2) Calcolare il prezzo ad oggi di una Put europea con un albero a 3 periodi.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2) Calcolare il prezzo ad oggi di una Put europea con un albero a 3 periodi."

Transcript

1 1) Calcolare il prezzo ad oggi di una Call europea con un albero a 2 periodi. tasso risk free: r =3,00%; Scadenza: 2 anni Step: n=2 Prezzo spot del sottostante: S 0 =100 Strike Price: K=98 u = 1,1 e d =0,95 A scadenza gli scenari possibili sono: uu, ud e dd, a cui corrispondono i seguenti prezzi del sottostante: Suu = 121,00, Sud = 104,50 e Sdd = 90,25. Calcolo il valore del payoff nei diversi scenari: Cuu = 23,00, Cud= 6,50 e Cdd = 0,00. Calcolo le probabilità associate ai diversi scenari: Puu = q 2 = 28,77%, Pud = 2*q*(1-q) = 49,74% e Pdd = (1-q) 2 =21,50% Prezzo: 2) Calcolare il prezzo ad oggi di una Put europea con un albero a 3 periodi. Tasso risk free: r =10,00%; Scadenza: 3 mesi Step: n=3 ( quindi dt = 1 mese = 30/365 = 0,0822 ) Prezzo spot del sottostante: S 0 =60 Strike Price: K=60 Volatilità del sottostante: Scenari a scadenza: uuu, uud, udd e ddd (Attenzione: lo scenario uud racchiude anche gli scenari udu e duu e quindi la probabilità sarà moltiplicata per 3, come prevede la formula: n=3, per udd invece k=1) Prezzi del sottostante a scadenza: Suuu = 88,36, Suud = 68,26,Sudd = 52,74 e Sddd = 40,74 Valori del Payoff a scadenza nei diversi scenari: Cuuu = 0,00, Cuud = 0,00, Cudd = 7,26, Cddd = 19,26 dove in questo caso k=2 e

2 Probabilità associate ai diversi scenari: Puuu = 12,49%, Puud = 3*q 2 *(1-q) = 37,49%, Pudd = 37,51% e Pddd = 12,51% Prezzo: C = 5,01 3) Calcolare il prezzo ad oggi di una Put con esercizio americano utilizzando gli stessi dati dell esercizio precedente ( Options Futures and other derivatives J. Hull, esercizio 18.2 pag. 430). u, d e q sono i medesimi dell esercizio precedente. n = 3 (esattamente come l esercizio precedente) Scenari: uuu, uud, udd e ddd Prezzi del sottostante: Suuu= 88,36, Suud = 68,26,Sudd = 52,74 e Sddd = 40,74 Valori del Payoff : Cuuu = 0,00, Cuud = 0,00, Cudd = 7,26, Cddd = 19,26 n=2 Scenari: uu, ud, dd Prezzi del sottostante: Suu = 77,66, Sud = 60,00 e Sdd = 46,35 Payoff che si ottiene dall esercizio anticipato (Early exercise): 0,00, 0,00 e 13,65 Payoff che si ottiene aspettando: Payoff allo step n=2 (Max(EE,W): Cuu = = = 0,00 Cud = = 3,60 Cdd = = 13,65 (l esercizio anticipato fa variare il prezzo rispetto all europea) n=1 Prezzi del sottostante: Su = 68,26 e Sd = 52,74 Payoff che si ottiene dall esercizio anticipato (Early exercise): EEu = 0,00 e EEd = 7,26 Payoff che si ottiene aspettando: Payoff allo step n=1 (Max(EE,W): Cu = 1,79 e Cd =8,56 Prezzo:

3 Il prezzo di un opzione con esercizio americano è sempre > o = della medesima opzione ma con esercizio europeo. Se i payoff calcolati nei tre periodi fossero sempre stati pari a W (cioè l esercizio posticipato fosse sempre meglio di quello anticipato) allora il prezzo sarebbe pari all europea. Inoltre valgono le seguenti osservazioni: - Early exercise non è mai ottimo per un opzione Call su un sottostante che non paga dividendi, ovvero il prezzo di una Call americana è sempre pari al prezzo dell analoga Call europea se il sottostante non paga dividendi. (intuitivamente l esercizio è sempre ottimo a scadenza perché il prezzo del sottostante segue un processo lognormale e quindi ha un trend crescente); - L early exercise può risultare ottimo invece nel caso di un opzione Call su un sottostante che paga i dividendi, in tal caso se l esercizio anticipato è ottimo lo è appena prima dello stacco del dividendo. - L early exercise può risultare ottimo nel caso di un opzione Put (sia che il sottostante paghi o non paghi dividendi) come mostrato nell esercizio appena svolto); Sulla valutazione di opzioni americane con alberi binomiali si consiglia di svolgere anche gli esercizi e a pag 430 del libro Options Futures and other derivatives J. Hull. 4) Delta hedging: Voglio costruire un portafoglio costituito dal derivato e da un numero di azioni tale che il rendimento di tale portafoglio sia certo 1, ipotizzando che a scadenza il sottostante possa assumere solo due valori: Su e Sd (albero binomiale uni periodale), ottengo che: Quindi devo comprare un numero di azioni pari a: Ovvero il numero Delta è proprio la greca finanziaria Delta che è la derivata (in questo caso discreta) del prezzo del derivato rispetto al prezzo del sottostante. La costruzione di un portafoglio di questo tipo è detta delta hedging. Proviamo ora a calcolare il Delta della Put dell esercizio 3: n =1 n = 2 Il Delta è variabile nel tempo e non è deterministico (deve essere valutato ipotizzando un modello per il processo del sottostante), quindi non c è mai il Delta hedging perfetto. 5) Calcolare il prezzo di un opzione asiatica usando un albero binomiale con tre periodi costruito nel seguente modo: Tasso risk free: r =10,00%; 1 Per il principio di non arbitraggio il rendimento di tale portafoglio non potrà mai essere superiore al tasso privo di rischio.

4 Scadenza: 3 mesi Step: n=3 ( quindi dt = 1 mese ) Prezzo spot del sottostante: S0=60 Strike: K = 54 Volatilità del sottostante: u, d e q sono i medesimi degli esercizi 2 e 3. n = 3 Suuu= 88,36, Suud = 68,26,Sudd = 52,74 e Sddd = 40,74 n=2 Suu = 77,66, Sud = 60,00 e Sdd = 46,35 n=1 Su = 68,26 e Sd = 52,74 Tabella di calcolo del valore dell opzione sui diversi path path mean payoff prob uuu 78,09 24,09 12,48% uud 71,40 17,40 12,49% udu 65,51 11,51 12,49% duu 60,33 6,33 12,49% udd 60,33 6,33 12,51% dud 55,16 1,16 12,51% ddu 50,61 0,00 12,51% ddd 46,61 0,00 12,52% Prezzo: C = 8,14 (media scontata dei valori a scadenza del Payoff) Osservazioni: perché il payoff è path dependent, questo perché la media aritmetica dei valori assunti da S è diversa per i differenti path: 6) Straddle costruita come una Put + Call con i medesimi parametri dell esercizio 2 e con volatilità apri al 30%. Diminuendo la volatilità il prezzo della strategia Straddle scende. u = 1,138, d= 0,879, q =50% e (1-q) = 50% (come esercizio 2) Scenari a scadenza: uuu, uud, udd e ddd Prezzi del sottostante a scadenza: Suuu= 88,36, Suud = 68,26,Sudd = 52,74 e Sddd = 40,74 Valori del Payoff della Call a scadenza:

5 Cuuu = 28,36, Cuud = 8,26, Cudd = 0,00, Cddd = 0,00 Probabilità associate ai diversi scenari: Puuu = 12,49%, Puud = 3*q 2 *(1-q) = 37,49%, Pudd = 37,51% e Pddd = 12,51% Prezzo Call ad oggi: Call = 6,47 Prezzo Put ad oggi : Put = 5,01 (vedere esercizio 2) Prezzo ad oggi dello straddle: Straddle = Call + Put = 11,48 Se ora modifico la volatilità: : u = 1,090, d= 0,918, q =55,64% e (1-q) = 47,36% Prezzi del sottostante a scadenza: Suuu = 77,66, Suud = 65,39,Sudd = 55,06 e Sddd = 46,35 Valori del Payoff della Put a scadenza: Cuuu = 0,00, Cuud = 0,00, Cudd = 4,94, Cddd = 13,65 Valori del Payoff della Call a scadenza: Cuuu = 17,66, Cuud = 5,39, Cudd = 0,00, Cddd = 0,00 Probabilità associate ai diversi scenari: Puuu = 14,59%, Puud = 3*q 2 *(1-q) = 39,37%, Pudd = 35,42% e Pddd = 10,62% Prezzo Call ad oggi: Call = 4,58 Prezzo Put ad oggi : Put = 3,12 (vedere esercizio 2) Prezzo ad oggi dello straddle: Straddle = Call + Put = 7,71 7) Call americana su un sottostante che paga dividendi Tasso risk free: r =10,00%; Scadenza: 3 mesi Step: n=3 ( quindi dt = 1 mese ) Prezzo spot del sottostante: S0=60 Strike: K = 54 Volatilità del sottostante: Dividendo : mesi e D = 2 u = 1,074 e d=0,931 q = 49,9% e 1-q =50,1% n=3 Scenari S Payoff (Suu-D)u 22,65 2,65 (Suu-D)d 19,62 0,00 (Sud-D)u 19,34 0,00 (Sud-D)d 16,76 0,00 (Sdd-D)u 16,47 0,00 (Sdd-D)d 14,27 0,00

6 n=2 Scenari S Early exe Waiting Payoff uu 21,08 1,08 1,32 1,32 ud 18,00 0,00 0,00 0,00 dd 15,33 0,00 0,00 0,00 n=1 Scenari S Early exe Waiting Payoff u 21,49 1,49 0,66 1,49 d 18,62 0,00 0,00 0,00 Price 0,74

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

Introduzione alberi binomiali

Introduzione alberi binomiali Introduzione alberi binomiali introduzione L albero binomiale rappresenta i possibili sentieri seguiti dal prezzo dell azione durante la vita dell opzione Il percorso partirà dal modello a uno stadio per

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni PROGRAMMA 1) Nozioni di base di finanza aziendale 2) Opzioni 3) Valutazione delle aziende 4) Finanziamento tramite debiti 5) Risk management Introduzione alle opzioni 6) Temi speciali di finanza aziendale

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni Introduzione alle opzioni Tipi di Opzioni La call è un opzione di acquisto La put è un opzione di vendita Le opzioni europee possono essere esercitate solo alla scadenza Le opzioni americane possono essere

Dettagli

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit.

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. http://www.borsaitaliana.it/borsa/azioni/scheda.html?isin=it0004781412&lang=en http://www.borsaitaliana.it/borsa/derivati/idem-stock-futures/lista.html?underlyingid=ucg&lang=en

Dettagli

Greche. Fondamenti dei Mercati di Futures e Opzioni, 5 a Edizione, Copyright John C. Hull 2004 15.1

Greche. Fondamenti dei Mercati di Futures e Opzioni, 5 a Edizione, Copyright John C. Hull 2004 15.1 Greche Problema per i trader è di gestire il rischio di posizioni su mercati over the counter e in borsa Ogni greca corrisponde a una misura di rischio Quindi i traders dovranno gestire le greche per gestire

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche Mediobanca (Milano, 11 luglio 2003) Indice 1. Perché i fisici in finanza? 2. Il problema 3. I modelli della fisica in finanza

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale 6 parte Prof. Giovanna Lo Nigro # 1 I titoli derivati # 2 Copyright 2003 - The McGraw-Hill Companies, srl Argomenti trattati Tipologie

Dettagli

ESERCIZI OPZIONI CALCOLO VALORE

ESERCIZI OPZIONI CALCOLO VALORE ESERCIZI OPZIONI CALCOLO VALORE Si consideri un opzione CALL Europea con prezzo di esercizio (strike) pari a X = 170 Euro e scadenza T = 1 trimestre su uno stock di valore iniziale pari a 175 Euro che

Dettagli

MODELLO DI BLACK SCHOLES

MODELLO DI BLACK SCHOLES MODELLO DI BLACK SCHOLES 1 Greche della Put Dalla put-call parity: C P = S Ke P = SN(d 1 ) Ke N(d ) S + Ke P = Ke (1 N(d )) S(1 N(d 1 )) quindi la FORMULA DI BLACK SCHOLES PER LA PUT è P = Ke N( d ) SN(

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15 FINANZA AZIENDALE AVANZATO Le opzioni e l option theory Lezioni 14 e 15 I derivati asimmetrici ono contratti/prodotti che fissano le condizioni a cui POTRA aver luogo la compravendita futura dell attività

Dettagli

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Prefazione XV Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Capitolo 2 Il mercato delle opzioni azionarie 11 2.1 Le opzioni sui singoli titoli azionari 11 2.2 Il mercato telematico delle

Dettagli

Danilo Mascia, PhD Student Università degli Studi di Cagliari Anno Accademico 2012-2013 Economia e tecnica del mercato mobiliare

Danilo Mascia, PhD Student Università degli Studi di Cagliari Anno Accademico 2012-2013 Economia e tecnica del mercato mobiliare Danilo Mascia, PhD Student Università degli Studi di Cagliari Anno Accademico 2012-2013 Economia e tecnica del mercato mobiliare danilo.mascia@gmail.com 1 Gli strumenti finanziari derivati 2 Gli strumenti

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

studi e analisi finanziarie LA PUT-CALL PARITY

studi e analisi finanziarie LA PUT-CALL PARITY LA PUT-CALL PARITY Questa relazione chiarisce se sia possibile effettuare degli arbitraggi e, quindi, guadagnare senza rischi. La put call parity è una relazione che lega tra loro: il prezzo del call,

Dettagli

Derivati: principali vantaggi e utilizzi

Derivati: principali vantaggi e utilizzi Derivati: principali vantaggi e utilizzi Ugo Pomante, Università Commerciale Luigi Bocconi Trading Online Expo Milano 28, Marzo 2003 CONTENUTI In un mondo senza derivati I futures Le opzioni Strategie

Dettagli

Elementi di teoria delle opzioni e dei contratti derivati

Elementi di teoria delle opzioni e dei contratti derivati Elementi di teoria delle opzioni e dei contratti derivati Claudio Pacati Università degli Studi di Siena Dipartimento di Economia Politica Dispensa del corso di Matematica Finanziaria, a.a. 2000 01 Le

Dettagli

Strategie e tecniche d investimento con le opzioni

Strategie e tecniche d investimento con le opzioni FINANZA OPERATIVA Strategie e tecniche d investimento con le opzioni Dario Daolio FRANCOANGELI Am - La prima collana di management in Italia Testi advanced, approfonditi e originali, sulle esperienze più

Dettagli

ALCUNI ESEMPI DI PROVE SCRITTE

ALCUNI ESEMPI DI PROVE SCRITTE ALCUNI ESEMPI DI PROVE SCRITTE Nota: questo file raccoglie alcuni esempi di prove scritte assegnate negli ultimi anni per gli esami di Matematica Finanziaria IIB e. I testi vanno presi come indicativi,

Dettagli

La metodologia di determinazione dei Margini Futures Straddle

La metodologia di determinazione dei Margini Futures Straddle La metodologia di determinazione dei Margini Futures Straddle Ufficio RM Versione.0 Indice Premessa... 3 Definizione e finalità dei margini Futures Straddle... 3 3 La metodologia di calcolo... 4 Pagina

Dettagli

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20 Finanza Aziendale Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale BMAS Capitolo 20 1 Le opzioni nei mercati reali e finanziari Si dicono opzioni i contratti finanziari

Dettagli

19-2 Argomenti trattati

19-2 Argomenti trattati Principi di finanza aziendale Capitolo 19-20 IV Edizione Richard A. Brealey Stewart C. Myers Sandro Sandri Introduzione alle opzioni e cenni al problema della valutazione 19-2 Argomenti trattati Call,

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

i tassi di interesse per i prestiti sono gli stessi che per i depositi;

i tassi di interesse per i prestiti sono gli stessi che per i depositi; Capitolo 3 Prodotti derivati: forward, futures ed opzioni Per poter affrontare lo studio dei prodotti derivati occorre fare delle ipotesi sul mercato finanziario che permettono di semplificare dal punto

Dettagli

GLI STRUMENTI FINANZIARI DERIVATI

GLI STRUMENTI FINANZIARI DERIVATI GLI STRUMENTI FINANZIARI DERIVATI ABSTRACT PRINCIPI SULLE OPZIONI!A cura di Mauro Liguori!Seminario del 7 giugno 2003!V. delle Botteghe Oscure, 54 -Roma DEFINIZIONE DI OPZIONE OPZIONE DIRITTO DI ACQUISTARE

Dettagli

Strategie Operative mediante Opzioni

Strategie Operative mediante Opzioni Strategie Operative mediante Opzioni Una posizione su: l opzione e il sottostante è detta hedge 2 o più opzioni dello stesso tipo è detta spread una miscela di calls e puts è detta combinazione Posizioni

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Alcuni strumenti finanziari particolari Alcuni strumenti proposti nel panorama internazionale Gli strumenti ai quali faremo riferimento sono: i financial

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di Prof. Filippo Stefanini A.A. Corso 60012 Corso di Laurea Specialistica in Ingegneria Edile Opzioni Le opzioni offrono agli investitori la possibilità di creare

Dettagli

Metodi Quantitativi per la Finanza

Metodi Quantitativi per la Finanza Metodi Quantitativi per la Finanza Metodi Quantitativi per la Finanza http://www.economia.unimi.it/finance S.M. Iacus Ricevimento: Gio 9:00-12:00, III Piano DEAS stefano.iacus@unimi.it Programma del corso

Dettagli

DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40

DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40 DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40 LE OPZIONI - Definizione Le opzioni sono contratti finanziari che danno al compratore il diritto, ma non il dovere, di comprare,

Dettagli

Fronteggiamento dei rischi della gestione

Fronteggiamento dei rischi della gestione Fronteggiamento dei rischi della gestione Prevenzione (rischi specifici) Impedire che un determinato evento si manifesti o limitare le conseguenze negative Assicurazione (rischi specifici) Trasferimento

Dettagli

GLI STRUMENTI DERIVATI. Giuseppe G. Santorsola EIF 1

GLI STRUMENTI DERIVATI. Giuseppe G. Santorsola EIF 1 GLI STRUMENTI DERIVATI Giuseppe G. Santorsola EIF 1 Gli strumenti derivati Sono strumenti finanziari la cui esistenza e valutazione dipendono dal valore di un'altra attività chiamata sottostante che può

Dettagli

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it Dipaimento di Ingegneria dell Impresa Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi A cura di: Ing. Fiorella Sciangula sciangula@ing.uniroma2.it 1 Opzioni: variabili Prezzo Spot, o valore

Dettagli

OPZIONI SU TITOLI CON DIVIDENDI

OPZIONI SU TITOLI CON DIVIDENDI OPZIONI SU IOLI CON DIVIDENDI 1 Proprietà fondamentali Si consideri un opzione call europea c, emessa su un titolo azionario S,con prezzo d esercizio X e con scadenza all epoca ; sia, inoltre, r il tasso

Dettagli

Note sulle Opzioni Americane

Note sulle Opzioni Americane Note sulle Opzioni Americane Wolfgang J. Runggaldier Universitá di Padova June 16, 2007 Si fornisce qui una traccia sull argomento delle opzioni americane a tempo discreto (dette anche Bermudean options)

Dettagli

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo In un mercato finanziario le opzioni a comprare (Call) o a vendere (Put) un titolo costituiscono il diritto, in un determinato periodo

Dettagli

Mercati e strumenti derivati (2): Swap e Opzioni

Mercati e strumenti derivati (2): Swap e Opzioni Mercati e strumenti derivati (2): Swap e Opzioni A.A. 2008-2009 20 maggio 2009 Agenda I contratti Swap Definizione Gli Interest Rate Swap Il mercato degli Swap Convenienza economica e finalità Le opzioni

Dettagli

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1 Matematica finanziaria: svolgimento della prova di esame del 4 settembre. Calcolare il montante che si ottiene dopo anni con un investimento di e in regime nominale al tasso annuale del % pagabile due

Dettagli

Gli strumenti derivati

Gli strumenti derivati Gli strumenti derivati EMM A - Lezione 6 Prof. C. Schena Università dell Insubria 1 Gli strumenti derivati Derivati perché il loro valore deriva da quello di altre attività dette beni/attività sottostanti

Dettagli

STRATEGIE DI TRADING CON LE OPZIONI. 8 maggio 2002

STRATEGIE DI TRADING CON LE OPZIONI. 8 maggio 2002 STRATEGIE DI TRADING CON LE OPZIONI 8 maggio 2002 LE STRATEGIE... Strategie di trading utilizzando: un opzione e l azione sottostante due o più opzioni sulla stessa azione Nelle tabelle che seguono verranno

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,

Dettagli

studi e analisi finanziarie Put ladder

studi e analisi finanziarie Put ladder Put ladder ( guadagniamo con i forti ribassi di mercato ) In questo articolo ci accingiamo ad esporre l analisi di un Put ladder, affronteremo prima la parte teorica poi, in successivo articolo, esporremo

Dettagli

Black-Scholes: le Greche

Black-Scholes: le Greche Black-Scholes: le Greche R. Marfé Indice 1 Delta 2 2 Gamma 4 3 Theta 6 4 Vega 7 5 Rho 8 6 Applicazione in VBA 9 1 1 Delta Il delta di un opzione (o di un portafoglio di opzioni) indica la sensibilità del

Dettagli

Anna Maria Arcari, Programmazione e controllo, McGraw-Hill, 2010, ISBN 6169-3

Anna Maria Arcari, Programmazione e controllo, McGraw-Hill, 2010, ISBN 6169-3 9.7. w La valutazione delle opzioni reali Come abbiamo visto i metodi e le regole tradizionali di capital budgeting non riescono a cogliere e misurare la discrezionalità del management e la flessibilità

Dettagli

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004 Note integrative di Moneta e Finanza Internazionale c Carmine Trecroci 2004 1 Tassi di cambio a pronti e a termine transazioni con consegna o regolamento immediati tasso di cambio a pronti (SR, spot exchange

Dettagli

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha 0) limitazioni prezzo call Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha γ(t)x + c(t) = A(t) + p(t) con A(t) prezzo dell azione,

Dettagli

Programmi per il calcolo deterministico del prezzo di opzioni call e put

Programmi per il calcolo deterministico del prezzo di opzioni call e put Programmi per il calcolo deterministico del prezzo di opzioni call e put Mariapaola Blancato e Federica Galdelli Introduzione Ogetto di questa tesina è l implementazione del modello di Cox, Ross e Rubinstein

Dettagli

Portfolio Analyzer - Pascal 1.0

Portfolio Analyzer - Pascal 1.0 Portfolio Analyzer - Pascal 1.0 Pascal 1.0 è la prima versione di un semplice Excel-based software, dotato di un Visual Basic Engine, creato per la valutazione di portafogli di strumenti derivati plain

Dettagli

Opzioni. Futures, forwards e opzioni

Opzioni. Futures, forwards e opzioni Opzioni Le calls sono opzioni Le puts sono opzioni per acquistare per vendere una certa attività a* una certa attività a* (o entro**) una certa data (o entro**) una certa data ad un certo prezzo ad un

Dettagli

Opzioni americane. Capitolo 5. 5.1 Il modello

Opzioni americane. Capitolo 5. 5.1 Il modello Capitolo 5 Opzioni americane 5. Il modello Consideriamo un modello di mercato finanziario così come descritto nel Paragrafo 4.2. Il mercato è quindi formato da d+ titoli di prezzi S 0 n, S n,..., S d n,

Dettagli

Le opzioni come strumento di copertura del portafoglio

Le opzioni come strumento di copertura del portafoglio Le opzioni come strumento di copertura del portafoglio BORSA ITALIANA S.p.A. Derivatives Markets Private Investors Business Development Relatore: Gabriele Villa Disclaimer La pubblicazione del presente

Dettagli

WHS opzioni FX. La guida per iniziare con le opzioni FX. Predire il trend dei mercati valutari e coprire le posizioni con le opzioni FX.

WHS opzioni FX. La guida per iniziare con le opzioni FX. Predire il trend dei mercati valutari e coprire le posizioni con le opzioni FX. La guida per iniziare con le opzioni FX WHS opzioni FX Predire il trend dei mercati valutari e coprire le posizioni con le opzioni FX. Affina il tuo stile di trading e la visione dei mercati. Impara ad

Dettagli

Corso di Risk Management S

Corso di Risk Management S Corso di Risk Management S Marco Bee marco.bee@economia.unitn.it Dipartimento di Economia Università di Trento Anno Accademico 2007-2008 Struttura del corso Il corso può essere suddiviso come segue: 1.

Dettagli

SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CON BARRIERA KNOCK IN

SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CON BARRIERA KNOCK IN BANCA CARIGE SpA SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CON BARRIERA KNOCK IN TIPOLOGIA DI STRUMENTO: DERIVATI SU CAMBI OBIETTIVO Il prodotto denominato Cambi opzione acquisto divisa

Dettagli

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Capitolo 4 Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Quanto è ragionevole pagare per entrare in un contratto d opzione? Per affrontare questo problema

Dettagli

OptionCube Educational

OptionCube Educational OptionCube Educational Derivatives & Consulting Srl Via Martiri della Libertà 244 30174 Mestre (VE) Sommario Sommario... 2 La descrizione di OptionCube... 3 OptionCube Educational... 3 OptionCube Educational

Dettagli

Analisi di risk management per la copertura dell esposizione al prezzo del petrolio

Analisi di risk management per la copertura dell esposizione al prezzo del petrolio sede: Corso Mazzini, 160 60121 Ancona (AN) sito internet: www.zeygos.com email: info@zeygos.com telefono: 071.55141 partita IVA 024.366.900.24 Analisi di risk management per la copertura dell esposizione

Dettagli

SCHEDA PRODOTTO: CAMBI - OPZIONE VENDITA DIVISA STRUTTURA CON BARRIERA KNOCK-IN

SCHEDA PRODOTTO: CAMBI - OPZIONE VENDITA DIVISA STRUTTURA CON BARRIERA KNOCK-IN BANCA CARIGE SpA SCHEDA PRODOTTO: CAMBI - OPZIONE VENDITA DIVISA STRUTTURA CON BARRIERA KNOCK-IN TIPOLOGIA DI STRUMENTO: DERIVATI SU DIVISE OBIETTIVO Il prodotto denominato Cambi Opzione Vendita Divisa

Dettagli

10 ESEMPIO DI VALUTAZIONE IN BILANCIO DI UN OPZIONE

10 ESEMPIO DI VALUTAZIONE IN BILANCIO DI UN OPZIONE SOMMARIO 1 INTRODUZIONE ALLE OPZIONI 1.1 Teoria delle opzioni 1.2 Specifiche contrattuali delle opzioni su azioni 2 FORMALIZZAZIONI 3 PROPRIETA FONDAMENTALI DELLE OPZIONI SU AZIONI 3.1 Put-Call Parity

Dettagli

Gli strumenti derivati. Prof. Mauro Aliano mauro.aliano@unica.it

Gli strumenti derivati. Prof. Mauro Aliano mauro.aliano@unica.it Gli strumenti derivati Prof. Mauro Aliano mauro.aliano@unica.it 1 I FRA (Forward Rate Agreement) Sono contratti con i quali due parti si mettono d accordo sul tasso di interesse da applicare ad un certo

Dettagli

4. Introduzione ai prodotti derivati. Stefano Di Colli

4. Introduzione ai prodotti derivati. Stefano Di Colli 4. Introduzione ai prodotti derivati Metodi Statistici per il Credito e la Finanza Stefano Di Colli Che cos è un derivato? I derivati sono strumenti il cui valore dipende dal valore di altre più fondamentali

Dettagli

Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE

Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE Sommario I Goldman Sachs 4 II Introduzione 6 Che cosa sono i covered

Dettagli

STRUTTURAZIONE, PRICING E GESTIONE DEI CERTIFICATE

STRUTTURAZIONE, PRICING E GESTIONE DEI CERTIFICATE STRUTTURAZIONE, PRICING E GESTIONE DEI CERTIFICATE STRUTTURAZIONE, PRICING E GESTIONE DEI CERTIFICATE SCELTA DEL CERTIFICATE DA EMETTERE I Certificate si dividono in 2 categorie: Con scadenza determinata

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA ECONOMIA E FINANZA TESI DI LAUREA VaR DI UNA STRATEGIA DI COPERTURA CON OPZIONI Relatore: Ch.mo Prof. CAPPUCCIO

Dettagli

Nuove strategie di trading con le opzioni del mercato IDEM

Nuove strategie di trading con le opzioni del mercato IDEM Nuove strategie di trading con le opzioni del mercato IDEM Gabriele VILLA Responsabile Business Development Investitori Privati Stefania FAIELLA Derivatives Markets Products and Indices Borsa Italiana

Dettagli

Analisi delle strutture dei Certificati IL PUNTO TECNICO. di Stefano Cenna [Certificate Journal]

Analisi delle strutture dei Certificati IL PUNTO TECNICO. di Stefano Cenna [Certificate Journal] Analisi delle strutture dei Certificati IL PUNTO TECNICO di Stefano Cenna [Certificate Journal] Analisi delle strutture dei Certificati IL PUNTO TECNICO Introduzione; Idem vs Sedex; Breve introduzione

Dettagli

Modelli probabilistici per la finanza

Modelli probabilistici per la finanza Capitolo 5 Modelli probabilistici per la finanza 51 Introduzione In questo capitolo introdurremo un modello probabilistico utile per lo studio di alcuni problemi di finanza matematica, a cui abbiamo già

Dettagli

I modelli fondati sul mercato dei capitali

I modelli fondati sul mercato dei capitali I modelli fondati sul mercato dei capitali Slides tratte da: Andrea Resti Andrea Sironi Rischio e valore nelle banche Misura, regolamentazione, gestione Egea, 2008 AGENDA L approccio basato sugli spread

Dettagli

Quesiti livello Application

Quesiti livello Application 1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali

Dettagli

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Vaalore della call/azione al 15 marzo 2014 Ipotizziamo di aver acquistato 1 azione FIAT al prezzo di 5,5.

Dettagli

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007 Matematica finanziaria: svolgimento prova di esonero del 5 maggio 2 a. Assumendo che il colore dei capelli negli esseri umani sia determinato da una coppia di alleli, diciamo (B, S), presi a caso con probabilità

Dettagli

Introduzione all Option Pricing

Introduzione all Option Pricing Introduzione all Option Pricing Arturo Leccadito Corso di Matematica Finanziaria 3 Anno Accademico 2008 2009 1 Il Modello Binomiale Si supponga che oggi (epoca 0) sia disponibile un titolo azionario il

Dettagli

Domanda 1: Valutazione e Analisi di Obbligazioni

Domanda 1: Valutazione e Analisi di Obbligazioni Domanda 1: Valutazione e Analisi di (48 punti) Il Sig. Smith è responsabile per gli investimenti obbligazionari presso una società di consulenza finanziaria, e ha analizzato la curva di rendimento delle

Dettagli

DARIO CUSATELLI Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari UN MODELLO DI CONTRATTO FINANZIARIO STRUTTURATO

DARIO CUSATELLI Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari UN MODELLO DI CONTRATTO FINANZIARIO STRUTTURATO DARIO CUSATELLI Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari UN MODELLO DI CONTRATTO FINANZIARIO STRUTTURATO SOMMARIO 1. Introduzione 2. Considerazioni preliminari 3.

Dettagli

Valutazione numerica di opzioni con Mathematica di Maurizio Spadaccino

Valutazione numerica di opzioni con Mathematica di Maurizio Spadaccino Valutazione numerica di opzioni con Mathematica di Maurizio Spadaccino Introduzione Mathematica, oltre a costituire un potente foglio di calcolo, è un linguaggio di programmazione interattivo e flessibile

Dettagli

Un introduzione all analisi Monte Carlo in Finanza

Un introduzione all analisi Monte Carlo in Finanza ASSOCIAZIONE ITALIANA FINANCIAL RISK MANAGEMENT Un introduzione all analisi Monte Carlo in Finanza Stefano Fabi Working Paper, 1/01/98 Presidenza: Fernando Metelli - Banca Popolare di Milano, Via Fara

Dettagli

Opzioni americane. Opzioni americane

Opzioni americane. Opzioni americane Opzioni americane Le opzioni di tipo americano sono simili a quelle europee con la differenza che possono essere esercitate durante tutto l intervallo [0, T ]. Supponiamo di avere un opzione call americana

Dettagli

Derivati per la copertura del rischio di prezzo nei mercati energetici

Derivati per la copertura del rischio di prezzo nei mercati energetici Derivati per la copertura del rischio di prezzo nei mercati energetici Prof. Fabio Bellini fabio.bellini@unimib.it Università di Milano Bicocca Dipartimento di Metodi Quantitativi www.dimequant.unimib.it

Dettagli

SCHEDA PRODOTTO: CAMBI OPZIONE VENDITA DIVISA STRUTTURA CILINDRICA

SCHEDA PRODOTTO: CAMBI OPZIONE VENDITA DIVISA STRUTTURA CILINDRICA BANCA CARIGE SpA SCHEDA PRODOTTO: CAMBI OPZIONE VENDITA DIVISA STRUTTURA CILINDRICA TIPOLOGIA DI STRUMENTO: DERIVATI SU CAMBI OBIETTIVO Il prodotto denominato Cambi Opzione Vendita Divisa Struttura Cilindrica

Dettagli

Tesoreria, Finanza e Risk Management per gli Enti Locali. Derivati: Gestione del Rischio e Valore di Mercato

Tesoreria, Finanza e Risk Management per gli Enti Locali. Derivati: Gestione del Rischio e Valore di Mercato Tesoreria, Finanza e Risk Management per gli Enti Locali Derivati: Gestione del Rischio e Valore di Mercato COMUNE DI MONTECATINI TERME 16 marzo 2009 1. Introduzione La valutazione del derivato del Comune

Dettagli

SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CILINDRICA

SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CILINDRICA BANCA CARIGE SpA SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CILINDRICA TIPOLOGIA DI STRUMENTO: DERIVATI SU CAMBI OBIETTIVO Il prodotto denominato Cambi opzione acquisto divisa struttura

Dettagli

Strumenti derivati. Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti:

Strumenti derivati. Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti: Strumenti derivati Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti: attività finanziarie (tassi d interesse, indici azionari, valute,

Dettagli

Elementi di Risk Management Quantitativo

Elementi di Risk Management Quantitativo Elementi di Risk Management Quantitativo (marco.bee@economia.unitn.it) Marzo 2007 Indice 1 Introduzione 2 1.1 Argomenti e testi di riferimento................. 2 2 Nozioni preliminari 3 2.1 Un po di storia..........................

Dettagli

Corso di FINANZA AZIENDALE AVANZATA

Corso di FINANZA AZIENDALE AVANZATA Corso di FINANZA AZIENDALE AVANZATA Teoria delle opzioni e opzioni reali Formula di Black/Sholes Nell approccio binomiale, per ipotesi, alla fine del periodo vi sono solo 2 possibili prezzi. Nella realtà,

Dettagli

Futures e Opzioni: un Portafoglio Non Direzionale

Futures e Opzioni: un Portafoglio Non Direzionale Corso di Laurea magistrale (ordinamento ex D.M. 270/2004) in Economia e Finanza Tesi di Laurea Futures e Opzioni: un Portafoglio Non Direzionale Relatore Ch. Prof.ssa Diana Barro Laureando Daniel Miatello

Dettagli

Introduzione. Capitolo 1. Opzioni, Futures e Altri Derivati, 6 a Edizione, Copyright John C. Hull 2005 1

Introduzione. Capitolo 1. Opzioni, Futures e Altri Derivati, 6 a Edizione, Copyright John C. Hull 2005 1 Introduzione Capitolo 1 1 La Natura dei Derivati I derivati sono strumenti il cui valore dipende dal valore di altre più fondamentali variabili sottostanti 2 Esempi di Derivati Forwards Futures Swaps Opzioni

Dettagli

Teoria delle opzioni e Prodotti strutturati

Teoria delle opzioni e Prodotti strutturati LS FIME a.a. 2008-2009 2009 Teoria delle opzioni e Prodotti strutturati Giorgio Consigli giorgio.consigli@unibg.it Uff 258 ricevimento merc: 11.00-13.00 1 Programma 1. Mercato delle opzioni e contratti

Dettagli

Dott. Domenico Dall Olio

Dott. Domenico Dall Olio Responsabile didattico per il progetto QuantOptions Le basi delle opzioni www.quantoptions.it info@quantoptions.it 1 Opzioni: long call definizione e caratteristiche di base Le opzioni sono contratti finanziari

Dettagli

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Martina Nardon Paolo Pianca ipartimento di Matematica Applicata Università Ca Foscari Venezia

Dettagli

1.Compro Azioni. 2.Vendo Azioni

1.Compro Azioni. 2.Vendo Azioni 1.Compro Azioni Question #1: Cos' è una Azione (un titolo azionario)? A) E' un Titolo rappresentativo della quota di una società B) E' una ricevuta per investire C) E' una assicurazione Question #2: Perchè

Dettagli

Dispensa delle lezioni Corso di programmazione in GAUSS Parte V. Club di Economia Applicata Dipartimento di Scienze Economiche Università di Verona

Dispensa delle lezioni Corso di programmazione in GAUSS Parte V. Club di Economia Applicata Dipartimento di Scienze Economiche Università di Verona Dispensa delle lezioni Corso di programmazione in GAUSS Parte V Club di Economia Applicata Dipartimento di Scienze Economiche Università di Verona Option Pricing Un opzione call (put) è un titolo che conferisce

Dettagli

La modalità di determinazione dei Margini Iniziali. Manuale

La modalità di determinazione dei Margini Iniziali. Manuale La modalità di determinazione dei Margini Iniziali Manuale Versione 1.2 del 4 giugno 2015 1.0 Executive summary... 1 2.0 Calcolo dei Margini per il comparto azionario e derivati azionari... 1 2.1. Tipologie

Dettagli

GLI STRUMENTI FINANZIARI PER LA COPERTURA DEL RISCHIO DI PREZZO DELL ENERGIA ELETTRICA

GLI STRUMENTI FINANZIARI PER LA COPERTURA DEL RISCHIO DI PREZZO DELL ENERGIA ELETTRICA GLI STRUMENTI FINANZIARI PER LA COPERTURA DEL RISCHIO DI PREZZO DELL ENERGIA ELETTRICA Stefano Alaimo Convegno LRA Energy Trading e Risk Management Milano, 15 febbraio 2002 Indice Alcune implicazioni della

Dettagli

pricing ed Hedging degli strumenti finanziari derivati

pricing ed Hedging degli strumenti finanziari derivati pricing ed Hedging degli strumenti finanziari derivati Aspetti Teorici ed Operativi Marcello Minenna 1 Review Option Pricing Theory Cos e un opzione? Il modello di Sharpe-Rendlemann-Bartter Il Modello

Dettagli