Equazioni differenziali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazioni differenziali"

Transcript

1 Equazioni diffrnziali L quazioni diffrnziali sono quazioni in cui l incognita è una funzion () in cui copaiono l drivat dlla funzion stssa. Pr spio l quazion ' è un quazion diffrnzial (dl prio ordin prché copar solo la drivata pria di ). Co si risolv un quazion diffrnzial? Risolvr un quazion diffrnzial è piuttosto coplsso quindi trattro solo alcuni casi: quazioni diffrnziali dl prio ordin o particolari quazioni diffrnziali dl scondo ordin ( dov cioè copar anch la drivata sconda). Ma prché si studiano l quazioni diffrnziali? L quazioni diffrnziali sono una part dlla atatica olto iportant pr l scinz applicat quali la fisica la biologia. Infatti quando in un fnono c è una variazion nl tpo di una quantità ( qual ad spio il nuro di individui di una popolazion, la quantità di carica sull aratur di un condnsator, la tpratura di un corpo, la vlocità di un corpo, abbiao una vlocità di variazion di ( cioè la drivata di (. S possiao dtrinar una rlazion tra ( ( oppur ( troviao un quazion diffrnzial ch, risolta, ci prtt di dtrinar (. Crchro quindi di prsntar alcuni spi di fnoni il cui studio porta a dovr risolvr un quazion diffrnzial. 9

2 Equazioni diffrnziali dl prio ordin Espio : ' + E chiaro ch in qusto caso pr trovar la funzion basta intgrar ntrabi i bri (risptto alla variabil ). ( ) ' d + d (*) + + c, c R Abbiao trovato quindi una faiglia di funzioni ( l priitiv di a ( ) + ). S poi conosciao il valor ch la funzion dv avr in un dato punto (chiaata condizion inizial ), posso dtrinar una soluzion particolar dll quazion. S pr spio nl nostro caso avssi anch la condizion sostitundo nlla (*) abbiao ( ) c la soluzion particolar risulta +. ( ) c, quindi confrontando con la condizion inizial troviao 3

3 Espio : ' Scriviao la drivata co spariao l variabili spostando a sinistra la a d dstra d (supponiao quindi ): d d Intgrando ntrabi i bri abbiao: Poiché c c d ln + c ± + c ± rapprsnta un qualsiasi nuro ral divrso da zro, possiao scrivr : con Considrando prò l quazion inizial è chiaro ch anch è una soluzion quindi possiao dir ch l soluzioni dll quazion diffrnzial sono in conclusion, R Nota Possiao vrificar ch l soluzioni sono qull trovat calcolando la drivata: abbiao ' sostitundo nll quazion diffrnzial inizial ottniao un idntità. Naturalnt anch in qusto caso s abbiao una condizion inizial, pr spio ( ), ottniao quindi la soluzion particolar. E chiaro quindi ch, con passaggi analoghi all spio, in gnral l quazion diffrnzial ha co soluzion gnral ' a, a R, R 3

4 Espio 3: ' Procdiao co abbiao fatto nl caso prcdnt sparando l variabili: d d ln + c d c ±, R +c (spr ossrvando ch nl procdinto si suppon a anch è soluzion quindi si può considrar R ). Anch in qusto caso possiao, s vogliao, vrificar ch l soluzioni trovat soddisfano l quazion diffrnzial assgnata. S poi abbiao anch una condizion inizial, pr spio ( ), ottniao quindi la soluzion particolar è. 3

5 Espio 4: ' + In qusto caso non possiao sparar l variabili procdiao nl sgunt odo (todo di Lagrang o dlla variazion dlla costant ): risolviao l quazion ' ch ci dà co soluzioni ; considriao non co una costant a co una variabil, indichiaola con () iponiao ch ( ) sia soluzion dll quazion diffrnzial assgnata cioè calcoliao ' '( ) + ( ) sostitundola nll quazion diffrnzial ricaviao '( ) ' ( ) + ( ) ( ) + '( ) '( ) Infin ricaviao () : ( ) ( + ) d + d + c + c Quindi la soluzion dll quazion diffrnzial risulta: [ ( + ) + c ( + ) + c NOTA Non spr è ncssario applicar il todo dlla variazion dlla costant pr ricavar la soluzion. S pr spio abbiao ' possiao usar il todo dlla sparazion dll variabili: d d d ln + c + c c ± + 33

6 Espio 5 Considriao pr spio l quazion ' ( + ) Procdiao così: d ( + ) d d arctg + c + + quindi in conclusion tg + c Nota L quazioni dl tipo ' a( ) b( ) sono dtt a variabili sparabili prché pr risolvrl si procd sparando l variabili. Quando dividiao pr b ( ) dobbiao porlo divrso da zro poi considrar a part l soluzioni dll quazion diffrnzial nl caso in cui sia b ( ). Nl nostro spio poiché b ( ) + non ci sono probli non dobbiao aggiungr nssuna soluzion alla soluzion gnral trovata. Espio 6 Considriao l quazion a variabili sparabili ' d d d + c + In qusto caso poiché pr potr dividr pr supponiao dobbiao poi controllar s è soluzion dll quazion diffrnzial: in qusto caso si vrifica ch è soluzion dll quazion diffrnzial quindi va aggiunta all soluzioni. In conclusion allora l soluzioni dll quazion diffrnzial sono + 34

7 Equazioni diffrnziali dl scondo ordin Studiro solo quazioni diffrnziali dl scondo ordin a cofficinti costanti d oogn cioè un quazion dl tipo: a '' + b' + c z Pr risolvrla supponiao ch ( z R) sia soluzion: pr dtrinar z calcoliao sostituiao nll quazion diffrnzial. z ' z ; z z z z z '' a z + b z + c a z + b z + c L quazion a z + b z + c (dtta quazion carattristica associata all quazion diffrnzial) può avr: > quindi du soluzioni rali distint z, z in qusto caso si può vrificar ch la soluzion dll quazion diffrnzial è: z z c + c con c, c R quindi du soluzioni rali coincidnti z z in qusto caso si può vrificar ch la soluzion dll quazion diffrnzial è: z ( c + c ) con c, c R < quindi du soluzioni coplss coniugat z, α ± iβ in qusto caso si può vrificar ch la soluzion dll quazion diffrnzial è: α ( c cos β + c snβ) con c, c R Espi ) '' 5' + 6 L quazion carattristica è in qusto caso: z z + 6 z, z c, ( c, R Quindi la soluzion è c c ) ) '' 4' c + c, ( c, R L quazion carattristica è : z z + 4 ( z ) z z Quindi la soluzion è ( ) c ) 3) '' + 9 L quazion carattristica è: Quindi la soluzion è z + z ± 3i 9, c cos3 + c sn3, c, c R 35

8 Probli ch si risolvono utilizzando un quazion diffrnzial Probla Considriao una popolazion ch viv in un abint isolato (non ci sono prdatori), con risors illiitat pr la qual prciò si suppon ch, indicando con N( il nuro dgli individui dlla t, t + t si abbia: popolazion al tpo t considrando un intrvallo di tpo [ N ( t + N( n nati n orti S supponiao ch il nuro dgli individui nati nll intrvallo di tpo t sia proporzional a N( t scondo una costant α ch il nuro dgli individui orti nllo stsso intrvallo di tpo sia proporzional a N( t scondo una costant β possiao scrivr, ponndo a α β, N ( t + N ( a N ( t N ( t + N ( a N ( t Abbiao quindi ottnuto un quazion diffrnzial in cui la funzion da dtrinar è N( (funzion dl tpo) pr qullo ch abbiao visto avro quindi ch N( cioè la crscita (nl caso ch α > β quindi a > ) o la dcrscita (s α < β quindi a < ) dlla popolazion sarà di tipo sponnzial. S conosciao una condizion inizial, pr spio il nuro dgli individui dlla popolazion al tpo t (inizio dll ossrvazion), possiao ricavar la costant : s pr spio N ( ) N avro N quindi at N( N S pr spio considriao a, abbiao un grafico dl tipo sgunt( t ) : at t N '( a N ( 36

9 NOTA Qusto odllo di sviluppo di una popolazion non tin conto dl fatto ch il nuro dgli individui dlla popolazion dipnd anch da vincoli strni quali il cibo fornito dall abint ( ch gnralnt non è illiitato). Qusti fattori strni frnano quindi la crscita. Si può diostrar ch l quazion diffrnzial ch rifltt una crscita più ralistica è in cui b rapprsnta la capacità dll abint. N( (*) N' ( a N( b N( Infatti s N ( è piccolo la crscita è inizialnt siil a qulla sponnzial, a b N( quando N ( b N'( cioè la crscita si arrsta. b E piuttosto difficil arrivar alla soluzion di qusta quazion diffrnzial, a possiao vrificar ch la soluzion è la sgunt: l andanto sarà : b N( + at 37

10 Probla Considriao un paracadutista in caduta libra (pria ch apra il paracadu: su di sso agisc la forza pso g ( la assa dl paracadutista dll attrzzatura) a anch una forza dovuta alla rsistnza dll aria, opposta alla forza pso dirttant proporzional alla vlocità. Poiché F R a g a v a g a v v' Abbiao quindi trovato un quazion diffrnzial in cui la funzion da dtrinar è la vlocità in funzion dl tpo v(. Possiao risolvrla sparando l variabili: dv dt dv dv g av dt ln a a g v g v Dopo alcuni passaggi ottniao: S poniao ch v( g a a dt g v t + + c a t, c R a g g t v( ) c v(. a a L andanto dlla vlocità è il sgunt c Quando g t v (vlocità lii a 38

11 Probla 3 Considriao un corpo di assa attaccato ad una olla di costant lastica ( assa trascurabil) ch oscilla snza attrito su un piano orizzontal pr fftto dlla forza lastica F dov ( indica la posizion dl corpo all istant t risptto ad un sista di rifrinto lungo la dirzion dl oto. Poiché F a a ( '' ( abbiao l quazion diffrnzial dl scondo ordin: ' '( ( ' '( + ( Considriao l quazion carattristica z + z, ± i Quindi, ponndo ω, avro ch la soluzion gnral dll quazion è: ( c cosωt + c snωt Nota: ossrviao ch la soluzion ( c cos t + c sn t è quivalnt a ( cos ω t + ϕ quazion dl oto aronico di un punto atrial. ( ) S conosciao l condizioni iniziali, pr spio s ( ) A '() (il corpo all istant inizial si trova alla assia distanza dal cntro di oscillazion d ha vlocità nulla), ottniao: c A, c ( A cosωt π Abbiao quindi un oto aronico di priodo T apizza A co in figura: ω ω ω 39

12 Probla 4 S il corpo dll spio prcdnt è soggtto anch ad una forza di attrito viscoso proporzional, scondo una costant h, alla vlocità v ( ' ( dl corpo allora abbiao la sgunt quazion diffrnzial dl scondo ordin: h ' '( ( h ' ( ' '( + ' ( + ( S pr spio N Kg, 5, h g s abbiao ''( + ' ( + 5 ( S risolviao l quazion carattristica associata z + z + 5 troviao: z ± 5 i, ± t Quindi la soluzion gnral sarà: ( c cos t + c sn ( S l condizioni iniziali sono ( ) A, '() si trova A t c A, c ( A cos t +,5snt quindi ( ) ch risulta avr un andanto co qullo in figura (oto aronico sorzato). 4

13 Esrcizi sull quazioni diffrnziali. ' +. ' + sn 3. tg + ' 3 [ + + c 3 [ + cos + c [ ln cos + c 4. ' 3 () [ 3 5. ' () [ 6. ' () [ 7. ' () 3 3 [ 8. 3 ' [ 3 9. ' 3 () [ 3 ( ) +. ' () [. ' + 6 [ c 6. ' [ c ' + [ c 4

14 4. ' c [ + 5. ' + [ ( c + ) 3 6. ' 7. ' sn ( ) [ [ + c 3 c cos 8. ' 3 4 [ ± + c 9. ' sn [ cos + c. ' + [ c arctg +. ' [ log( c ). '' + 5' 6 [ c + c 6 3. '' + ' 3 [ c + c 3 4. '' + ' [ c + c 5. '' 9 [ c 3 + c 3 6. '' + 8' '' 6' + 9 ( c + c ) 4 [ ( c + c ) 3 [ 8. '' + 4' + 5 ( c cos + c sn) [ 9. '' + ' + ( c cos3 + c sn3 ) [ 3. { '' 6' + 5 [ c + c 5 4

15 Probli. Una colonia di battri crsc proporzionalnt al nuro di battri prsnti nlla colonia scondo una costant, / h (h sta pr ora). Misurando il tpo t in or indicando con N( il nuro di battri prsnti al tpo t, dtrina N( supponndo ch al tpo t nlla colonia ci siano battri. Disgna il grafico di N(. Dopo quanto tpo il nuro di battri è raddoppiato? [ N(, t, t 3,5 h. La vlocità di raffrddanto di un corpo è dirttant proporzional, scondo una costant, alla diffrnza di tpratura tra la tpratura dll abint (supposta costan la tpratura dl corpo T( al tpo t. S supponiao ch,5 / h (h sta pr ora), la tpratura dll abint C, la tpratura inizial dl corpo 5 C, dtrina la tpratura T( dl corpo (il tpo t isurato in or) disgnan l andanto.,5 t [ T ( Il carbonio 4 ( siboloc 4 ) è prsnt in tutt l sostanz organich a dcad, cioè si trasfora in un altro lnto, quando l organiso uor. 4 La variazion dl nuro dgli atoi di C è dirttant proporzional al nuro N( di atoi prsnti al tpo t : s indichiao con α la costant di proporzionalità possiao quindi dir ch N' ( α N(. 4 Indicando con N il nuro dgli atoi di C prsnti al tpo t in cui l organiso è orto, dtrina N( traccian un grafico indicativo. S si indica con t d il tpo di dizzanto cioè il tpo ipigato dal qualsiasi altra sostanza radioattiva) a dizzarsi, trova la rlazion tra α t d. (Il tpo di dizzanto pr il 4 C è di circa 573 anni ). 4 C (co da 4 Nota: isurando la quantità di C ancora prsnt in un fossil si può datar il fossil, cioè dtrinar quanto tpo è passato dalla ort dll organiso. [ N ( N αt, t d ln α 43

16 4. Considra un circuito in cui è insrito un gnrator di f... costant V V, una rsistnza R un condnsator di capacità C (vdi figura). Alla chiusura dll intrruttor il gnrator carica il condnsator: indica con q( la quantità di carica prsnt sull aratur dl condnsator all istant t ponndo t l istant di chiusura dll intrruttor (quindi q() ) con q '(( i( la corrnt ch circola nl circuito. q( Poiché quando sull aratur c è una carica q( tra l aratur c è una d.d.p. V C ( si C ha: q( V R i( + C Scrivi l quazion diffrnzial corrispondnt dtrina q(. Traccia il grafico di q(. t RC [ q( V C ( ) 5. Considra un circuito in cui è insrito un gnrator di f... costant V V, una bobina di rsistnza R induttanza L (vdi figura). Alla chiusura dll intrruttor inizia a circolar corrnt si sviluppa nll induttanza una f... di autoindotta L. Quindi abbiao: dt di V R i( + L dt Risolvi l quazion diffrnzial ricava i( con la condizion inizial ch i(). Traccia il grafico di i(. R V t L [ i( ( ) R 44

17 6. Considra un circuito con una bobina di induttanza L (rsistnza trascurabil) un condnsator inizialnt carico di capacità C. Alla chiusura dll intrruttor il condnsator si scarica a pr il fnono dll autoinduzion dovuto alla prsnza dll induttanza la corrnt continua a circolar ricaricando di sgno opposto l piastr dl condnsator il procsso di scarica riprnd a con una corrnt di vrso opposto (si parla di circuito oscillant d è analogo al sista assa-olla). S S indichiao con q( la carica prsnt al tpo t sull aratur dl condnsator avro: q( C + L di dt Risolvi l quazion diffrnzial corrispondnt considrando co condizioni q ( ) Q i ( ) q ' ( ) dtrina q(. Traccia il grafico corrispondnt. Co risulta la corrnt ch circola nl circuito? Qual è la sua frqunza? Cosa accad s la rsistnza non è trascurabil? [ q( Q cos t, LC i( Q LC sn t, LC f π LC 45

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

Naturalmente, in caso di incidenza di onda piana, le due efficienze in campo sono la radice quadrata di

Naturalmente, in caso di incidenza di onda piana, le due efficienze in campo sono la radice quadrata di FFIINA DI SHRMAGGIO Uno schro lttroagntico è un dispositivo ch riduc, in anira significativa, il capo lttroagntico in una data zona dllo spazio. Il paratro carattrizzant uno schro è la attnuazion in potnza

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO APPUNTI DI CALCOLO NUMERICO Mawll Equazioni non linari: probla di punto isso Sisti di quazioni non linari Introduzion Il probla di punto isso è un probla ch si prsnta spsso in oltissi applicazioni Esso

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

Capitolo 10 Fenomeni Magnetici

Capitolo 10 Fenomeni Magnetici Capitolo 0 Fnoni Magntici Altri Esrcizi - 8 lttron proton.7 0 7 kg q p p 9.0 3.00 9 9 kg C V.00 J 9A. Un lttron vin acclrato da una diffrnza di potnzial V 500 V inizia a uovrsi paralllant ad un filo rttilino,

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo EQUAZIONI DIFFERENZIALI ORDINARIE Si hiama quazion diffrnzial ordinaria di ordin n in un intrvallo I qualunqu sprssion dl tipo n F,,,,, 0 pr ogni I F è dunqu una funzion di n variabili l sono l drivat

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Equation Chapter 1 Section 1 Vibrazioni torsionali di una trasmissione nautica Esercizio da portare in forma scritta all esame

Equation Chapter 1 Section 1 Vibrazioni torsionali di una trasmissione nautica Esercizio da portare in forma scritta all esame Equation Chaptr Sction Vibrazioni torsionali di una trasission nautica Esrcizio da portar in fora scritta all sa In Figura è ostrato lo scha di un otor arino connsso all diant un riduttor ad ingranaggi

Dettagli

Relazioni Input/Output b

Relazioni Input/Output b Rlaioni Input/Output b 4.3 Valutaion gotrica di H( H ( Si risaini l'sprssion dlla funion di trasfrinto raional (4..5: H( Y( X( N b a (4..5 dov l radici di polinoi a nurator a dnoinator sono chiaat rispttivant

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

elettrotecnica- appunti gratis ingegneria -

elettrotecnica- appunti gratis ingegneria - 5. I odlli quasi-stazionari. Dall spio è rso un risultato abbastanza iportant snz altro già noto dallo studio di capi. La validità dll lggi di Kirchhoff è tanto più assicurata quanto più piccolo è il rapporto

Dettagli

Calcoliamo innanzitutto la velocità media di spostamento dei portatori di carica (e - ): ogni portatore è sottoposto ad una forza:

Calcoliamo innanzitutto la velocità media di spostamento dei portatori di carica (e - ): ogni portatore è sottoposto ad una forza: 6 Trasporto di carica in un zzo solido In un solido, gli lttroni di valnza, ch sono libri di uovrsi (fig. 1) vngono acclrati in una dirzion s il solido è irso in un capo lttrico E dirtto co in fig.2. nl

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A Matmatica pr l Economia (A-K) Matmatica Gnral novmbr (pro. Biscglia) traccia A. Calcolar una primitiva P dlla unzion p scrivr l quazion dlla rtta tangnt a P in calcolar la distanza dlla rtta tangnt dall

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2 + ELETTOMAGNETISMO APPLICATO ALL'INGEGNEIA ELETTICA ED ENEGETICA_B (ultima modifica 7/0/07) Enrgia Forz lttrostatich F Una carica positiva posta in un punto P a distanza da una carica positiva fissa ch

Dettagli

Sistemi lineari a coefficienti costanti

Sistemi lineari a coefficienti costanti Sistmi linari a cofficinti costanti Stsura provvisoria Considriamo il sistma x ax + by y cx + dy nll funzioni incognit xt, yt, ssndo a, b, c, d quattro costanti assgnat. Indicato con X x, y} con A la matric

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie 03. 03 d. L ond stazionari 03. Contnuti : la fnomnologia, il formalismo ral qullo complsso, il principio di sovrapposizion l analisi spttral. slid#3 Pitagora Samo 570-495 a.c. Jan Baptist Josph Fourir

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x Problma Sia P un punto di un arco AB di una smicirconfrnza di cntro O raggio r. Sia T il punto in cui la smirtta OP incontra la tangnt in A all arco. Porr AOT ˆ PT AP P A AT P A AT AOT ˆ Limitazioni gomtrich

Dettagli

Potenziale ed energia potenziale y

Potenziale ed energia potenziale y Potnzial d nrgia potnzial ) Siano dat du carich puntiformi positiv Q =Q Q =9Q, dispost sullo stsso ass rispttivamnt ad una distanza 3 dal punto (vdi figura). a) il lavoro ncssario pr portar una carica

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

Compito del 1 settembre 2014

Compito del 1 settembre 2014 Coito dl sttbr Elttrodinaia Un solnoid di N sir, raggio a lunghzza L, il ui ass oinid on l ass y, ` rorso da una orrnt ontinua I. Si suonga h l dinsioni dl solnoid siano tali da garantir l arossiazion

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Crchiara Rocco Robrto Matrial Rifrimnti. Capitolo dl tsto Tcnica attuarial dll assicurazioni contro i Danni (Daboni 993) pagg. 5-6 6-65. Lucidi distribuiti in aula La toria

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y.

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y. Laboratorio di Matmatica. 9 novmbr 2011 ẏ t ty = 0 con y(0) = 1 ÿ + 4ẏ = 0 con y(0) = 1 ẏ(0) = 0. 2. Dtrminar i punti critici voncolati pr la funzion il problma max(x + 2y + z) xyz = 2. 3. È data la funzion

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

2. Richiami di calcolo delle probabilità

2. Richiami di calcolo delle probabilità . Richiai di calcolo dll probabilità L analisi sposta, consistnt nll ipotizzar la crisi in fas plastica, coporta, indubbiant, vantaggi risptto al todo lastico-linar, a non può considrarsi pinant accttabil

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza Soluzioni dll Esrcitazioni XI 0-4//08 A. Funzioni di variabili Insimi di sistnza Si tratta di porr la (o l) condizioni pr cui risulta dfinita la funzion f.. La funzion è f(, ) = ln( +). L unica condizion

Dettagli

Fisica dello Stato Solido

Fisica dello Stato Solido isica dllo Stato Solido Lzion n.6 Introduzion alla conduzion lttrica ni talli Corso di isica di Siconduttori Laura Magistral in Inggnria Elttronica a.a.17-18 http://www.d.unifi.it/isica/bruzzi/fss.htl

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Il calore specifico dei solidi

Il calore specifico dei solidi Il calor spcifico di solidi PREREQUISITI Pr affrontar la prova di laboratorio lo studnt dv sapr... Ch cos è la tpratura co la si isura Qual è il punto fisso rlativo all bollnt Il conctto di calor la sua

Dettagli

Misura dei Parametri del Modello Standard

Misura dei Parametri del Modello Standard isura di Paratri dl odllo Standard Fnonologia dll Intrazioni Forti Digo Bttoni Anno Accadico 8-9 isura di Paratri dl odllo Standard La toria lttrodbol introduc divrsi paratri il cui valor non è noto a

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d)

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d) Esmpi domand A) S il cofficint di risrva obbligatoria è dl 5% allora il moltiplicator montario a) è pari a b) è pari a 3 c) è pari a 4 d) è pari a 5 ) nssuna l prcdnti RISOSTA: nlla formulazion più smplic

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019 I Bonus di Fisica uclar Subnuclar 1 - AA 018/019 17 April 019 OME E COGOME: CAALE: 1 Un acclrator di lttroni positroni di 10 GV di nrgia ciascuno, i cui impulsi sono dirtti lungo l ass z nl sistma di rifrimnto

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

PROVA SCRITTA DI ELETTROTECNICA, 18 febbraio 2003 CDL: Ing. Gestionale, Prof. C. Petrarca

PROVA SCRITTA DI ELETTROTECNICA, 18 febbraio 2003 CDL: Ing. Gestionale, Prof. C. Petrarca OVA STTA D EETTOTENA, 8 fbbraio 00 D: ng. Gstional, rof.. trarca Esrcizio: Dtrminar la potnza dissipata sul rsistor applicando il torma dl gn. quivalnt di corrnt la sovrapposizion dgli fftti (Fig.). 0Ω;

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25].

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25]. Politcnico di Bari L3 in Inggnria Elttronica Esam di Analisi Matmatica I A.A. 008/009-0 fbbraio 009. Dtrminar i numri complssi z ch soddisfano l quazion ( z 9) (z iz 0 i ) = 0. I numri conplssi ch soddisfano

Dettagli