Fisica dei semiconduttori: prova del

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fisica dei semiconduttori: prova del"

Transcript

1 6114.nb 1 Fsca de semconduttor: prova del ü Un elettrone è descrtto da una funone d onda (n 1 dmensone) u(x) = a u 1 (x) + b u (x) dove u 1 (x) ed u (x) sono autofunon dell Hamltonana del sstema ed a e b sono numer compless. a. Esprmere b n funone d a b. Calcolare l espressone generale de valor d aspettaone del momento e dell energa c. Specfcare l conto n b. nel caso d una buca nfnta d larghea l n cu con autovalore e con autovalore, con l = 1 nm, m = m= kg, h = J s, a =.-.3 a. la condone d normalaone: porta a ovvero a u HxL u HxL x = 1» a» +» b» = 1 u HxL = au 1 HxL ± è!!!!!!!!!!!!!!!! 1» a»!!!! u HxL b. Per defnone è < p >= u HxL x u HxL x = Ha au 1 x u 1 + a bu 1 x u + b au x u 1 + b bu x u L dx dove x u rappresenta la dervata d u rspetto ad x. Analogamente : < E > = u HxL H u HxL x = u HxL Ha E 1 u 1 HxL + be u HxLL dx HE 1» a» u 1 + E» b» u + E 1 b au u 1 + E a bu 1 u L dx che per l'ortogonaltà delle autofunon del problema dvene: < E > = E 1» a» +E» b» = E +» a» H E 1 E L S not la dfferena tra le due espresson general: l valore d aspettaone del l'energa è la combnaone lneare, con gl stess coeffcent assegnat alle autofunon, de corrspondent autovalor. In generale, cò non accade per l valore d aspettaone del momento. c. Ponendo:

2 6114.nb u := è!!!!!!!!! ê l Sn@π x ê ld; E 1 = 1 8m k j h ; l := è!!!!!!!!! ê l Sn@4 π x ê ld; E = m k j h ;u@x_d := au + l deru@x_d = x u@xd; p ave = l u@xd deru@xd x Il valore d aspettaone del momento è nullo, come appare ovvo. Per l'energa s può rcorrere alla hamltonana +l E ave = u@xd j k m D@ u@xd, 8x, <D x Ha + 16 b L π l m oppure sostture drettamente gl autovalor +l E1 ave = u@xd Ha E 1 u + be x Ha + 16 b L h 8l m ottenendo lo stesso rsultato. Ora per la sosttuone numerca occorre sostture a quadrat modul al quadrato, vsto che a e b sono compless. dat = 8a >. I.3, l 1 9,h , m , êhpl^<; a = è!!!!!!!!!!!!!!!! Abs@aD!!!!!!!!!!!!!!!! ^ ê. dat!!!!!! b = è!!!!!!!!!!!!!!!! 1 a^ E ave ê. dat E 1 ê. dat E ê. dat E ave,e 1,E <êh Lê. dat , , <

3 6114.nb 3 ü. 1. a. Dmostrare che l energa d Ferm per un gas d elettron n equlbro alla temperatura T rsulta proporonale a n /3, essendo n la denstà d elettron, quando T ->. b. Calcolare esplctamente E F n questo caso quando n = 1 19 cm -3. a. da cu b. n Joule E F n = 4 π j m k 3ê F 8 è!!! π è!!! u H m L 3ê u 1 + u F E F LmtA 4 π j m k è!!! u 1 + Exp@ u E F D u 3ê 16 è!!! π I m 3 M3ê 3ê F ne F n ê3 ne F F è!!!! 8 π è!!!! u I j m M3ê k 1+ u F u ê3 n =.; E F = 3 j k 8 π j k 1 8 J 3 Nê3 π j J 3ê m N k m è!!! u 1 + Exp@ u E F D u, T E = 4 π j m k 3ê ê3 n n % ê êh πl, n 1 5, m < % êh L.4596 ê3 3ê 3 E F 3ê n ev

4 6114.nb 4 ü 3. Una gunone p-n s trova ad una temperatura T tale per cu E d - E F >> ed E F -E a >>, essendo E d l energa del lvello de donator, E a l energa del lvello degl accettor ed E F l energa del lvello d Ferm. a. Calcolare l espressone della dfferena d potenale che s genera agl estrem della struttura nell potes d parale onaone de lvell d donator ed accettor e confrontarla con quella ottenuta nel caso d onaone completa. b. Dscutere l rsultato ottenuto ed ndvduare le crcostane n cu ha senso una sua applcaone. a. se cade l'potes d onaone completa de lvell d mpurea, allora la popolaone d elettron ne lvell d mpurea non è nulla ma: n d = N d e E d E F N d e HE d E FL << N d Ora, stante le potes, la popolaone d elettron n banda d conduone n c è data esclusvamente dagl elettron onat da lvell d mpurea, qund: n c = N d n d = N d I1 e HE d E FL M questa stessa quanttà vale anche n c = U e HTL e E c e Φ HL E F e s ottene qund N d U e HTL I1 e HEd EFL M = e E c e Φ HL E F n modo analogo, per lvell d accettore: N a U h HTL moltplcando le due equaon: I1 e HEF EaL M = e E F E v+e Φ HL N d N a I1 e HEd EFL M I1 e HE F EaL M = e U e HTL U h HTL e passando a logartm Ec Ev+e Φ HL e Φ HL LogA N d N a I1 e HEd EFL M I1 e HE F E al ME = E g + e Φ Il prmo membro, tenendo conto delle potes, rsulta approssmable da S ottene qund: LogA N d N a E Ae HE d EFL + e HE F EaL E Φ Φ Ae HE d E F L + e HE F E al E

5 6114.nb 5 con Φ = E g + LogA N d N a E che è l'espressone per la dfferena d potenale agl estrem della ona d svuotamento nel caso d completa onaone. b. I termn agguntv sono n genere molto pccol, propro n graa delle potes d partena. Un qualche peso potranno averlo quando è massmo compatblmente con le potes fatte, E d - E F >> ed E F -E a >> n modo che l fattore moltplcatvo sa massmo. Pochè Φ è dell'ordne d qualche eve, se ad es. E d - E F = 1, s ha che l'esponenale vale crca ed l termne correttvo sarà dell'ordne d 1-4 che è pccolssmo rspetto a Φ anche a temperature puttusto alte. L'approssmaone sarà sgnfcatva n sostana solo n un rstretto ntervallo d temperatura per sstem d mpuree a dstana abbastana prossma al centro della banda probta.

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

10 Modelli di dispersione

10 Modelli di dispersione 10 Modell d dspersone Smulare l comportamento d un nqunante, rlascato n atmosfera, sgnfca determnare l campo d concentraone da esso prodotto n qualunque punto dello spao e n qualunque stante successvo

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro LABORATORIO II B create un nuovo foglo d lavoro La retta d regressone Eserco. U PRIMO ESEMPIO DI RETTA DI REGRESSIOE LIEARE. Leggere attentamente paragraf.,. e. tutto Costrure la retta d regressone lneare

Dettagli

Lezione 15 - La teoria lineare

Lezione 15 - La teoria lineare Leone 5 - La teora lneare [Ultmarevsone revsone6 6gennao gennao009] In questa leone s esamnano le conseguene d una ragonevole potes sulla grandea d alcune quantta' d nteresse fsco. L'potes d pccole deformaon

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Chimica Fisica 2 NMR

Chimica Fisica 2 NMR Chmca Fsca chmca ndustrale anno A.A. 009-0 MR Antono Toffolett Momento d spn de nucle umero d massa dspar =n/ H =/ 3 C =/ 3 a =3/... par =n =0 dspar par H = C =0 4 = 6 O =0...... umero atomco Rsonana magnetca

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

L arcobaleno. Giovanni Mancarella. n = n = n = α( o )

L arcobaleno. Giovanni Mancarella. n = n = n = α( o ) Govann Mancarella L arcobaleno I(α) (a.u.) n =.3338 n =.336 39 40 4 4 43 α( o ) In questa nota utlzzeremo l termne dstrbuzone per ndcare la denstà d probabltà d una varable casuale. Il fenomeno dell arcobaleno

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Corso di Laurea in Medicina e Chirurgia Prova scritta di Fisica del 22/2/2016: MED 3-4

Corso di Laurea in Medicina e Chirurgia Prova scritta di Fisica del 22/2/2016: MED 3-4 Corso d Laurea n Medcna e Chrurga Prova scrtta d Fsca del 22/2/206: MED 3-4 Nome: Cognome: N. matrcola: * Segnare con una x la rsposta corretta, svolgere problem ne fogl allegat scrvendo le formule utlzzate

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Spostamento, velocità, accelerazione

Spostamento, velocità, accelerazione Spostamento, veloctà, acceleraone Posone e spostamento Due stan assegna t 1 e t, con t t 1 >0 Posone al tempo t 1 : r r t ) ( ( t ), ( t ), ( 1 ( 1 1 1 t1 Posone al tempo t : r r t ) ( ( t ), ( t ), (

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Esercitazioni 2 - Analisi della deformazione

Esercitazioni 2 - Analisi della deformazione Eserctaon - Anals della deformaone In questa eserctaone s studano alcun stat deformatv Infne, s danno alcune semplc funon Mathematca, che permettono l'automaone dello studo per qualsas stato deformatvo

Dettagli

IMPIANTI E PROCESSI CHIMICI. Tema A 12 Luglio 2012 Colonna binaria

IMPIANTI E PROCESSI CHIMICI. Tema A 12 Luglio 2012 Colonna binaria IMPINTI E PROCESSI CHIMICI Tema Luglo 0 Colonna bnara Soluzone alle specfche: X=0.98 0.95**Z=*X => = 0.6785749 =+ => = 0.34857 *Z=*X+*X => X= 0.08888889 ) q= L equlbro L/V rchede l calcolo de coeffcent

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Lezione 5 - Analisi cinematica

Lezione 5 - Analisi cinematica eone 5 - nals cnematca [Ultmarevsone: revsone:25 25novembre 28] S consder ora una struttura bdmensonale, ossa un nseme d trav collegate tra loro ed al suolo da opportun vncol. In questa leone s voglono

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Propagazione degli Errori

Propagazione degli Errori Propagaone degl Error La maggor parte delle grandee fsche d solto non può essere msurata attraverso una sngola msura dretta ma vene nvece determnata n due pass dstnt come detto nella defnone d msure ndrette:.

Dettagli

θ 2 i r 2 r La multifunzione f (z) = z z i

θ 2 i r 2 r La multifunzione f (z) = z z i 1-19 1.4 1.4.1. La multfunone f () = + 1 3 è l prodotto d 2 multfunon Z Z e W 3 W. È qund ragonevole supporre che Z =, coè = 1 e W =, coè = sano punt d dramaone d f. Con rfermento alla fgura a lato, e

Dettagli

Complementi 1 - Le trasformazioni lineari

Complementi 1 - Le trasformazioni lineari Complement 1 - Le trasformaon lnear [Ultmarevsone revsone20 20dcembre dcembre2008] In questa Leone s studano le propreta delle trasformaon lnear rappresentate da: ξ 1 = a 11 +a 12 +a 13 ξ 2 = a 21 +a 22

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

I.5. FORMULAZIONE DIFFERENZIALE DELL ELETTROSTATICA

I.5. FORMULAZIONE DIFFERENZIALE DELL ELETTROSTATICA I.5. FORMULZIOE DIFFEREZILE DELL ELETTROTTIC I.5.. Propretà ntegral del campo elettrostatco Le propretà gà consderate del campo elettrostatco, descrtte dal teorema d Gauss e dal fatto che l campo elettrostatco

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

Prova scritta di Elettronica I 26 giugno 2001

Prova scritta di Elettronica I 26 giugno 2001 Prova scrtta d Elettronca I 26 gugno 2001 Soluzone 1. Dato l seguente crcuto, determnare: Q3 BC179 BC179 Q4 RL 100k Q2 RE 2.3k I. l punto d rposo e parametr per pccol segnal. (S consgla d trovare la relazone

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle Appunt d amp Elettromagnetc aptolo 8 parte I nee d trasmssone Introduone... Equaon de telegrafst... 3 Parametr per untà d lunghea... 7 Soluone nel domno della frequena... 7 soluone delle equaon de telegrafst...

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

NATURA ATOMICA DELLA MATERIA

NATURA ATOMICA DELLA MATERIA NATURA ATOMICA DLLA MATRIA Un qualunque fludo è costtuto da un gran numero d partcelle (sa sngol atom che molecole) n un contnuo moto dsordnato defnto agtaone termca. Questo fenomeno sta alla base de cosddett

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

Richiami di modelli di utilità aleatoria

Richiami di modelli di utilità aleatoria Corso d LOGISTICA TERRITORIALE www.unroma.t/ddattca/lt DOCENTE prof. ng. Agostno Nuzzolo Rcham d modell d utltà aleatora prof. ng. Agostno Nuzzolo - Corso d Logstca Terrtorale Modell d domanda e utltà

Dettagli

Numeri complessi, polinomi - Risposte pagina 1 di 11 23

Numeri complessi, polinomi - Risposte pagina 1 di 11 23 Numer compless, polnom - Rsposte pagna d 0. a. I numer compless con Re () sono quell a destra della retta vertcale (retta compresa). Quell con modulo mnore d 4 sono all nterno della crconferena d centro

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

CAPITOLO 16 CEDIMENTI DI FONDAZIONI SUPERFICIALI

CAPITOLO 16 CEDIMENTI DI FONDAZIONI SUPERFICIALI CAPITOLO 6 6. Introduone I cedment delle fondaon superfcal sono gl spostament vertcal del pano d posa, e sono l rsultato (l ntegrale) delle deformaon vertcal del terreno sottostante la fondaone. Tal deformaon

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Dilatazione Termica dei Solidi

Dilatazione Termica dei Solidi Prof. Tortorell Leonardo Spermentazone Tortorell'e-book per la ISICA 6.05 - Dlatazone Termca de Sold 6.05.a) Descrzone Qualtatva del enomeno ra molt effett prodott nella Matera da un Aumento d Temperatura,

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

Oltre la regressione lineare

Oltre la regressione lineare Oltre la regressone lneare Modello d regressone lneare (semplce o multpla: - varabl esplcatve X quanttatve e qualtatve (nserte tramte uso d varabl dummy - varable dpendente Y è quanttatva Y = b + b X +

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata d Fourer Sstem lnear Operator local P Gl operator local assocano ad ogn pel della mmagne d output Q un valore calcolato n un ntorno o fnestra w centrata nel pel P QfPw Operator local P La funzone

Dettagli

Corpi rigidi (prima parte)

Corpi rigidi (prima parte) Corp rgd (prma parte) Corp rgd Un corpo rgdo è un corpo n cu le dstane tra le vare par che lo compongono rmangono costan3. r CM d CM È un po parcolare d sstema d N parcelle. Valgono ancora le legg dp dt

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4 Teora de Goch Dr. Guseppe Rose Unverstà degl Stud della Calabra Corso d Laurea Magstrale n Economa Applcata a.a 011/01 Handout 4 1 L equlbro d Bertrand Nel modello d Bertrand, abbamo un duopolo esattamente

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

MODELLI DI UTILITÀ ALEATORIA

MODELLI DI UTILITÀ ALEATORIA corso d Teora e Tecnca della Crcolazone + Trasport e Terrtoro a.a. 2012-2013 MODELLI DI UTILITÀ ALEATORIA PROF. ING. UMBERTO CRISALLI Dpartmento d Ingegnera dell Impresa crsall@ng.unroma2.t Modell d utltà

Dettagli

Correnti e circuiti resistivi

Correnti e circuiti resistivi Corrent e crcut resstv Intensta d corrente Densta d corrente Resstenza Resstvta Legge d Ohm Potenza dsspata n una resstenza R Carche n un conduttore cos(θ ) v m N v 0 Se un conduttore e n equlbro l campo

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

i 2 R 2 i (v -v ) i O v S RID + -

i 2 R 2 i (v -v ) i O v S RID + - NLII DEL GUDGN, DELL EITENZ DI INGE E DELL EITENZ DI UCIT DI UN MPLIFICTE PEZINLE, NELL IPTEI DI GUDGN FINIT, DI EITENZ DI INGE FINIT E DI EITENZ DI UCIT NN NULL consdereranno separatamente cas d resstenza

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato.

E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Corrent e crcut Corrent e crcut corrente: la quanttà d carca che attraversa una superfce nell untà d tempo Q t lm t0 Q t dq dt 1 Ampere (A) = 1 C/s E' l rapporto tra la quanttà d carca che attraversa una

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Ran mran@unpr.t http://www.ran.t Rcham sulla regressone MODELLO DI REGRESSIONE y a + b + e dove: 1,, n a + b rappresenta una retta: a ordnata all orgne ntercetta b coeff.

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

VERIFICA IN ITINERE 9 GENNAIO 2019 CLMA

VERIFICA IN ITINERE 9 GENNAIO 2019 CLMA VERIFICA IN ITINERE 9 GENNAIO 2019 CLMA 1 Varabl Qualtattve: Sesso, Lvello d struzone Varabl Quanttatve: Età, Altezza, Peso 2 Età: Meda=74.1 ; Medana=73 ; Std=6.2 ; Q1=68 ; Q3=80 Altezza: Meda=172.5 ;

Dettagli

Statistica Descrittiva

Statistica Descrittiva Statstca Descrttva Corso d Davd Vettur Dat osservat Sano note le seguent msure dello spessore d una lastra d materale polmerco espresse n mllmetr 3.71 3.83 3.85 3.96 3.84 3.8 3.94 3.55 3.76 3.63 3.88 3.86

Dettagli

Dispersione magnetica nei trasformatori monofase

Dispersione magnetica nei trasformatori monofase Dspersone magnetca ne trasformator Supponamo che l avvolgmento l prmaro d un trasformatore sa percorso dalla corrente e supponamo d mantenere 0, 0, l avvolgmento l prmaro concatenerà un flusso φ che nel

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Modelli di utilità aleatoria

Modelli di utilità aleatoria corso d Teora de Sstem d Trasporto Modell d utltà aleatora PROF. ING. UMBERTO CRISALLI Dpartmento d Ingegnera dell Impresa crsall@ng.unroma.t Iscrzone al corso Modell d offerta ü Da effettuars anche on

Dettagli