Lezione 15 - La teoria lineare

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 15 - La teoria lineare"

Transcript

1 Leone 5 - La teora lneare [Ultmarevsone revsone6 6gennao gennao009] In questa leone s esamnano le conseguene d una ragonevole potes sulla grandea d alcune quantta' d nteresse fsco. L'potes d pccole deformaon E' spesso evdente, nella pratca tecnca, che le varaon percentual d lunghea E x, E x ed E x, asseme con le varaon angolar g, g e g possano consderars quantta' pccole rspetto all'unta'. Quando co' sa accettable, s dra' che s e' nell'ambto delle pccole deformaon: E x ` ; E x `; E x `; γ ` ; γ ` ; γ ` ; In tale potes s hanno alcune nteressant semplfcaon d svarate formule. Le (7-9) della Leone precedente, che qu s rportano per comodta': () E x = è!!!!!!!!!!!!!!!!!!!! d E x = è!!!!!!!!!!!!!!!!!!!! d E x = è!!!!!!!!!!!!!!!!!!!! d s semplfcano utlando lo svluppo n sere della radce quadrata, ed arrestandos al prmo termne: da cu s ha: è!!!!!!!!!!!!!!!!!!!! d = d d d O@d D 4 E x = d E x = d () () (4) (5) (6) (7) E x = d Ne segue che n queste potes gl element dagonal del tensore d Green-Lagrange fornscono drettamente gl allungament percentual d segment passant per un punto M e parallel agl ass. Inoltre, per qualsas segmento MN øøøö la deformaone MN, data dalla () della Leone precedente: (8) s semplfca n: ε MN = E MN J E MN N ε MN = E MN (9) (0)

2 94 Leone 5 - Pccole deformaon.nb da cu, come ga' suggerto, s vede che la defnone matematca e quella ngegnerstca vengono a concdere. Infne, occorre semplfcare le (-5) della Leone precedente: sn γ = sn γ = d H E x L H E x L d H E x L H E x L () () sn γ = d H E x L H E x L I sen degl angol, come noto, possono confonders con gl angol stess, se gl angol sono pccol: sn γ = γ γ 6 O@γ D 4 ed l denomnatore a secondo membro puo' confonders con l'unta'. S ha qund: () (4) d = g ÅÅÅÅÅÅÅÅ d = g ÅÅÅÅÅÅÅÅ (5) (6) d = g ÅÅÅÅÅÅÅÅ Qund, nelle potes semplfcatve d questa leone, le tre component d, d, d concdono con la meta' della varaone angolare dell'angolo retto tra element passant per M ed orgnaramente dstes lungo gl ass. (7) L'potes d pccol gradent d spostamento Una ulterore potes semplfcatva rguarda l'ampea delle dervate degl spostament. Se s assume che tutte le dervate del tpo u ê x,... u ê x sano tanto pccole da poter trascurare loro quadrat rspetto ad esse, allora la defnone del tensore d Green-Lagrange vene a semplfcars drastcamente, n quanto l'ultmo termne della (8) della Leone precedente: D = HH HT H T HL vene a trascurars, e qund s ha: (8) D = E = HH HT L (9) In altr termn, l tensore d Green-Lagrange vene a concdere con la parte smmetrca del gradente d spostamento.

3 Leone 5 - Pccole deformaon.nb 95 La decomposone dello spostamento Nell'potes d pccol gradent d spostamento, gl element della matrce H de gradent d spostamento sono tutt dello stesso ordne d grandea, cos' come gl element della parte smmetrca E d H, e della parte antsmmetrca W. Co' permette una utle decomposone del processo deformatvo n esame. à La rotaone rgda S consder la (0) della Leone, che s rporta per comodta': ossa: du du = du u x x x u u u x x x u u u x x x u u dx dx dx (0) con: du = Hdx = HE ΩL dx () E = u x H u x u x L H u x u x L H u x u u x L x H u x u x L H u x u x L H u x u u x L x () Ω = 0 H u x u H u x u x L H u x u x L x L 0 H x u x u L H u x u S defnsca ora l vettore w d component: ω = J u u N x x ω = J u u N x x ω = J u u N x x n modo da scrvere: H u x u x L x L 0 () (4) (5) (6) Ω = 0 ω ω ω 0 ω ω ω 0 (7) Ora, e' noto che l generco atto d moto d un corpo rgdo, s puo' scomporre n tre traslaon u 0, u 0, u 0, rspetto a tre ass cartesan d rfermento, e n tre rotaon d ampea W, W, W ntorno agl ass passant per un punto P 0 (detto polo) e parallel agl ass d rfermento.

4 96 Leone 5 - Pccole deformaon.nb A seguto d questo atto d moto, lo spostamento d un generco punto P del corpo, puo' scrvers: u u u P = u 0 u 0 u 0 0 Ω Ω Ω 0 Ω Ω Ω 0 Ne segue che l'alquota d spostamento della (): du r = Ωdx = ω dx x x 0 x x 0 x x 0 e' nterpretable come una rotaone rgda con vettore rotaone d component: ω = J u u N x x ω = J u u N x x ω = J u u N x x (8) (9) (0) () () à La deformaone pura La restante alquota della (): du e = Edx () e' qund responsable dell'effettva deformaone del segmento MN, e la matrce E s dce anche matrce della deformaone pura. I corrspondent spostament s dcono spostament da deformaone pura. Nota - Il concetto d decomposone della deformaone, come llustrato n questa seone, rsale a G.Stoes, 845. Fgura - G. Stoes

5 Leone 5 - Pccole deformaon.nb 97 L'nterpretaone fsca delle dreon prncpal d deformaone La (), combnata con la (9), permette una semplce nterpretaone fsca della rcerca delle deformaon prncpal con le corrspondent dreon prncpal d deformaone, operata nella Leone precedente sul tensore d Green-Lagrange. S consder nfatt un punto M, e sa p una dreone prncpale passante per M. Sa po N un punto appartenente alla retta p, ed a dstana dx da M. Il punto N, per effetto della deformaone pura, s porta n N', con spostament fornt dalla (): du = e dx e dx e dx du = e dx e dx e dx du = e dx e dx e dx (4) D'altro canto, poche' N appartene ad una dreone prncpale, anche N' dovra' appartenere alla stessa dreone, e qund MN' deve essere proporonale ad MN (cfr. Fgura ): X u M dx x du N x x N' u ξ ξ X ξ X Fgura - Gl spostament da deformaone pura e le dreon prncpal d deformaone du = εdx du = εdx du = εdx Paragonando le (5) e (4) s gunge al sstema: He εldx e dx e dx = 0 e dx He εl dx e dx = 0 e dx e dx He εl dx = 0 dentco alla (8) della Leone precedente. (5) (6)

6 98 Leone 5 - Pccole deformaon.nb Le condon d compatblta' In quest'ultma seone s affronta l seguente problema: - date le tre funon spostamento u Hx, x, x L, u Hx, x, x L e u Hx, x, x L, e' da esse possble rcavare, tramte dervaone, le se component del tensore d deformaone. - assegnate le se funon e Hx, x, x L,, =,,, e' sempre possble rcavare le tre funon spostamento da cu esse sarebbero generate? In altr termn, assegnate se funon del tpo descrtto, sono sempre esse nterpretabl come component d deformaone, relatve ad un campo d spostament? La rsposta alla domanda precedente e': non sempre, ma solo quando le se funon sano legate tra loro da tre condon, dette condon d compatblta'. S puo' dmostrare l seguente: Teorema - Condone necessara e suffcente affnche' le se funon contnue ed unform e Hx, x, x L,, =,, sano component d deformaone lneare e' che sano verfcate le relaon: e x x = J e e e N x x x x (7) e = x x e = x x J e e e N x x x x J e e e N x x x x (8) (9) e = e x x x e x e = e e x x x x (40) (4) e = e x x x e x (4) Nota - Prma d nare la dmostraone, s osserv che l gruppo delle prme tre condon s puo' ottenere a partre da una qualsas equaone, tramte permutaone crcolare degl ndc x Ø x Ø x Ø x, cos' come possono otteners le altre tre condon. Dm. La condone e' necessara. Ed nfatt l secondo gruppo d condon puo' essere faclmente dmostrato n base alla seguente relaone: e = u u x x u x x v x x = ed alla permutaone crcolare degl ndc. e = x x x J u x N x J u N = e x x e x (4)

7 Leone 5 - Pccole deformaon.nb 99 Per dmostrare l prmo gruppo d condon, s consder che s ha: e = J u u N e = x x x x J u x x x u x N x (44) e = J u u N e = x x x x J u x x x e = J u u N e = x x x x J u x x x e sommando s ha: e x x e x x J u x x x J u x x x u = x x x e = x x J u x x x u N x x x u N = x x x u = e x x x x x La condone e' suffcente. S consult Mushelshvl.[Mushelshvl] ð u N x x x u N x x x u N x x x (45) (46) (47) Nota - La necessareta' delle condon d compatblta' e' stata dmostrata da B. De Sant Venant n una brevssma nota d due pagne, pubblcata nel 86, mentre la dmostraone della loro suffcena e' dovuta ad Eugeno Beltram ("Sull'nterpretaone meccanca delle formule d Maxwell", Rendcont del Crcolo Matematco d Palermo,, 886). Tale nota puo' anche essere letta sul sto nella seone Rcerca. Fgura - Adhemar Jean Claude Barre' de Sant-Venant

8 00 Leone 5 - Pccole deformaon.nb Nota - Le equaon d congruena possono sntetars nell'unca formula: curlcurle = 0 (48) dove l rotore d un tensore e' defnto, ad esempo, nel Complemento 6, sul sto Le dentta' d Banch E' faclmente potable che non tutte le condon d congruena appena scrtte sano ndpendent tra d loro. Ed nfatt, s rscrvano le se condon sotto forma d dentta' a ero: G = e e e = 0 x x x x (49) G = e e e = 0 x x x x G = e e e = 0 x x x x (50) (5) G = G = e x x e x x e e = 0 x x x (5) G = G = e x x e x x e e x x x = 0 (5) G = G = e x x e x x e e x x x = 0 S puo' verfcare, per sosttuone dretta, che sussstono le cosddette dentta' d Banch: (54) G G G = 0 x x x G G G = 0 x x x (55) (56) G G G = 0 x x x (57) che legano tra loro le se condon d congruena, e facendo s' che solo tre d esse sano ndpendent. S not che utlando la convenone degl ndc rpetut, le dentta' d Banch s scrvono: G x = 0, =,, (58)

9 Leone 5 - Pccole deformaon.nb 0 Fgura 4 - Lug Banch Note [] N. Mushelshvl, "Some basc Problems of the Mathematcal Theor of Elastct", Noordhoff 96, pp [Torna al testo] Grafc

Esercitazioni 2 - Analisi della deformazione

Esercitazioni 2 - Analisi della deformazione Eserctaon - Anals della deformaone In questa eserctaone s studano alcun stat deformatv Infne, s danno alcune semplc funon Mathematca, che permettono l'automaone dello studo per qualsas stato deformatvo

Dettagli

Lezione 13 - Il gradiente di deformazione

Lezione 13 - Il gradiente di deformazione eone - Il gradente d deformaone [Ultmarevsone revsone dcembre dcembre008] In questa leone s comnca ad affrontare l'anals della deformaone, cu compto prncpale e' rspondere al seguente problema: - assegnate

Dettagli

θ 2 i r 2 r La multifunzione f (z) = z z i

θ 2 i r 2 r La multifunzione f (z) = z z i 1-19 1.4 1.4.1. La multfunone f () = + 1 3 è l prodotto d 2 multfunon Z Z e W 3 W. È qund ragonevole supporre che Z =, coè = 1 e W =, coè = sano punt d dramaone d f. Con rfermento alla fgura a lato, e

Dettagli

Complementi 1 - Le trasformazioni lineari

Complementi 1 - Le trasformazioni lineari Complement 1 - Le trasformaon lnear [Ultmarevsone revsone20 20dcembre dcembre2008] In questa Leone s studano le propreta delle trasformaon lnear rappresentate da: ξ 1 = a 11 +a 12 +a 13 ξ 2 = a 21 +a 22

Dettagli

Complementi 4 - Materiali non isotropi

Complementi 4 - Materiali non isotropi Complement 4 - Materal non sotrop [Ultmarevsone revsone9gennao gennao2009] In questo noteboo s parte dalla legge d Hooe per sold ansotrop, e s deducono le opportune restron sulle 21 costant elastche, potando

Dettagli

Lezione 5 - Analisi cinematica

Lezione 5 - Analisi cinematica eone 5 - nals cnematca [Ultmarevsone: revsone:25 25novembre 28] S consder ora una struttura bdmensonale, ossa un nseme d trav collegate tra loro ed al suolo da opportun vncol. In questa leone s voglono

Dettagli

asse fisso nel tempo in rotazione attorno ad un asse fisso dell asse di rotazione rimarranno fermi al passar del temporispetto al sistema inerziale

asse fisso nel tempo in rotazione attorno ad un asse fisso dell asse di rotazione rimarranno fermi al passar del temporispetto al sistema inerziale Rotaon rgde attorno ad un asse fsso nel tempo un corpo rgdo n rotaone attorno ad un asse fsso ha un solo grado d lberta n quest cas per descrvere l moto converra rferrs ad un polo fsso se l asse d rotaone

Dettagli

Complementi 2 - Le trasformazioni simmetriche ed antisimmetriche

Complementi 2 - Le trasformazioni simmetriche ed antisimmetriche Complement - Le trasformaon smmetrche ed antsmmetrche [Ultmarevsone revsone5 5dcembre dcembre008] gn matrce A puo essere espressa come somma d una matrce smmetrca ed una matrce antsmmetrca: A = 1 HA +AT

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Corpi rigidi (prima parte)

Corpi rigidi (prima parte) Corp rgd (prma parte) Corp rgd Un corpo rgdo è un corpo n cu le dstane tra le vare par che lo compongono rmangono costan3. r CM d CM È un po parcolare d sstema d N parcelle. Valgono ancora le legg dp dt

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Fisica dei semiconduttori: prova del

Fisica dei semiconduttori: prova del 6114.nb 1 Fsca de semconduttor: prova del 6 11 4 ü 1. 1. Un elettrone è descrtto da una funone d onda (n 1 dmensone) u(x) = a u 1 (x) + b u (x) dove u 1 (x) ed u (x) sono autofunon dell Hamltonana del

Dettagli

Meccanica Dinamica del corpo rigido

Meccanica Dinamica del corpo rigido Meccanca 8-9 6 Fora peso sul corpo rgdo Corpo sottoposto alla fora peso: Su ogn elemento nfntesmo d massa dm agsce la fora Rsultante delle fore: F peso V g dm Momento rsultante (polo ): M V Energa potenale:

Dettagli

4.2 IL PRINCIPIO DEI LAVORI VIRTUALI 4.1 INTRODUZIONE

4.2 IL PRINCIPIO DEI LAVORI VIRTUALI 4.1 INTRODUZIONE Cap 4 PRINCIPIO DEI LAORI IRTUALI 4. IL PRINCIPIO DEI LAORI IRTUALI 4. INTRODUZIONE Fno ad ora s è condotto lo stdo del problema della deformazone e d qello della tensone per n corpo contno gngendo alla

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

Meccanica Dinamica del corpo rigido

Meccanica Dinamica del corpo rigido Meccanca 08-09 Dnamca del corpo rgdo 7 ω L Equaon del moto: Momento angolare: Energa cnetca: Sstem corpo rgdo E F K dp dt L L + L ω M otaone d un corpo rgdo L ω Momento d nera: r dm V dl dt r m L L ω L

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

10 Modelli di dispersione

10 Modelli di dispersione 10 Modell d dspersone Smulare l comportamento d un nqunante, rlascato n atmosfera, sgnfca determnare l campo d concentraone da esso prodotto n qualunque punto dello spao e n qualunque stante successvo

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Rotazione rispetto ad asse fisso Asse z : asse di rotazione

Rotazione rispetto ad asse fisso Asse z : asse di rotazione Rotaone rspetto ad asse fsso Asse : asse d rotaone 1 1 1 Ek= ω = ω= ω om. d nera: propreta d ogn corpo rgdo Dpende da: massa, forma e dmenson del corpo asse rspetto al quale lo s consdera Asta omogenea:

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Numeri complessi, polinomi - Risposte pagina 1 di 11 23

Numeri complessi, polinomi - Risposte pagina 1 di 11 23 Numer compless, polnom - Rsposte pagna d 0. a. I numer compless con Re () sono quell a destra della retta vertcale (retta compresa). Quell con modulo mnore d 4 sono all nterno della crconferena d centro

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3 serctazone 4 Dcembre 0 Sstem trfase e potenze serczo L L L 00 f 50 Hz smmetrco Fg : Sstema trfase a stella S consder l crcuto d Fg e s calcolno le tre corrent d fase e le potenze attve, reattve ed apparent

Dettagli

NATURA ATOMICA DELLA MATERIA

NATURA ATOMICA DELLA MATERIA NATURA ATOMICA DLLA MATRIA Un qualunque fludo è costtuto da un gran numero d partcelle (sa sngol atom che molecole) n un contnuo moto dsordnato defnto agtaone termca. Questo fenomeno sta alla base de cosddett

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

I.5. FORMULAZIONE DIFFERENZIALE DELL ELETTROSTATICA

I.5. FORMULAZIONE DIFFERENZIALE DELL ELETTROSTATICA I.5. FORMULAZIONE DIFFERENZIALE DELL ELETTROTATICA I.5.. Propretà ntegral del campo elettrostatco Le propretà gà consderate del campo elettrostatco, descrtte dal teorema d Gauss e dal fatto che l campo

Dettagli

Spostamento, velocità, accelerazione

Spostamento, velocità, accelerazione Spostamento, veloctà, acceleraone Posone e spostamento Due stan assegna t 1 e t, con t t 1 >0 Posone al tempo t 1 : r r t ) ( ( t ), ( t ), ( 1 ( 1 1 1 t1 Posone al tempo t : r r t ) ( ( t ), ( t ), (

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04 Rccardo Sabatno 463/1 Progetto d un telao n c.a. A.A. 003/04 3.3 Il metodo degl spostament per la rsoluzone del telao Il metodo degl spostament è basato sulla valutazone de moment flettent ce agscono sugl

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

I.5. FORMULAZIONE DIFFERENZIALE DELL ELETTROSTATICA

I.5. FORMULAZIONE DIFFERENZIALE DELL ELETTROSTATICA I.5. FORMULZIOE DIFFEREZILE DELL ELETTROTTIC I.5.. Propretà ntegral del campo elettrostatco Le propretà gà consderate del campo elettrostatco, descrtte dal teorema d Gauss e dal fatto che l campo elettrostatco

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle Appunt d amp Elettromagnetc aptolo 8 parte I nee d trasmssone Introduone... Equaon de telegrafst... 3 Parametr per untà d lunghea... 7 Soluone nel domno della frequena... 7 soluone delle equaon de telegrafst...

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro LABORATORIO II B create un nuovo foglo d lavoro La retta d regressone Eserco. U PRIMO ESEMPIO DI RETTA DI REGRESSIOE LIEARE. Leggere attentamente paragraf.,. e. tutto Costrure la retta d regressone lneare

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

Lezione 6 - Analisi statica

Lezione 6 - Analisi statica eone 6 - nals statca [Ultmarevsone: revsone:5 5novembre 8] S consder la stessa struttura bdmensonale della leone precedente, ossa un nseme d trav collegate tra loro ed al suolo da opportun vncol. S vuole

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Tecniche di approssimazione Differenze finite

Tecniche di approssimazione Differenze finite Tecnche d approssmaone Derene nte Derene nte t Il metodo delle derene nte permette d trasormare un problema derenale n uno algebrco approssmato. Lmtando nalmente l problema al caso d una unone ncognta

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente.

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente. 5. Per la propretà d lneartà la tensone può essere espressa come = k g, doe g è la corrente del generatore. Utlzzando dat n Fgura a abbamo - = k 6, qund k = - ½. In Fgura b la corrente del generatore è

Dettagli

Lezione 14 - Il tensore di Green- Lagrange

Lezione 14 - Il tensore di Green- Lagrange Lezione 14 - Il tensore di Green- Lagrange [Ultimarevisione: revisione:4 4novembre novembre009] In questa lezione si generalizza quanto detto nella lezione precedente, considerando la trasformazione subita

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

I coefficienti di elasticità della domanda: un esposizione algebrico-grafica 1

I coefficienti di elasticità della domanda: un esposizione algebrico-grafica 1 ppendce 4 I coeffcent d elastctà della domanda: un esposzone algebrco-grafca 1 Il calcolo de coeffcent d elastctà della domanda La teora e l ndagne economca hanno dentfcato numerosevarablchenflusconosullaquanttàdomandatadunbeneoservzo.traquestevsonol

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

ESERCIZIARIO SUI NUMERI COMPLESSI

ESERCIZIARIO SUI NUMERI COMPLESSI ESERCIZIARIO SUI NUMERI COMPLESSI I numer regnano sull unverso. PITAGORA Perché numer sono bell? È come chedere perché la Nona Snfona d Beethoven è bella. Se non ved perché, nessuno può spegartelo. Io

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini)

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini) PRV SCRITT DI ECCNIC RZINLE (13 gennao 017) (Prof.. uracchn) Il sstema rappresentato n fgura è costtuto da: a) una lamna pesante, omogenea a forma d trangolo soscele (massa m, base l, altezza h) vncolata

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008 Intellgenza rtfcale II Ragonamento probablstco Rappresentazone Marco astra Ragonamento probablstco: rappresentazone - arte Mond possbl sottonsem event artzon e varabl aleatore robabltà Margnalzzazone Condzonal

Dettagli

i 2 + i 1 v 2 Comportamento elettrico descritto in vari modi equivalenti Piu' comuni, quadripolo lineare: = z i + z i Parametri di ammettenza

i 2 + i 1 v 2 Comportamento elettrico descritto in vari modi equivalenti Piu' comuni, quadripolo lineare: = z i + z i Parametri di ammettenza Quadrpolo: Rete generca (passa o atta, lneare o non lneare) coppe d termnal: ngresso - uscta Caratterata dall'esterno da 4 grandee elettrche:,,, Input Rete Output Comportamento elettrco descrtto n ar mod

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari REGRESSIONE LINEARE Ha un obettvo mportante: nvestgare sulle relazon emprche tra varabl allo scopo d analzzare le cause che possono spegare un determnato fenomeno È caratterzzata da semplctà: modell utlzzat

Dettagli

L arcobaleno. Giovanni Mancarella. n = n = n = α( o )

L arcobaleno. Giovanni Mancarella. n = n = n = α( o ) Govann Mancarella L arcobaleno I(α) (a.u.) n =.3338 n =.336 39 40 4 4 43 α( o ) In questa nota utlzzeremo l termne dstrbuzone per ndcare la denstà d probabltà d una varable casuale. Il fenomeno dell arcobaleno

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V ESECZO SU DOD (Metodo degl Scatt) Determnarelatranscaratterstcav out (v n ) del seguente crcuto Dat del problema 5 o kω Ω 0 Ω Z -8 n ٧ 0.7 r D 0 Ω r Z 0 Ω r Ω D Z D o out Metodo degl scatt S determnano

Dettagli

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella L AALISI MOOVARIATA: Varabltà e mutabltà Prof. Mara Carella Varabltà Le msure d tendenza centrale non sono suffcent alla comprensone de fenomen. Una sntes approprata deve tener conto del modo n cu s dstrbuscono

Dettagli

Risposta in frequenza e filtri

Risposta in frequenza e filtri Rsposta n frequenza e fltr www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 3-3-9) Funzon d rete S consdera un crcuto con un solo ngresso (coè un solo generatore) operante n condzon d regme snusodale

Dettagli

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro NUMERI GRANDI DI FIBONACCI come trovare velocemente loro esatt valor numerc Crstano Teodoro crstanoteodoro@vrglo.t Sommaro: n questo artcolo vene proposto, n alternatva al metodo classco per l calcolo

Dettagli

Analisi agli elementi finiti di campi vettoriali

Analisi agli elementi finiti di campi vettoriali Anals agl element fnt d camp vettoral Carlo Forestere December, 04 Formulazone n forma debole d equazon d campo vettorale Sa R un domno bdmensonale Fg. rempto da un materale lneare, sotropo, tempo nvarante,

Dettagli

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone.

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone. Captolo 7 I corp estes 1. I movment d un corpo rgdo Che cosa s ntende per corpo esteso? Con l termne d corpo esteso c s rfersce ad oggett per qual non è lecto adoperare l approssmazone d partcella, coè

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

materiale didattico I incontro

materiale didattico I incontro Pano Nazonale Lauree Scentfche (PLS 2016-2017) Statstca Laboratoro d Statstca Le relazon tra varabl prof.ssa Angela Mara D'Uggento angelamara.duggento@unba.t materale ddattco I ncontro Dall anals statstca

Dettagli

Risposta in frequenza e filtri

Risposta in frequenza e filtri Rsposta n frequenza e fltr www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 5-4-7) Funzon d rete S consdera un crcuto con un solo ngresso (coè un solo generatore) operante n condzon d regme snusodale

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli