doppio prodotto Essendo un equazione spuria, risolviamo mediante scomposizione. Otteniamo in tal modo le soluzioni x = 0 e x = 5 [F3] (EQUA) [4] (rewrite)[f4] (eqn) 1 [EXE] [F1] (TRNS) [3] (factor)[f4] (eqn) 2 [EXE] Verifichiamo graficamente il risultato. Assegnamo le due equazioni a due diverse variabili Y1 e Y2, che saranno automaticamente riprodotte nel menu grafico. X+3 [VARS][F1]( n)[1] [EXE] X2-4X+3 [VARS][F1]( n)[2] [EXE] Procedure per la rappresentazione grafica Introduciamo i fattori di scala [ESC] [F5] (GRAPH) [SHIFT+OPTN] [ESC] [F6] (DRAW) Individuiamo le intersezioni (la seconda usando il tasto cursore) [F3] (G-SOLV) [5] (Isect) Risposta (0,3) e (5,8)

12 22. Rappresentazione Grafica di Disequazioni Quadratiche Risolvere e rappresentare graficamente la disequazione quadratica x 2 + 7x + 12 > 0. La risoluzione può essere estremamente semplice mediante la [F1] (TRNS) [4] (solve) [F3] (EQUA) [1] [1] funzione solve La rappresentazione grafica si può effettuare nel menu Grafico Inseriamo la disequazione e selezioniamola per ottenerne il grafico. Impostiamo prima il tipo di funzione come disuguaglianza [MENU] [3] (GRPH-TBL) [F3] (TYPE) [5] (INEQUA)[1] (Y>) [EXE] Rappresentiamo graficamente, dopo aver impostato la scala di visualizzazione [F5](DRAW)[1] [EXE] [SHIFT+OPTN] Per meglio osservare le proprietà del grafico ingrandiamo la parte che coinvolge le intersezioni con l asse x [F2] (ZOOM) [1] (Box) [EXE]. Spostiamo con il cursore il puntatore nel punto di inizio di costruzione del rettangolo da ingrandire seguito da [EXE], spostiamo poi il cursore per specificare il vertice opposto + [EXE] Ricerca delle soluzioni. L ingrandimento mostra che la parabola di riferimento incontra l asse x in due punti, dividendolo in tre parti (intervalli). La disequazione sarà pertanto verificata per x < -4 e x > -3. [F4] (G-SOLV) [1] (Root)

13 23. Proporzionalità Inversa Se y varia inversamente rispetto a x e y = 5 quando x = 15, scrivi un equazione che mostri la relazione tra x e y. Introduzione dell equazione in base ai valori assegnati e al tipo di proporzionalità. Due grandezze sono inversamente proporzionali se y = k/x. Dobbiamo ricavare il valore di k in base ai valori assegnati. Calcoliamo k mediante l operazione inversa L equazione è pertanto del tipo y = 75 / x [F4] (eqn) [1] x 15 Per rappresentare graficamente assegnamo il secondo membro dell equazione ad una variabile grafica 75/X [VARS] [F1] [1] [EXE] Rappresentiamo graficamente, dopo aver impostato la scala di visualizzazione [ESC] [F5](GRPH) [SHIFT+OPTN] [ESC] [F6] 24. Espressioni e Funzioni Razionali Riscrivere la funzione, y = (5x +x 2 ) / x 2, in termini più semplici e rappresentarla graficamente Introduzione dell equazione Semplifichiamo [F1] (TRNS) [6] (smplfy) [F4] (eqn) [1] Per rappresentare graficamente assegnamo il secondo membro dell equazione ad una variabile grafica Rappresentiamo graficamente, dopo aver impostato la scala di visualizzazione 1 + 5/X [VARS] [F1] [1] [EXE] [ESC] [F5](GRPH) [SHIFT+OPTN] [ESC] [F6]

14 25. Semplificazione di Espressioni Razionali Semplificare (4 - x)/(x 2 x - 12) e determinare le condizioni di validità sulla variabile Le condizioni di validità vanno impostate per il denominatore. [F1] (TRNS) [3] (factor) Essendo di secondo grado, ne verifichiamo la scomponibilità Le condizioni saranno pertanto x = 4 e x = -3 Semplifichiamo ora la frazione [F1] (TRNS) [6] (smplfy) [F6] [F3] (R-ANS) aggiungendo il numeratore della frazione [EXE] 26. Operazioni con Espressioni Razionali Risolvere 2/x + 3/(x+1) Eseguiamo la somma delle due frazioni algebriche [F1] (TRNS) [7] (combine) Le restrizioni saranno pertanto x = 0 e x = -1

15 27. Risolvere Equazioni Fratte Risolvere l equazione 2/x + 1/3 = 4/x mostrando l uso dei criteri di equivalenza. Inserire l equazione Come si può notare, ogni volta che si inserisce un equazione, compare a dx un numero d ordine che la caratterizza. Applichiamo il secondo criterio con la condizione che x 0 [F4] (eqn) [1] moltiplicata per 3X Eseguiamo il calcolo [F1] (TRNS) [1] (expand) [F4] (eqn) [2] Applichiamo il primo criterio di equivalenza [F4] (eqn) [3] 6 Possiamo eseguire anche la verifica della soluzione sostituendo il valore trovato (x = 6) nell equazione di partenza, identificata con il numero 1 [F1] (TRNS) [9] (sbstit) [F4][1],[F4] [4] 28. Dimostrazioni Matematiche Dimostrare: Se due numeri naturali sono entrambi pari, allora la loro somma è pari. La dimostrazione deve valere per qualunque numero naturale. Utilizziamo pertanto una scrittura letterale. Se un numero A è pari, esso è multiplo di 2 Se un numero B è pari, esso è multiplo di 2 Calcoliamo la somma dei due numeri pari Raccogliamo a fattor comune [F1] (TRNS) [3] (factor) Si può osservare che anche la somma è multipla di 2 e quindi è rappresentata un numero pari.

16 29. Operazioni con i Radicali Semplificare 3 ( 5 + 9) Eseguiamo il calcolo semplificando l espressione [F1] (TRNS) [6] (smplfy) É possibile ottenere anche il valore decimale approssimato [F1] (TRNS) [B] (approx) 30. Funzioni con coefficienti Irrazionali e Risoluzione di Equazioni con Radicali Risolvere l equazione x 2 + 8x + 15 = 7 mediante l uso dei radicali Introduciamo l equazione Verifichiamo che la calcolatrice sia impostata per lavorare con i numeri reali. [CTRL + F3] (SET-UP) I primi due termini possono rappresentare una parte del quadrato di (x + 4), pertanto scriviamo come completamento del quadrato [ESC] [F1] (TRNS) [8] (collect) [F4] (eqn) [1] Applichiamo i criteri di equivalenza, ed estraiamo la radice quadrata, come se fosse un equazione pura Risolviamo [F1] (TRNS) [4] (solve)

17 34. Tabelle e Grafici di Equazioni Lineari Rappresentare graficamente l equazione y + 4 = x - 7 Introdurre l equazione. Come si nota compare sulla dx dell equazione il suo numero identificativo per la calcolatrice Applicare il criterio di equivalenza per renderla esplicita rispetto alla variabile y [F4] (eqn) [1] - 4 Assegnare il secondo membro di tale relazione alla variabile grafica Y1 [VARS] [X-11] [F1] [1] Passiamo all ambiente grafico [ESC] [F5] (GRPH) Selezioniamo la scala per la rappresentazione [SHIFT+OPTN] (V-Windows) Rappresentiamo graficamente [F6] (DRAW)

18 35. Pendenza e Intercette Trovare le intersezioni di 2x - 5y = 7 Introdurre l equazione. Come si nota compare sulla dx dell equazione il suo numero identificativo per la calcolatrice L intersezione con l asse x, se esiste, corrisponde ad un punto la cui ordinata è nulla. Assegnamo quindi 0 alla variabile y Richiamiamo l equazione 1 modificata da tale assegnazione e risolviamola. Otteniamo che l intercetta sull asse è (7/2,0) [F4] (eqn)... Cancelliamo l assegnazione fatta per la variabile Y per poter calcolare l eventuale intercetta sull asse delle ordinate [F6][F1] (CLR) [1] (clrvar) [Y] L intersezione con l asse Y, se esiste, corrisponde ad un punto la cui ascissa è nulla. Assegnamo quindi 0 alla variabile X Richiamiamo l equazione 1 modificata da tale assegnazione e risolviamola. Otteniamo che l intercetta sull asse è (0,-7/5) [F4] (eqn) Equazioni lineari in due variabili Scrivere l equazione esplicita della retta passante per i punti (3, -5) e (1, 2). L equazione.di una retta passante per due punti può essere espressa da y = mx + q dove m è il coefficiente angolare e q è l intercetta con l asse y m = ( y2 y1) ( x 2 x1) Introduciamo il calcolo per m e assegnamolo alla variabile M Sostituiamo nell equazione 1 le coordinate di un punto e risolviamo rispetto a q. [F1] [9] (sbstit) [F4](eqn) [1],X=2,Y=1) [F1] (TRNS) [4] (solve)[f4](eqn)[2],q L equazione è pertanto y = -7/2 x + 8

19 37. Proporzionalità Diretta e Proporzioni Risolvere (2X - 8)/4 = X/3 Introdurre l equazione Come sempre è identificata sulla dx dal numero progressivo 1 Applichiamo il secondo criterio di equivalenza [F4] (eqn) [1] x 12 Portiamo tutti i termini a primo membro e sommiamo [F3] (EQUA) [4] (rewrit) [F4](eqn) [2] [F1] Applichiamo i criteri di equivalenza per trovare la soluzione [F4] (eqn) [3] +24 [F4] (eqn) [4] /2 38. Introduzione alla Soluzione delle Equazioni Risolvere a(a + 1)/b = c + 3 rispetto a b Introdurre l equazione Come sempre è identificata sulla dx dal numero progressivo 1 Applichiamo il secondo criterio di equivalenza, supposto B 0 [F4] (eqn) [1] x B Risolviamo specificando come incognita B [F1] (TRNS) [4] (solve) [F4](eqn) [1], B

20 39. Introduzione alla Soluzione delle Disequazioni Risolvere 2(x - 5) < 6x + 8 Introdurre la disequazione Per il simbolo < : [F3] (EQUA) [1] [2] Come sempre è identificata sulla dx dal numero progressivo 1 Eseguiamo le moltiplicazioni [F1] (TRNS) [1] (expand) [F4] (eqn) [1] Applichiamo il primo criterio di equivalenza [F4] (eqn) [2] 6x +10 Applichiamo il secondo criterio di equivalenza [F4] (eqn) [3] /( 4) 42. Operazioni con le funzioni Sia f(x) = x 2 + 2x + 3 e g(x) = x + 2. Trovare f(x) + g(x), f(x) - g(x), f(x)g(x), e f(x)/g(x) Introdurre le due funzioni Come sempre ogni relazione è identificata sulla dx da un numero progressivo Eseguiamo le operazioni richieste [F4] (eqn) [1] ± [F4] (eqn) [2] Moltiplichiamo e scriviamo sotto forma polinomiale [F4] (eqn) [1] x [F4] (eqn) [2] Dividiamo [F4] (eqn) [1] / [F4] (eqn) [2]

21 43. Funzioni Inverse Trovare un equazione per l inverso di y = -5x + 7 Introdurre la funzione, scambiando tra loro le incognite Applichiamo i criteri di equivalenza ([F4] (eqn) [1] 7)/(-5) 44. Disuguaglianze Lineari in Due Variabili Rappresentare graficamente x + 3y > 1 Introdurre la disuguaglianza Risolvere rispetto a Y applicando i criteri di equivalenza ([F4] (eqn) [1] X)/3 Assegnare il secondo membro alla variabili Y1 della calcolatrice Il comando R-ANS serve per evitare la trascrizione della disequazione [F6] [F3] (R-ANS) {cancellare Y>} [VARS] [F1] [1] Passare al Menu grafico GRPH-TBL Selezionare la funzione Converetirla in disequazione [MENU] [3] (GRPH-TBL) [F1] (SEL) [F3] (TYPE) [6] (CONV) [2] (Y>) [F3] (TYPE) [5] (INEQUA) [1] (Y>) Rappresentare graficamente, scegliendo la scala appropriata [F5] (DRAW)

22 45. Equazioni Parametriche Trasformare la coppia di equazioni parametriche x(t) = 6t 7 y(t) = 4t + 5 in una singola equazione in x e y. Introdurre le due equazioni Risolvere l equazione 2 rispetto a T applicando i criteri di equivalenza ([F4] (eqn) [2] 5)/4 Scambiamo il primo col secondo membro [F1] (TRNS) [5] (exchnge) [F4] (eqn) [3] Sostituire l equazione 4 nella 1 [F1] (TRNS) [9] (sbstit) (eqn 1), (eqn 4) 46. Introduzione alla Risoluzione delle Equazioni Quadratiche Risolvere l equazione 3(x - 5) = 11 Introdurre l equazione Risolvere l equazione rispetto a (x 5) ed estrarre la radice quadrata ([F4] (eqn) [1] 2)/3 Risolvere separatamente le due equazioni derivanti dal modulo negli intervalli x 5 e x < 5

23 47. Scomporre Espressioni Quadratiche Fattorizzare l espressione quadratica x 2-16x + 15 Introdurre l equazione Operare la scomposizione [F1] (TRNS) [3] (factor) [F6] [F3] 48. Completamento del Quadrato Risolvere l equazione, x 2 + 2x = 13, mediante il completamento del quadrato. Introdurre l equazione Essendo il primo membro una parte del quadrato del binomio (x+1) 2 se ne può chiedere il completamento [F1] (TRNS) [8] (collct) [F4] (eqn) [1],x+1 Risolvere l equazione applicando i criteri di equivalenza [F4] (eqn) [2] +1 ([F4] (eqn) [3]) Operiamo sulle due equazioni risultanti, riscrivendole e applicando nuovamente i criteri di equivalenza La prima e... La seconda

24 49. Introduzione alle Funzioni Quadratiche Mostrare che la funzione f(x) = (x + 1)(x - 7) è una funzione quadratica scrivendola sotto la forma f(x) = ax 2 +bx + c e studiando l eventuale massimo o minimo. Introdurre l espressione Espandere l espressione scrivendola nella forma polinomiale [F1] (TRNS) [1] (expand) [SHIFT + (-) (ANS) Assegnare questa espressione ad una variabile grafica [F&] [F3] (R-ANS) [VARS] [F1]( )1 Passare alla visualizzazione grafica dopo aver scelto una opportuna scala grafica con SHIFT + OPTN [ESC] [F5] (GRPH) [F6] (DRAW) Trovare il minimo della funzione Come si vede dalla figura minimo(3;-16) [F3] (G-SOLV) [3] (Min) 50. Equazioni Quadratiche e Numeri Complessi Risolvere 2x 2 + 5x + 4 = 0; Semplificare (-1 + 2i)(3 + 4i) Impostare la modalità con numeri complessi [CTRL + F3] (SET UP) su Answer Type [F2] Risolvere direttamente l equazione rispetto all incognita X [F1] (TRNS) [4] (solve) [equazione],x Eseguire la moltiplicazione tra complessi Il numero immaginario è ottenibile con [SHIFT + 0]

25 52. Risolvere Disequazioni Quadratiche Risolvere x 2-7x + 10 < 0 Introdurre la disequazione Per < [F3] (EQUA) [1] (INEQUA) [2] Risolvere direttamente la disequazione [F1] (TRNS) [4] (solve) [F4] (eqn) [1] Assegnare al 1 membro della disequazione la variabile grafica Introdurre il 1 membro [VARS] [F1] [1] Rappresentiamola graficamente, dopo aver impostato la scala [ESC] [F5] (GRPH) [F6] (DRAW) Ecco il grafico La parabola assume valori negativi per x compreso tra le due radici (i punti di intersezione con le ascisse) L intervallo sarà pertanto 2 < x < 5 [F3] (G-SOLV) [1] (Root) (cursore dx)

26 53. Funzioni Logaritmiche Risolvere 10 x = 12 rispetto a x. Introdurre la equazione Risolvere passando al logaritmo in base 10 Risolvere e poi calcolare il valore approssimato [F1] (TRNS) [4] (solve) [F4] (eqn) [2] 54. Proprietà delle Funzioni Logaritmiche Scrivere l espressione, log log 2 7, come un singolo logaritmo e semplificare Introdurre l espressione Essendo il logaritmo in base 2, dobbiamo ricordare le formula di trasformazione della base log 2 x = log10 x log10 2 Semplificare l espressione [F1] (TRNS) [7] (combine) [SHIFT + (-)] Risolvere [F1] (TRNS) [6] (smplfy)

27 55. Applicazioni ai Logaritmi Comuni Risolvere 3 x = 16 rispetto a x Introdurre l equazione Risolvere anche nella forma approssimata [F1] (TRNS) [4] (solve) [F4] (eqn) [1] 57. Risolvere Equazioni Esponenziali Risolvere 4e 3x-6 = 55 rispetto a x. Introdurre l equazione Risolvere calcolando il logaritmo naturale di entrambi i membri [ln] [F4] (eqn) [1] Applicare i principi di equivalenza Possiamo ottenere anche il valore approssimato [F1] (TRNS) [B] (approx) [F4] (eqn) [4] 58. Introduzione ai Polinomi Calcola la differenza (-5x 3-7x 2 + x + 2) - (4x 3-6x 2-3x + 9) Introdurre l espressione e premere [EXE]

28 59. Prodotto e Scomposizione di Polinomi Scomponi 3x 3-300x Dividi (x 3 + 6x 2 - x - 30)/(x 2 + 8x + 15) Introdurre l espressione Scomporre il polinomio [F1] (TRNS) [3] (factor) [SHIFT + (-)] (ANS) Introdurre i polinomi da dividere Eseguire la divisione [F1] (TRNS) [6] (smplfy) 60. Risoluzione di Equazioni Polinomiali Trovare tutte le radici di x 4-9x = 0 Introdurre l equazione biquadratica Risolvere l equazione [F1] (TRNS) [4] (solve) [F4] (eqn) [1] Scomporre il trinomio di quarto grado in fattori [F1] (TRNS) [2] (rfactor) Rappresentare graficamente, scegliendo l opportuna scala (in questo caso può andare bene la soluzione Standard (STD)) [trinomio] [VARS] [ ] [F1] (Yn) [1]

29 [ESC] [F5] (GRPH) [F6] (DRAW) Determinare graficamente le soluzioni; in tal caso otteniamo i valori approssimati [F3] (G-SOLV) [1] (Root) e muovere il cursore dx Risposta: Le radici sono 2.45, -1.73, 1.73, Zeri delle Funzioni Polinomiali Scrivere una funzione polinomiale in forma standard usando le seguenti informazioni. f(x) è di terzo grado e ammette tre soluzioni reali: x = -1; x = 1; x = 2; inoltre f(0) = 4; Mediante le informazioni date si può supporre che la funzione polinomiale sia del tipo: f(x) = A(x 1) (x + 1) (x 2) Introduciamo la funzione sopra definita [F1] (TRNS) [4] (solve) [F4] (eqn) [1] Svolgere il prodotto di fattori [F1] (TRNS) [1] (expand) [F4] (eqn) [1] Determiniamo il valore del parametro A imponendo la condizione F(0) = 4 [F1] [9] (sbstit) ([F4] ((eqn) [2],F=4,X=0) Risolvere l equazione rispetto ad A [F1] [4] (solve) [F4] [3], A Sostiutiamo ora A nell equazione iniziale [F1] [9] (sbstit) ([F4] [3],[F4][4])

30 62. Funzioni Razionali e loro Grafici Identificare tutti gli asintoti di y = (2x 2 1)/(x 2 9) Introdurre la funzione assegnata Scomporre il polinomio al denominatore [F1] (TRNS) [3] (factor) [F4] (eqn) [1] Gli asintoti verticali si avranno per x = 3 e x = -3 Riscriviamo la funzione come somma di frazioni, considerando come variabile x 2 9 [F1] [8] (collect) ([F4] ((eqn) [1],F=4,X=0) Si otterrà l asintoto verticale y = Moltiplicare e Dividere Espressioni Razionali Semplificare (ax-bx+ay-by)/(ax+bx+ay+by) Introdurre l espressione assegnata Eseguire la semplificazione [F1] (TRNS) [6] (smplfy) 64. Addizione e Sottrazione di Espressioni Razionali Semplificare (x - y) - (x -1 y -1 ) Introdurre l espressione assegnata Eseguire la sottrazione scrivendo il risultato in frazione [F1] (TRNS) [7] (combine)

31 65. Risolvere Equazioni e Disequazioni Risolvere + = 3x 8 3x Introdurre l equazione assegnata Risolvere applicando i criteri di equivalenza [F4] (eqn) [1] x 3X x 8 Ricordiamo che dobbiamo imporre x 0 Svolgiamo il calcolo [F1](TRNS) [1] (expand) [F4] (eqn) [2] Risolvere applicando i criteri di equivalenza [F4] (eqn) [3] 8 [F4] (eqn) [3] /3 66. Espressioni e Funzioni con Radicali Trovare l inversa di y = x 2 + 4x + 4, e rappresentare graficamente la funzione e la sua inversa. Introdurre la funzione inversa, scambiando la variabile X con la Y Scambiare i due membri [F3] (EQUA) [5] [F4] [1] Fattorizziamo il primo membro [F1](TRNS) [3] (factor) [F4] (eqn) [2] Estraiamo la radice del primo e secondo membro [F4] (eqn) [3] Risolviamo i due casi previsti dal valore assoluto

32 Introduciamo l equazione che si ottiene per x -2 Risolviamo rispetto a Y Introduciamo l equazione che si ottiene per x < -2 Risolviamo rispetto a Y Richiamiamo entrambe le due equazioni così ottenute. [F3] (EQUA) [2] (rcleqn) [6,8] (Si noti il richiamo multiplo ottenibile introducendo tra i numeri caratterizzanti le singole equazioni, il simbolo della virgola) Assegniamo entrambi i secondi membri ad una diversa variabile grafica [VARS] Passiamo al menu grafico. (Vedremo entrambe le funzioni già selezionate) [ESC] [F5] (GRPH) Rappresentiamo graficamente dopo aver scelto la scala grafica [SHIFT+OPTN] [ESC] [F6] (DRAW) 68. Risolvere Equazioni e Disequazioni Irrazionali Risolvere 3x 2 = x 2 e verificare la soluzione. Introdurre l equazione Elevare al quadrato ed espandere per eseguire i necessari calcoli [F4] (eqn) [1] [X 2 ] [F1] (TRNS) [1] (expand) [F4] [2] Scriviamo l equazione nella forma normale [F3](EQUA) [4] (rewrite) [F4] [3]

33 Risolviamo mediante scomposizione in fattore del 1 membro [F1] [3] [F4] (eqn) [4] Le soluzioni sono facilmente ottenibili: x = 1 e x = 6 Verifichiamo se queste sono soluzioni anche per l equazione irrazionale, sostituendo il valore della x [F1] [9] (sbstit) ([F4] [1],X=1) [F1] [9] (sbstit) ([F4] [1],X=6) Come si può notare solo la soluzione x = 6 è accettabile 70. Risolvere Sistemi Non Lineari x 2 + 2y 2 = 16 Usare il metodo di riduzione per risolvere il sistema 2 2 4x + 2y = 16 Verificare che la calcolatrice esegua le operazioni e risolva le equazioni solo nell insieme R. [CTRL+F3] (SET-UP) seguito da [ESC] Introdurre separatamente le due equazioni Si ricordi che ogni equazione è contrassegnata da un numero progressivo Sottraiamo la prima equazione alla seconda, come richiede il metodo di riduzione [F4](eqn) [2] [F4] [1] Risolviamo dividendo l equazione per il coefficiente 3 [F4] (eqn) [3] / 3 Sostituiamo per ottenere i valori di Y e risolviamo rispetto a Y Le soluzioni saranno pertanto (0 ; 2 2) (0 ; -2 2) [F1] (TRNS) [9] (sbstit) ([F4] (eqn) [1],X=0) ([F4] (eqn) [5] / 2)

34 71. Serie Geometriche Infinite k Calcolare ( 8 15) k = 0 Introdurre l espressione La sintassi si vede nella figura e si può così riassumere [CTRL+F3] (SET-UP) [4] ( ak,k, α, β) β = ak k= α 74. La Legge dei Seni Trova il lato a noti gli elementi indicati in figura Impostare l angolo in gradi sessaggesimali m 61 p = 5 n 52 [F2] (CALC) [4] seguito da [ESC] Calcolare il terzo angolo e assegnare ogni angol oad una variabile 52 A 61 B 180-(A+B) C Introdurre la relazione del teorema Risolviamo rispetto ad N [F1] (TRNS) [4] (solve) Calcoliamo il valore numerico [F1] (TRNS) [B] (approx) [F4] (eqn) [2]

35 78. Risolvere Equazioni Trigonometriche Risolvere cos(2x) - sin x = 0 rispetto a x. Impostare l angolo come radiante [CTRL+F3] (SET-UP) seguito da [ESC] Introduciamo e risolviamo l equazione Sottraiamo la prima equazione alla seconda, come richiede il metodo di riduzione [F4](eqn) [2] [F4] [1] Risolviamo dividendo l equazione per il coefficiente 3 [F4] (eqn) [3] / 3 Sostituiamo per ottenere i valori di Y e risolviamo rispetto a Y Le soluzioni saranno pertanto (0 ; 2 2) (0 ; -2 2) [F1] (TRNS) [9] (sbstit) ([F4] (eqn) [1],X=0) ([F4] (eqn) [5] / 2)

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

Programmazione del dipartimento di MATEMATICA per il quinquennio

Programmazione del dipartimento di MATEMATICA per il quinquennio IPIA C. CORRENTI Programmazione del dipartimento di MATEMATICA per il quinquennio FINALITA DELL INSEGNAMENTO DELLA MATEMATICA Promuovere le facoltà intuitive e logiche Educare ai processi di astrazione

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO ISTITUTO ISTRUZIONE SUPERIORE Via Silvestri, 301 00164 ROMA - Via Silvestri, 301 Tel. 06/121127660 Fax

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO CLASSE 1^ CONOSCENZE Insiemi numerici N, Z, Q, R; rappresentazioni, operazioni, ordinamento Espressioni algebriche; principali operazioni Equazioni

Dettagli

Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6

Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM GLI INSIEMI NUMERICI E LE OPERAZIONI Ripasso del calcolo numerico: espressioni

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

I.T.G. <> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE

I.T.G. <<G.C.Gloriosi>> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE I.T.G. Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO Prof. Lucia D Aniello, CLASSI 3 A, 4 A, 5 A GEOMETRI- SIRIO RELAZIONE Premesse La programmazione è stata redatta

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 COMPETENZE ABILITA /CAPACITA CONOSCENZE

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 COMPETENZE ABILITA /CAPACITA CONOSCENZE ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA/SECONDA PROFESSIONALE CORSO SERALE DOCENTE: LUBRANO LOBIANCO ANIELLO Legenda: In

Dettagli

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime Metodi e strumenti Nelle lezioni in aula si farà uso: [] della lezione dialogata (utilizzata di norma, e che prevede lo sviluppo anche

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica Modulo n. 1: Insiemi Collocazione temporale: settembre-dicembre Strategie didattiche: L insegnamento dei

Dettagli

Pre Test 2008... Matematica

Pre Test 2008... Matematica Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM

ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM MATEMATICA DOCENTI Marina Pilia Enrico Sedda PROGRAMMA A.S. 2014/2015 PROGRAMMA DI MATEMATICA CLASSE 4A AFM ANNO SCOLASTICO

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2014

COORDINAMENTO PER MATERIE SETTEMBRE 2014 Pagina 1 di 8 COORDINAMENTO PER MATERIE SETTEMBRE 2014 AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico) [ ] Biennio, Attività e Insegnamenti obbligatori di

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

2. Matematica. V. Matematica e scienze sperimentali 143

2. Matematica. V. Matematica e scienze sperimentali 143 V. Matematica e scienze sperimentali 143 2. Matematica 2.1. Obiettivi generali della materia e incidenze su quelli dell area di studio «matematica e scienze sperimentali» L insegnamento della matematica

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE POLO COMMERCIALE ARTISTICO GRAFICO MUSICALE

ISTITUTO ISTRUZIONE SUPERIORE POLO COMMERCIALE ARTISTICO GRAFICO MUSICALE a.s.2011/2012 A CURA DEL RESPONSABILE DI AMBITO CAGNESCHI FEDERICA / IMPERATORE DOLORES L AMBITO DISCIPLINARE DI MATEMATICA STABILISCE CHE: 1. I docenti prevedono un congruo numero di ore per il recupero

Dettagli

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014 CURRICOLO DI MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA 1. Contare oggetti o eventi, a voce e mentalmente, in senso progressivo e regressivo e per salti di due, tre, 2. Leggere e scrivere i numeri naturali

Dettagli

Sallustio Bandini. Matematica. Istituto Tecnico Statale Programmatori Ragionieri Geometri Lingue Straniere

Sallustio Bandini. Matematica. Istituto Tecnico Statale Programmatori Ragionieri Geometri Lingue Straniere FINALITA DELL INSEGNAMENTO Sallustio Bandini Istituto Tecnico Statale Programmatori Ragionieri Geometri Lingue Straniere Agenzia Formativa Accreditata dalla Regione Toscana Matematica La Matematica, parte

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI. Testo in adozione Settembre Ottobre

DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI. Testo in adozione Settembre Ottobre Pagina 1 di 5 DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI Elenco moduli Argomenti Strumenti / Testi 1 I numeri Naturali, Interi e Razionali Addizione,

Dettagli

IL NUMERO. PRIMO BIENNIO: 1a - 2a elementare COMPETENZE ABILITA' CONOSCENZE

IL NUMERO. PRIMO BIENNIO: 1a - 2a elementare COMPETENZE ABILITA' CONOSCENZE IL NUMERO PRIMO BIENNIO: 1a - 2a elementare Utilizzare i numeri naturali fino a 100 per contare e per eseguire operazioni aritmetiche di addizione e sottrazione, sia nel calcolo mentale che scritto. Raggruppare

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

PIANO DI LAVORO a.s. 2013-2014

PIANO DI LAVORO a.s. 2013-2014 PIANO DI LAVORO a.s. 2013-2014 1. obiettivi didattici 2. contenuti 3. metodi e strumenti 4. criteri di valutazione MATERIA: MATEMATICA APPLICATA CORSO: INTERO CORSO CLASSE PRIMA 1.OBIETTIVI DIDATTICI Gli

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli

PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE. Classi prime: Operatore grafico

PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE. Classi prime: Operatore grafico PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE - classi accreditate alla formazione professionale regionale: Classi prime: Operatore grafico Modulo 1: I numeri con particolare riferimento alle

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

Centro Professionale Commerciale di Bellinzona Programma d istituto. Obiettivi principali: Atteggiamenti (Saper essere)

Centro Professionale Commerciale di Bellinzona Programma d istituto. Obiettivi principali: Atteggiamenti (Saper essere) Centro Professionale Commerciale di Bellinzona Programma d istituto Maturità Professionale Commerciale - MATERIA :MATEMATICA 1 anno maturità integrata Ore-lezione settimanali: 3 X 3 (Corso base) + 2,5

Dettagli

PROGRAMMAZIONE ANNUALE

PROGRAMMAZIONE ANNUALE Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel:035 250547 035 253492 Fax:035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Soluzione di equazioni quadratiche

Soluzione di equazioni quadratiche Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti

Dettagli

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 3 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

TEMA A : COMPLEMENTI DI ALGEBRA Unità didattica Contenuti Obiettivi Conoscenze/ Abilità. LE FUNZIONI REALI Le funzioni e le loro caratteristiche

TEMA A : COMPLEMENTI DI ALGEBRA Unità didattica Contenuti Obiettivi Conoscenze/ Abilità. LE FUNZIONI REALI Le funzioni e le loro caratteristiche CLASSE : 3 TURISTICO MATEMATICA (Ramella) Situazione di partenza : 25 alunni. Valutazione d ingresso: 40% negativa, 60% positiva. 1. Articolazione (moduli, unità didattiche ) delle conoscenze e dei contenuti.

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria LICEO SCIENTIFICO STATALE CAVOUR Via delle Carine 1 - ROMA Commissione Orientamento in Uscita Comunicazione n. 2013/006 Data: 29-11-2013 OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

Dettagli

Cos è una funzione? (x,y) Є f o y=f(x)

Cos è una funzione? (x,y) Є f o y=f(x) Cos è una funzione? Dati gli insiemi X e Y non vuoti, si chiama funzione da in una relazione f tale che per ogni x Є X esiste uno ed un solo elemento y Є Y tale che (x,y) Є f. Data la funzione f:x->r,

Dettagli

I.I.S. "MARGHERITA DI SAVOIA" a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA

I.I.S. MARGHERITA DI SAVOIA a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA classe I BL Numeri naturali L insieme dei numeri naturali e le quattro operazioni aritmetiche. Le potenze. Espressioni. Divisibilità, numeri primi. M.C.D. e m.c.m. Numeri interi relativi L insieme dei

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

PIANO DI LAVORO a.s. 2014-2015

PIANO DI LAVORO a.s. 2014-2015 PIANO DI LAVORO a.s. 2014-2015 MATERIA: MATEMATICA APPLICATA CORSO: INTERO CORSO 1. obiettivi didattici 2. contenuti 3. metodi e strumenti 4. criteri di valutazione CLASSE PRIMA 1.OBIETTIVI DIDATTICI Gli

Dettagli

APPUNTI DI ANALISI MATEMATICA PER LA CLASSE QUINTA T.G.A. (5^B) E LA CLASSE QUINTA T.I.T. (5^C) a.s. 2003/2004 a cura di prof.ssa Mina Maria Letizia

APPUNTI DI ANALISI MATEMATICA PER LA CLASSE QUINTA T.G.A. (5^B) E LA CLASSE QUINTA T.I.T. (5^C) a.s. 2003/2004 a cura di prof.ssa Mina Maria Letizia \ I[ è la scrittura matematica che esprime un legame tra la variabile y e la variabile x; tale legame consiste in una serie di operazioni da eseguirsi su x per ottenere y (f indica l insieme delle operazioni

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi

Dettagli

Funzioni trascendenti

Funzioni trascendenti Funzioni trascendenti Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 17 novembre 007 Sommario Esponiamo la teoria fondamentale delle funzioni

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Programma precorso di matematica

Programma precorso di matematica Programma precorso di matematica a.a. 015/16 Quello che segue è il programma dettagliato del precorso. Si fa riferimento al testo [MPB] E. Acerbi, G. Buttazzo: Matematica Preuniversitaria di Base, Pitagora

Dettagli

DIPARTIMENTO DI MATEMATICA

DIPARTIMENTO DI MATEMATICA Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti 02-318112/1 via Alcuino 4-20149 Milano 02-33100578 codice fiscale 97504620150

Dettagli

Guida rapida - versione Web e Tablet

Guida rapida - versione Web e Tablet Guida rapida - versione Web e Tablet Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Gestisce interattivamente

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

Obiettivi Specifici di apprendimento MATEMATICA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr.

Obiettivi Specifici di apprendimento MATEMATICA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr. Classe I Sc.Primaria Obiettivi Specifici di apprendimento MATEMATICA CURRICOLO VERTICALE DI ISTITUTO (Cl. I Sc.Primaria Cl. III Sc.Second. 1 gr.) NUMERO - Confrontare e ordinare raggruppamenti di oggetti

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Corso di. Matematica Generale. - Schema delle lezioni -

Corso di. Matematica Generale. - Schema delle lezioni - Corso di Matematica Generale - Schema delle lezioni - Università degli Studi di Udine - Sede di Pordenone Facoltà di Economia Appunti del corso di Matematica Generale Luciano Battaia Versione del febbraio

Dettagli

Strumenti matematici SOMMARIO. A.1. Alcuni concetti fondamentali A.2. Relazioni lineari A.3. Relazioni non lineari A.4. Integrali A.5.

Strumenti matematici SOMMARIO. A.1. Alcuni concetti fondamentali A.2. Relazioni lineari A.3. Relazioni non lineari A.4. Integrali A.5. A Strumenti matematici SOMMARIO A.1. Alcuni concetti fondamentali A.2. Relazioni lineari A.3. Relazioni non lineari A.4. Integrali A.5. Esercizi A2 Appendice A. Strumenti matematici c 978-88-08-17530-4

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli