Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA"

Transcript

1 Architetture dei sistemi itegrati digitali Alessadro Bogliolo Esercitazioe 2 Progetto e realizzazioe di u semplice sitetizzatore musicale basato su FPGA (A) Defiizioe della specifica ed esperimeti prelimiari Facoltà di Igegeria Uiversità di Ferrara A.A. 200/02

2 Architetture dei sistemi itegrati digitali Alessadro Bogliolo Defiizioe del problema. Backgroud miimo [ Il suoo è u oda periodica che si propaga i u mezzo fisico (tipicamete l aria). Il suoo è caratterizzato da: altezza (frequeza dell oda periodica), timbro (forma d oda el domiio dei tempi o spettro el domiio delle frequeze), itesità (ampiezza). Ad alcue frequeze si associao le ote delle scale musicali. La distaza tra due frequeze f ed f2 è detta ottava se f2 = 2 f. Lo spazio di u ottava è suddiviso i toi e semitoi che separao le diverse ote. Le diverse regole di scomposizioe dao origie a diverse scale musicali. Le ote della scala aturale o cromatica soo: do f; re 9/8f; mi 5/4f; fa 4/3f; sol 3/2f; la 5/3f; si 5/8f; do2 2f La scala temperata si basa sulla defiizioe di semitoo come radice dodicesima di 2 (circa.05946): tra due ote c è u semitoo se f2 = f. Il too è il quadrato di u semitoo. La distaza tra le ote è espressa i termii di toi e semitoi: do < > re < > mi < ½ -> fa < > sol < > si < ½ -> do2 I simboli # (diesis) e b (be molle) idicao l aumeto o la riduzioe di u semitoo. La frequeza di 440Hz è per covezioe u LA..2 Fuzioalità Realizzazioe di u sitetizzatore musicale che associ le ote musicali ai tasti di ua comue tastiera per PC e e produca il suoo a seguito della pressioe dei tasti..3 Criteri per la valutazioe della qualità della soluzioe Estesioe della testiera: umero di ote riproducibili Qualità del suoo: frequeza di campioameto, livelli di quatizzazioe, distorsioe delle forme d oda Numero di timbri selezioabili: umero di forme d oda associate alla stessa ota Effetti opzioali.4 Risorse hardware utilizzabili FPGA xilix XC4005XL+ blocchi logici cofigurabili (CLB) Memoria SRAM AS7C024 collegata all FPGA sulla board di prototypig XS40 28K x 8 Porta PS2 collegata all FPGA sulla board di prototypig XS40 Covertitore D/A e uscita audio collegati all FPGA sulla board di estesioe XSed Oscillatore a 00MHz Display a 7 segmeti sulla board XS40 2 Geerazioe di u too 2. Premessa No dispoedo di oscillatori programmabili (se o del clock a 00MHz) il suoo dovrà essere prodotto i forma digitale (campioi quatizzati) e covertito utilizzado i covertitori D/A i dotazioe. 2.2 Notazioe s (t) forma d oda periodica di periodo s -esimo campioe s periodo di campioameto W umero di bit per campioe 2.3 Soluzioe A: Calcolo del valore istataeo della forma d oda Si suppoe di cooscere u espressioe aalitica del valore istataeo della forma d oda. L -esimo campioe da produrre può essere calcolato direttamete come s = s (t 0 + s ) Vataggi: Facoltà di Igegeria Uiversità di Ferrara A.A. 200/02 2

3 Architetture dei sistemi itegrati digitali Alessadro Bogliolo possibilità di modificare fase (t 0 ) e passo di campioameto ( s ) miime esigeze di memoria Svataggi: elevata complessità di elaborazioe dipedete dalla atura della forma d oda hardware dedicato alla specifica forma d oda 2.4 Soluzioe B: Look-up table Si suppoe di aver pre-calcolato e memorizzato i valori degli N campioi della forma d oda tra 0 e a partire da t 0 =0: N=/ s, s =s ( s ). Il campioe -esimo si trova ell -esima locazioe di memoria a partire da ua locazioe prestabilita base-address. Vataggi: semplicità possibilità di modificare la forma d oda cambiado i valori i tabella complessità idipedete dalla forma d oda Svataggi: impossibilità di modificare t 0 e/o s esigeze di memoria: NxW 3 Geerazioe di toi diversi sullo stesso registro 3. A L espressioe di s (t) può essere direttamete utilizzata per calcolare i valori campioati di s (t) poichè s (t) = s (t /) e quidi s = s (t0+ s ) = s ((t0+ s )/) 3.2 B Cambiado la frequeza (e quidi il rapporto tra s e ) cambiao i valori campioati. La soluzioe più baale per essere i grado di geerare K toi diversi cosiste ell uso di K tabelle diverse. Questo aumeta l impego di memoria a vataggio della complessità computazioale. 3.3 B2 Il segale a frequeza può essere geerato utilizzado i campioi memorizzati di quello a frequeza. Occorre stabilire il criterio di scelta del valore da associare all -esimo campioe. Se il rapporto tra e è u umero itero, il campioe -esimo del segale S corrispode al campioe del segale S memorizzato i posizioe /. s = s Se il rapporto o è u umero itero, il campioe -esimo del segale S o esiste i memoria e dee essere geerato estrapoladolo dai valori dispoibili. A tal fie possoo essere adottati diversi criteri, tra i quali: s = s s = s = s + s 2 primo campioe precedete primo campioe successivo s media tra i due campioi più vicii s = s + s s iterpolazioe tra i due campioe più vicii Facoltà di Igegeria Uiversità di Ferrara A.A. 200/02 3

4 Architetture dei sistemi itegrati digitali Alessadro Bogliolo Si oti che tutte le precedeti approssimazioi valgoo sia per >, sia per < e, bechè iutili i questo caso, per =. Le prime due soluzioi richiedoo u solo accesso i memoria per ogi campioe, le restati e richiedoo due. Ioltre l ultima soluzioe richiede ua moltiplicazioe, metre la terza richiede solo uo shift. 4 Geerazioe di suoi co timbri diversi 4. A Nel caso di soluzioe aalitica, cambiare timbro sigifica cambiare la fuzioe per il calcolo dei campioi, e quidi la sua implemetazioe. La complessità dell hardware dipede dal timbro. 4.2 B Nel caso di look-up table, cambiare timbro sigifica solo cambiare il coteuto della/e tabella/e. 5 Effetti 5. Diamica del suoo associato a ciascu tasto Il suoo geerato alla pressioe di u tasto può seguire diamiche diverse: avere itesità costate fitato che il tasto resta premuto e poi cessare istataeamete avere itesità costate fitato che il tasto resta premuto e poi essere atteuato progressivamete avere itesità omiale ell istate i cui il tasto viee premuto per la prima volta e poi essere atteuato progressivamete ache se il tasto resta premuto (come avviee i u piaoforte) Atteuazioe el tempo U suoo atteuato può essere visto come il prodotto di u suoo o atteuato per ua fuzioe di atteuazioe a(t) (fuzioe decrescete che vale al tempo 0 e tede a 0 all ifiito). s~ s = a( s ) Poichè ache la fuzioe di atteuazioe ci iteressa solo egli istati di campioameto, la sostituiamo co la successioe dei suoi valori campioati a = a(s). ra le fuzioi di atteuazioe soo particolarmete iteressati quelle che ammettoo ua defiizioe iduttiva e quidi si prestao ad u calcolo ricorsivo. ra queste c è l atteuazioe espoeziale: a = c, 0<c< la cui defiizioe iduttiva è a 0 = a = a - c 6 Sovrapposizioe degli effetti 6. Approccio diretto Se la pressioe di u tasto produce u suoo che viee smorzato el tempo ma o cessa appea viee rilasciato il tasto, l effetto dei tasti premuti successivamete si somma all effetto dei tasti premuti i precedeza. Il campioe da madare al covertitore digitale aalogico deve quidi essere calcolato come: s s~ s~ s~ s 2 m 2 = = s m a + s2 a2 Il calcolo di ogi campioe richiede u umero di accessi i memoria e di operazioi proporzioale al umero m di tasti di cui si sovrappoe l effetto. Il valore massimo di m è limitato dalla frequeza operativa dell hardware, dalla periodo di campioameto (tempo dispoibile per il calcolo di ogi campioe) e dai tempi di accesso alla memoria. 6.2 Approccio icremetale Assumiamo che la successioe dei campioi della forma d oda che risulta dalla sommatoria delle ote suoate possa essere espressa come prodotto di ua forma d oda periodica co periodo N s e di ua fuzioe di atteuazioe espoeziale a = c. m m a m Facoltà di Igegeria Uiversità di Ferrara A.A. 200/02 4

5 Architetture dei sistemi itegrati digitali Alessadro Bogliolo Si suppoga ora di disporre di ua memoria ausiliaria di dimesioe N, i cui memorizzare i primi N campioi della forma d oda da riprodurre Uso della memoria ausiliaria per la riproduzioe di ua sola ota Sotto queste ipotesi, i risposta alla pressioe di u tasto si accede alla look up table (LU) della ota corrispodete, si calcolao i primi N campioi del segale da riprodurre e li si memorizza ella memoria ausiliaria. Per calcolare i successivi campioi o è più ecessario accedere alla LU della ota, ma è sufficiete rileggere i dati dalla memoria ausiliaria atteuadoli di u fattore c N prima di riprodurli. Se i uovi valori sovrascrivoo i precedeti ella memoria ausiliaria, il procedimeto può essere ripetuto esattamete uguale fio alla completa estizioe del segale Uso della memoria ausiliaria per la riproduzioe di ua secoda ota sovrapposta alla prima Se viee premuto u secodo tasto durate la riproduzioe di ua ota, il calcolo del campioe del segale da riprodurre comporta l accesso alla memoria ausiliaria per recuperare il segale di fodo, l atteuazioe del segale di fodo, l accesso alla LU della uova ota, l atteuazioe della uova ota e la somma dei due valori. Il uovo campioe, oltre ad essere iviato al covertitore digitale aalogico, sostituisce quello precedete ella memoria ausiliaria. rascorso u periodo (N campioi) dalla pressioe del tasto, il coteuto della memoria ausiliaria rappreseta già la somma di tutte le ote da riprodurre, che devoo solo essere atteuate prima di essere riprodotte Uso della memoria ausiliaria per la riproduzioe di ua ota sovrapposta a molte precedeti Poichè il suoo di fodo memorizzato ella memoria ausiliaria può rappresetare la sovrapposizioe di u umero arbitrariamete grade di ote, l uso della memoria rede la riproduzioe di ote computazioalmete uguale alla riproduzioe di 2 sole ote: si tratta sempre di sovrapporre ua uova ota al segale di fodo I simboli I simboli, la memoria ausiliaria viee utilizzata al passo per recuperare il valore assuto dal segale d uscita al passo -N. Questo valore deve essere atteuato ed usato come base a cui sovrapporre tutti gli evetuali suoi la cui riproduzioe è iiziata da meo di u periodo: N 2 k N 2 2 s = s N c k = s N c + s c + s2 c s~ s~ s~ Il vataggio fodametale rispetto all equazioe del paragrafo 6. sta el umero massimo di addedi: là era pari al umero m di ota da suoare cotemporaeamete, qui è uguale a +k, dove k è il umero di tasti premuti i u periodo. No solo geeralmete k è molto miore di m, ma si può fare i modo che k sia al più uguale a, pur seza limitare il umero massimo di ote sovrappoibili Limiti all applicazioe dell approccio icremetale L applicabilità dell approccio icremetale è subordiato all esisteza di ua periodicità globale Ns della forma d oda complessiva che possa essere determiata a priori e che o superi le dimesioi della memoria dispoibile. Se queste codizioi o soo soddisfatte si possoo cocepire approssimazioi o applicare limitazioi al umero di toi simultaei o al loro sfasameto (ad esempio iiziado a suoare ua uova ota solo all iizio di u uovo periodo Ns). 7. Numeri iteri co sego 7.2 Rage diamico 7.3 Volume 7.4 Sovrapposizioe degli effetti 8. Stime dei costi Memoria Risorse di calcolo Cotrollo 7 Rappresetazioe dei campioi 8 Valutazioi ed esperimeti prelimiari 8.2 Stima delle prestazioi (Matlab) Effettuare simulazioi i Matlab per valutare l effetto delle diverse scelte progettuali, tra cui: Frequeza di campioameto Livelli di quatizzazioe Facoltà di Igegeria Uiversità di Ferrara A.A. 200/02 5 s k k c k

6 Architetture dei sistemi itegrati digitali Alessadro Bogliolo Forme d oda e timbri Iterpolazioe di campioi Atteuazioi Sovrapposizioe del suoo di più ote Uso della memoria ausiliaria per l approccio icremetale (Utilizzare le fuzioi Matlab dispoibili sul sito Web come base per gli esperimeti) 8.3 Variazioi sul tema Se al posto della tastiera si pesa di utilizzare il mouse come dispositivo di iput, è possibile cocepire u sitetizzatore che permetta di scegliere i modo cotiuo (i base agli spostameti del mouse) l altezza e il volume della ota da suoare. 9. Memoria 9.2 Porta PS2 9.3 Uscita audio 9 Iterfaccia Facoltà di Igegeria Uiversità di Ferrara A.A. 200/02 6

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

PARAMETRI DEL MOTO SISMICO

PARAMETRI DEL MOTO SISMICO PARAMETRI DEL MOTO SISMICO Attività microsismica: caratterizzata da vibrazioi di debole ampiezza e periodi molto gradi tali da o essere percepiti dai più comui strumeti di registrazioe (importate soprattutto

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Formula per la determinazione della Successione generalizzata di Fibonacci.

Formula per la determinazione della Successione generalizzata di Fibonacci. Formula per la determiazioe della uccessioe geeralizzata di Fiboacci. A cura di Eugeio Amitrao Coteuto dell articolo:. Itroduzioe......... uccessioe di Fiboacci....... 3. Formula di Biet per la successioe

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Sommario. Metodologie di progetto. Introduzione. Modello del Sistema. Diagramma a Blocchi. Progetto

Sommario. Metodologie di progetto. Introduzione. Modello del Sistema. Diagramma a Blocchi. Progetto Sommario Metodologie di progetto Massimo Violate troduzioe Progetto a Livello Porte Logiche Progetto a Livello Registri Progetto a Livello Sistema. troduzioe U sistema è ua collezioe di oggetti, compoeti,

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

La stima per capitalizzazione dei redditi

La stima per capitalizzazione dei redditi La stima per capitalizzazioe dei redditi 24.X.2005 La stima per capitalizzazioe La capitalizzazioe dei redditi è l operazioe matematico-fiaziaria che determia l ammotare del capitale - il valore di mercato

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

A = 10 log. senϕ = n n (3)

A = 10 log. senϕ = n n (3) CORSO DI LABORATORIO DI FISICA A Misure co fibre ottiche Scopo dell esperieza è la misura dell atteuazioe e dell apertura umerica di fibre ottiche di tipo F-MLD-500. Teoria dell esperieza La fisica sulla

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Un modello di interazione tra CPU e dispositivi di I/O

Un modello di interazione tra CPU e dispositivi di I/O Idice lezioe: Richiami e otazioi: Abbiamo visto: sistema moolitico (I + E + O) dividiamo I e O da E, e affidiamo loro ua CPU replichiamo gli I e gli O per parallelizzare sigolarmete gli I e O Parallelizzazioe

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

STIMA DEL FONDO RUSTCO

STIMA DEL FONDO RUSTCO STIMA DEL FONDO RUSTCO 1) Quali soo gli aspetti ecoomici che possoo essere presi i cosiderazioe ella stima dei fodi rustici? La stima di u fodo rustico può essere fatta applicado i segueti aspetti ecoomici:

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che:

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che: ARITMETICA 1 U importate ramo della matematica è l aritmetica, o teoria dei umeri, qui itesi come umeri iteri. Ci si poe il problema di stabilire se certe relazioi possao essere soddisfatte da umeri iteri,

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia Itroduzioe Metodi diretti Elimiazioe di Gauss Decomposizioe LU Casi particolari Metodi Iterativi Geeralità e covergeza Metodi di base Cei sui metodi basati sul gradiete Cei sui metodi multigriglia 1 Itroduzioe

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

Progressioni aritmetiche

Progressioni aritmetiche Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si

Dettagli

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA Politecico di Torio Sistemi di Produzioe... CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA... Equazioe di govero Negli ultimi ai il metodo

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Equazioni e contrazioni: un punto fisso //

Equazioni e contrazioni: un punto fisso // * 010 Equazioi e cotrazioi: u puto fisso // Nicola Chiriao Docete al Liceo Scietifico L. Siciliai di Catazaro [Nicola Chiriao] Nicola Chiriao è docete di Matematica e Fisica al Liceo Scietifico Siciliai

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA METODO DELLE PIOGGE PER IL CALCOLO DEI OLUMI DI INASO PER L INARIANZA IDRAULICA 1. Premessa I queste brevi ote si preseta il metodo semplificato delle piogge illustradoe l implemetazioe i u foglio di calcolo

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Valutazione delle prestazioni di calcolo

Valutazione delle prestazioni di calcolo Architettura degli Elaboratori e delle Reti Valutazioe delle prestazioi di calcolo A. Borghese, F. Pedersii Dipartimeto di Iformatica Uiversità degli Studi di Milao 1 Perché valutare le prestazioi? Perché?!

Dettagli

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente Corso di Laurea i Matematica LEZIONI PER IL CORSO DI ANALISI MATEMATICA..2 A.A. 2007-2008 ARGOMENTO: SERIE NUMERICHE Dott.ssa Sadra Lucete Idice :. Prime geeralità sulle serie. 2. Serie a termii o egativi:

Dettagli

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI APPROFONDIMENTI www.shutterstock.com/vladitto Stima di u immobile a destiazioe alberghiera di Maria Ciua (Ricercatore di Estimo Facoltà di Igegeria dell Uiversità di Palermo) I geere ell expertise immobiliare

Dettagli

Demand-Side Management in a Smart Micro-Grid: A Distributed Approach Based on Bayesian Game Theory

Demand-Side Management in a Smart Micro-Grid: A Distributed Approach Based on Bayesian Game Theory Demad-Side Maagemet i a Smart Micro-Grid: A Distributed Approach Based o Bayesia Game Theory Matteo Sola e Giorgio M. Vitetta Dipartimeto di Igegeria Ezo Ferrari Uiversità degli Studi di Modea e Reggio

Dettagli