La matematica finanziaria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La matematica finanziaria"

Transcript

1 La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto di u immobile, che avvegoo i mometi diversi? Prof. Paolo Rosato 1

2 Le prestazioi fiaziarie Le prestazioi fiaziarie soo rappresetate da flussi di costo e di ricavo. Perché ua prestazioe fiaziaria sia defiita uivocamete dobbiamo cooscere: l ammotare; la scadeza. Prof. Paolo Rosato 2

3 L iteresse L iteresse è il prezzo d uso del capitale. Il saggio (tasso) d iteresse (r) può essere espresso i termii percetuali (r 5%) o i termii uitari (r 0,05). L iteresse uitario è l iteresse maturato da ua uità di moeta i u ao. Il saggio di iteresse è direttamete proporzioale al rischio (ad u rischio maggiore corrispode u maggiore tasso di iteresse). Prof. Paolo Rosato 3

4 Il motate Il motate è la somma del capitale e dei relativi iteressi. Il motate uitario (q) è la somma fra u capitale pari a 1 e degli iteressi maturati i u ao: M C 0 + C 0 r C 0 (1 + r ) C 0 q ( es. r 0,05 q 1,05). Prof. Paolo Rosato 4

5 Iteresse semplice e composto L iteresse semplice gli iteressi maturati o maturao a loro volta altri iteressi; Si usa quado si cosidera u periodo di tempo uguale o iferiore ad 1 ao. L iteresse composto gli iteressi maturati maturao a loro volta altri iteressi; Si usa quado si cosidera u periodo di tempo superiore ad 1 ao. Prof. Paolo Rosato 5

6 Iteresse semplice: periodo uguale all ao Iteresse I C 0 r Motate M C 0 q Valore scotato C 0 M / q La somma di Euro viee depositata i baca all iteresse del 5%. Si vuol cooscere l ammotare: a) degli iteressi dopo u ao; b) del motate dopo u ao. I C 0 r ,05 50 Euro M C 0 + I C 0 (1+r) C 0 q Euro Prof. Paolo Rosato 6

7 Iteresse semplice: periodo iferiore all ao La durata viee idicata come frazioe di ao: gg/365 Iteresse I C 0 r Motate M C 0 (1 + r ) Valore scotato C 0 M / (1 + r ) La somma di Euro viee depositata i baca per 90 giori all iteresse del 5%. Si vuol cooscere l ammotare: a) degli iteressi; b) del motate. I C 0 r ,05 (90 / 365) 12,39 Euro. M C 0 + C 0 r C 0 (1 + r ) 1.012,39 Euro. Prof. Paolo Rosato 7

8 Iteresse composto: la determiazioe del motate dopo ai: Dopo 1 ao: C 1 C 0 + C 0 r C 0 (1+r) Dopo 2 ai: C 2 C 1 + C 1 r C 1 (1+r) C 2 C 0 (1+r) (1+r) C 2 C 0 q 2 Quidi: C C 0 q C 0 C 1 C 2... C Prof. Paolo Rosato 8

9 Iteresse composto: esempio A quato ammoterà, tra 10 ai (), il capitale di Euro (C 0 ) ivestito i titoli al saggio del 5%? M C 0 q , Euro. Se l iteresse o fosse composto, cioè se gli iteressi o maturassero altri iteressi, il motate sarebbe iferiore: Euro. Prof. Paolo Rosato 9

10 Spostameto di capitali el tempo No è possibile addizioare, sottrarre o cofrotare tra loro valori differiti el tempo, se prima o soo riportati allo stesso mometo. E ecessario idividuare le formule che cosetoo di aticipare o di posticipare ciascu valore. U valore spostato el futuro si trasforma i motate, spostato el passato si trasforma i valore scotato. Prof. Paolo Rosato 10

11 Periodi iferiori o uguali all ao Coefficiete di posticipazioe: (1 + r ) Coefficiete di aticipazioe: 1/(1+r) C 0 Posticipo (1 + r ) M 0 1 / (1 + r ) Aticipo Prof. Paolo Rosato 11

12 Esercizio Il caoe auo del vostro appartameto è suddiviso i due rate aticipate di Euro ciascua. A quato ammota l affitto percepito dal proprietario, riferito a fie ao? Sia r 5%. Posticipo (1 + r ) mesi 12 mesi Ca ( ) ( /2) (1.025) Prof. Paolo Rosato 12

13 Periodi superiori all ao Coefficiete di posticipazioe: q Coefficiete di aticipazioe: 1/q C 0 0 Posticipo q 1 / q Aticipo M Prof. Paolo Rosato 13

14 Esercizio Comperate u uovo computer che pagate i 2 rate da Euro: la prima subito, la secoda fra due ai. Quato costa il computer al mometo attuale (r 6 %)? Aticipo 1 / q / Euro Prof. Paolo Rosato 14

15 U milioe di Euro tra ai scotato ad oggi All aumetare del tempo e/o del saggio dimiuisce il valore Saggio 1 ao 2 ai 3 ai 10 ai 20 ai 1% % % % % % % % % % Prof. Paolo Rosato 15

16 Valore e tasso di scoto Valore attuale di 1 milioe collocato tra vet'ai Valore attuale Saggio Prof. Paolo Rosato 16

17 Le aualità Le aualità (a) soo quelle prestazioi fiaziarie che si verificao ad itervalli auali. Le aualità soo classificate i: posticipate o aticipate, i base alla scadeza di ciascua aualità, rispettivamete alla fie o all iizio dell ao; costati o variabili, i base all ammotare di ciascua aualità; limitate o illimitate, i base alla durata complessiva della serie di prestazioi. Prof. Paolo Rosato 17

18 Aualità variabili e limitate a 0 a 1 a 2... a A 0 A Gli strumeti dispoibili: coefficieti di aticipazioe e posticipazioe. Le accumulazioi iiziale e fiale assumoo rispettivamete la forma: A 0 a 0 + a 1 / q + a 2 / q 2 + a / q A a 0 q + a 1 q a A 0 A / q A A 0 q Prof. Paolo Rosato 18

19 Aualità costati, posticipate, limitate A 0 A a a.. a Accumulazioe fiale: A a q 1 r Accumulazioe iiziale: A 0 a q 1 rq Accumulazioe itermedia: A m A 0 q m A / q -m Prof. Paolo Rosato 19

20 Aualità costati, aticipate, limitate A 0 a a a a A Accumulazioe fiale: A aq q 1 r Accumulazioe iiziale: A 0 aq q 1 rq Accumulazioe itermedia: A m A 0 q m A / q -m Prof. Paolo Rosato 20

21 Aualità costati e illimitate A 0 a a ifiito Trattadosi di aualità illimitate: Posticipate: Aticipate: A 0 A 0 a r aq r Accumulazioe itermedia: A m A 0 q m q 1 lim rq 1 r Prof. Paolo Rosato 21

22 Le periodicità (o poliaualità) Le periodicità o poliaualità (P) soo prestazioi fiaziarie che si ripetoo ad itervalli regolari (), multipli dell ao. P P... P t Prof. Paolo Rosato 22

23 Periodicità costati, posticipate, limitate A 0 A t P P... P t Accumulazioe fiale: A t q q t P 1 1 Accumulazioe iiziale: A 0 P q t 1 ( q 1) q t Prof. Paolo Rosato 23

24 Periodicità costati, aticipate, limitate A 0 P P P P A t 0 2 (t-1) t Accumulazioe fiale: A t q q t Pq 1 1 Accumulazioe iiziale: A 0 Pq q t 1 ( q 1) q t Prof. Paolo Rosato 24

25 Periodicità costati, posticipate, illimitate Trattadosi di periodicità illimitate: lim t q t 1 1 ( 1) t q q q 1 Posticipate: A 0 P q 1 Aticipate: A 0 Pq q 1 Accumulazioe itermedia: A m A 0 q m Prof. Paolo Rosato 25

26 Trasformazioe di periodicità (P) i aualità (a) P P... P t a r P q 1 Prof. Paolo Rosato 26

27 Esercizio U immobile di civile abitazioe richiede, per poter forire u reddito costate, le segueti spese periodiche : a) spese per titeggiatura ogi 5ai (15 /mq); b) spese per riovo impiati ogi 25 ai (150 /mq); c) spese per ristrutturazioe itera ogi 80 ai (1000 /mq). Calcolare la quota aua relativa alle suddette spese. r r r Qa q 1 q 1 q 1 Prof. Paolo Rosato 27

28 Reitegrazioe La quota di reitegrazioe (Q re ) è quell aualità costate e posticipata che viee accumulata per u certo umero di ai allo scopo di costituire/riovare u capitale Q re r ( Vi V f ) q 1 Prevededo di dover ristrutturare u fabbricato tra dieci ai, sosteedo ua spesa di Euro , si vuol cooscere la somma aua posticipata da accatoare al saggio del 5%. 3 0,05 Q re , ,05 1 E Prof. Paolo Rosato 28

29 Ammortameto La quota di ammortameto (Q am ) è quell aualità costate, posticipata e limitata che deve essere corrisposta per estiguere u debito cotratto iizialmete Q am D i rq q 1 La Q am può essere disaggregata i due distite compoeti: quota capitale (Q c ); quota iteressi (Q i ). Prof. Paolo Rosato 29

30 Esercizio Si costruisca il piao di ammortameto di u debito di E da estiguere i tre ai al saggio del 10%, co rate aue, costati e posticipate. Q amm r q Di q , Ao Rata Quota capitale Quota iteressi Debito estito Debito residuo , ,021 3,021 1,000 3,021 6, ,021 3, ,344 3, ,021 3, ,000 0 Prof. Paolo Rosato 30

31 Esercizio A LLa situazioe fiaziaria di u impresa è la seguete: da icassare fra u mese; da versare fra sei mesi; da restituire fra due ai. AAssumedo u tasso di iteresse pari al 6 % auo, calcolare: - l idebitameto totale all attualità; - la rata semestrale posticipata che estigue il debito i sette ai. Idebitameto: A , , , ,61 Prof. Paolo Rosato 31

32 Covertibilità semestrale: Esercizio A Q as 0,03 1, , , ,65 Covertibilità aua: Q aa 0,06 1, ,61 7 1, Q as ,06 Q 12 + Q as aa Q as , ,86 Prof. Paolo Rosato 32

33 Esercizio B LLa costruzioe di u complesso immobiliare richiede i segueti esborsi: - 3 ml di da versare subito; - 5 ml di all ao da versare per i prossimi 3 ai; - 4 ml di da versare fra 4 ai. AAssumedo u tasso di iteresse pari al 6 %, calcolare la rata aua posticipata del mutuo deceale che fiazia la costruzioe. Fabbisogo fiaziario: A Quota ammortameto: 3 1, ,06 1,06 1, ,53 Q a 0,06 1,06 19, , ,65 Prof. Paolo Rosato 33

34 Esercizio C CCompilare il piao di ammortameto trieale, co rate aue posticipate, di u mutuo pari a al tasso di iteresse del 4 %. 0,04 1, ,04 1 Quota ammortameto: , 23 Q a 3 Ao Qa Qi Qc De Dr , ,23 600, , , , ,23 407, , , , ,23 207, , ,00 0,00 Prof. Paolo Rosato 34

35 Esercizio D La mautezioe di u fabbricato richiede le segueti spese: ogi 4 ai; ogi 6 mesi; ogi 10 ai. Assumedo u tasso di iteresse pari al 10 %, calcolare la quota di mautezioe aua. Quota mautezioe: Q m 0,1 6 0, , , , ,41 Prof. Paolo Rosato 35

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Elementi di Matematica Finanziaria per l Estimo

Elementi di Matematica Finanziaria per l Estimo Elemeti di Matematica Fiaziaria per l Estimo Paolo Rosato Dipartimeto di Igegeria Civile e Architettura Piazzale Europa 1-34127 Trieste. Italia Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mail: paolo.rosato@dia.uits.it

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

La stima per capitalizzazione dei redditi

La stima per capitalizzazione dei redditi La stima per capitalizzazioe dei redditi 24.X.2005 La stima per capitalizzazioe La capitalizzazioe dei redditi è l operazioe matematico-fiaziaria che determia l ammotare del capitale - il valore di mercato

Dettagli

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08 L ammortameto dei prestiti. Corsaro Matematica Fiaziaria a.a. 27/8 Prestiti idivisi Operazioi fiaziarie co due cotraeti mutuate o creditore: presta u capitale mutuatario o debitore: si impega a restituire

Dettagli

Rendita perpetua con rate crescenti in progressione aritmetica

Rendita perpetua con rate crescenti in progressione aritmetica edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

DISPENSE DI MATEMATICA FINANZIARIA

DISPENSE DI MATEMATICA FINANZIARIA SPENSE MATEMATA FNANZAA 3 Piai di ammortameto. 3. osiderazioi geerali. U piao di ammortameto cosiste ella restituzioe di u importo preso a prestito mediate il versameto d'importi distribuiti el tempo.

Dettagli

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015 BLOCCO TEMATICO DI ESTIMO Diritti reali: usufrutto CORSO PRATICANTI 2015 Usufrutto L'usufrutto è il diritto di godimeto da parte di ua persoa detta USUFRUTTUARIO di u bee altrui; il proprietario del bee

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 18

McGraw-Hill. Tutti i diritti riservati. Caso 18 Mauale di Estimo Vittorio Gallerai, Giacomo Zai, Davide Viaggi Caso 18 Copyright 2005 The Compaies srl Stima del diritto di usufrutto e del valore della uda proprietà relativi ad u appartameto di civile

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina)

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina) ITIS OMAR Dipartimeto di Meccaica APPUNTI DI ECONOMIA ELEMENTARE (tratti da A. MONTE Elemeti di Impiati Idustriali Cortia) Si defiisce iteresse il dearo pagato per l'uso di u capitale otteuto i prestito

Dettagli

07.XII Laboratorio integrato 3 - Valutazione economica del progetto - Clamarch - Prof. E. Micelli - Aa

07.XII Laboratorio integrato 3 - Valutazione economica del progetto - Clamarch - Prof. E. Micelli - Aa Elemeti di matematica fiaziaria 07.XII.2011 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria MERCATO DEI MUTUI A.A. 2015/2016 Prof. Alberto Dreassi adreassi@uits.it DEAMS Uiversità di Trieste ARGOMENTI Scopi e caratteristiche dello strumeto Tipologie di mutui Il mercato secodario e il ruolo svolto

Dettagli

Estimo rurale appunti 2005. Estimo rurale

Estimo rurale appunti 2005. Estimo rurale Estimo rurale apputi 2005 Estimo rurale L estimo rurale rietra ell ambito delle disciplie ecoomiche, ma metre l ecoomia si occupa della coosceza della realtà, esso si occupa della valutazioe dei bei. Compito

Dettagli

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K 1 Matematica Fiaziaria Uiversità degli Studi La Sapieza Facoltà di Ecoomia Ao accademico 212-13 Matematica Fiaziaria Caale D - K Capitolo 3 Ammortameto di prestiti idivisi Atoio Aibali Atoio Aibali a.a.

Dettagli

Matematica finanziaria

Matematica finanziaria C:\Users\Public\Documets\03_DIDATTICA\02. MATERIALE ON LINE\Documeti doc&exe\03. Matematica fiaziaria.docx Materiale didattico Ultimo aggiorameto: 28 dicembre 2012 Matematica fiaziaria A cura di Fracesco

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

STIMA DEI DIRITTI REALI SU COSA ALTRUI (CAPP. 15-16-17)) STIMA INERENTI L USUFRUTTO, USO E ABITAZIONE (CAP. 15)

STIMA DEI DIRITTI REALI SU COSA ALTRUI (CAPP. 15-16-17)) STIMA INERENTI L USUFRUTTO, USO E ABITAZIONE (CAP. 15) STIMA DEI DIRITTI REALI SU COSA ALTRUI (CAPP. 15-16-17)) Apputi di estimo STIMA INERENTI L USUFRUTTO, USO E ABITAZIONE (CAP. 15) DIRITTO DI USUFRUTTO Defiizioe di usufrutto L usufrutto è u diritto reale

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI APPROFONDIMENTI www.shutterstock.com/vladitto Stima di u immobile a destiazioe alberghiera di Maria Ciua (Ricercatore di Estimo Facoltà di Igegeria dell Uiversità di Palermo) I geere ell expertise immobiliare

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cei di Matematica Fiaziaria Corso: Ecoomia ed estimo forestale ed ambietale. S. Severii (Uiversità della Tuscia, 1 Saggio di iteresse C C I I C r C C C C C C r C 1 r M r C C C C C C % C capitale al periodo

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

Progressioni aritmetiche

Progressioni aritmetiche Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si

Dettagli

SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI

SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI di Massimo FANTINI e Roberto TONELLO MATERIE: ECONOMIA AZIENDALE (classe 5 IT Idirizzo AFM; Articolazioe SIA; Articolazioe RIM; 5 IP Servizi

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE

Capitolo 27. Elementi di calcolo finanziario EEE Capitolo 27 Elemeti di calcolo fiaziario EEE 2012-2013 27.1 Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

PROGRAMMA RISPARMIO ENERGETICO EFFICIENTAMENTO ENERGETICO DEGLI EDIFICI PRIVATI

PROGRAMMA RISPARMIO ENERGETICO EFFICIENTAMENTO ENERGETICO DEGLI EDIFICI PRIVATI COMUNE DI VIGGIANO Provicia di Poteza 0975 61142 Fax 0975 61137 Partita IVA 00182930768 C.C.P. 14378855 PROGRAMMA RISPARMIO ENERGETICO EFFICIENTAMENTO ENERGETICO DEGLI EDIFICI PRIVATI Azioe A2 BANDO PER

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

Modifica del regolamento della Cassa pensione Novartis

Modifica del regolamento della Cassa pensione Novartis Modifica del regolameto della Cassa pesioe Novartis Agli assicurati della Cassa pesioe Novartis Il Cosiglio di fodazioe della Cassa pesioe Novartis ha emaato importati modifiche del cocetto e delle prestazioi

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Esercizi per il recupero e per l autovalutazione. L interesse e i problemi connessi VERIFICA 1

Esercizi per il recupero e per l autovalutazione. L interesse e i problemi connessi VERIFICA 1 Telepass + 1 bieio UNITÀ G I calcoli fiaziari Esercizi per il recupero e per l autovalutazioe L iteresse e i problemi coessi VERIFICA 1 Test 1 Il regime di capitalizzazioe secodo cui gli iteressi maturati

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

APPUNTI DI ECONOMIA AGRARIA

APPUNTI DI ECONOMIA AGRARIA APPUNTI DI ECONOMIA AGRARIA prof Vittorio Moaui Liberamete tratti da Apputi di Ecoomia Agraria I Uiversità di Padova pag 2/20 AZIENDA ED IMPRESA azieda uità tecica di produzioe costituita da terrei (ache

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Valutazione Economica del Progetto Corso del prof. Stefano Stanghellini Elementi di matematica Contributo didattico: prof. Sergio Copiello Spostamento di capitali nel tempo Non è possibile addizionare,

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA TETI FINNZIRI. Defiizioi 2. Iteesse semplice 3. Iteesse composto cotiuo 4. Iteesse composto discotiuo auo Spostameto dei valoi el tempo ualità Peiodicità 5. Iteesse composto discotiuo covetibile atematica

Dettagli

Corso di Valutazione Economica del Prodotto

Corso di Valutazione Economica del Prodotto Seconda Università degli Studi di Napoli Luigi Vanvitelli Dipartimento di Architettura CdL Design e Comunicazione - Design per la Moda Corso di Valutazione Economica del Prodotto Docente_arch. Eleonora

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA aa 2009-2010 Operazioi statistiche elemetari Spesso ci si preseta il problema del cofroto tra dati Ad esempio, possiamo voler cofrotare feomei [ecoomici]

Dettagli

Cenni di Teoria delle assicurazioni

Cenni di Teoria delle assicurazioni ei di Teoria dee assicurazioi Vautazioe di acue fore basiari di assicurazioi sua ita Probea di autazioe di ua redita di durata aeatoria Necessità di espriere a probabiità di sopraieza di u idiiduo: Fuzioi

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Il calcolo finanziario è utilizzato per rendere epoche diverse.

Il calcolo finanziario è utilizzato per rendere epoche diverse. Economia delle Risorse Naturali A COSA SERVE? Il calcolo finanziario è utilizzato per rendere omogenei tra loro valori che si verificano in epoche diverse. L interesse è il prezzo d uso del capitale. Il

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

ESERCIZI DI CALCOLO FINANZIARIO (Capitolo 27)

ESERCIZI DI CALCOLO FINANZIARIO (Capitolo 27) ESERCIZI DI CALCOLO FINANZIARIO (Capitolo 27) Elementi di calcolo finanziario EEE 2012-2013 INTERESSE SEMPLICE Dato un capitale di : 1000 determinare l'interesse per giorni: 73 al tasso annuo del: 8% n

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA Anno scolastico 2008/09 Prof. Romano Oss Matematica finanziaria è uno strumento di calcolo basato sulla teoria dell interesse,

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

STIMA DEL FONDO RUSTCO

STIMA DEL FONDO RUSTCO STIMA DEL FONDO RUSTCO 1) Quali soo gli aspetti ecoomici che possoo essere presi i cosiderazioe ella stima dei fodi rustici? La stima di u fodo rustico può essere fatta applicado i segueti aspetti ecoomici:

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Indici COMIT Metodologia di calcolo

Indici COMIT Metodologia di calcolo Il presete documeto riassume le regole fodametali per il calcolo e la gestioe degli idici elaborati da Itesa Sapaolo per l itero Mercato Telematico Azioario italiao (MTA) ed il vecchio Nuovo Mercato. Gli

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

2. Duration. Stefano Di Colli

2. Duration. Stefano Di Colli 2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria Venezia, 12 maggio 2010 Il problema La matematica finanziaria fornisce gli strumenti necessari per il confronto di flussi di moneta o capitali che si verificano in momenti

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

STIMA DEI DANNI 1) Che cosa si intende per danno economico?

STIMA DEI DANNI 1) Che cosa si intende per danno economico? STIMA DEI DANNI 1) Che cosa si itede per dao ecoomico? Per dao ecoomico si itede la perdita o la dimiuzioe di valore che u bee subisce a seguito di u siistro ( eveto o prevedibile) o da u fatto doloso

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Matematica Attuariale. Contratto di assicurazione

Matematica Attuariale. Contratto di assicurazione Matematica Attuariae La matematica attuariae studia a determiazioe dei premi assicurativi i fuzioe di determiati eveti che possoo verificarsi i reazioe a cotratti assicurativi. Cotratto di assicurazioe

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

FONDO CRESCO. Elementi di sintesi. Milano 24 gennaio 2013. Riservato e confidenziale

FONDO CRESCO. Elementi di sintesi. Milano 24 gennaio 2013. Riservato e confidenziale FONDO CRESCO Elemeti di sitesi Milao 24 geaio 2013 Riservato e cofideziale Premessa ed obiettivi del documeto. L obiettivo del presete documeto è quello di presetare il Fodo CRESCO che affiacherà il Fodo

Dettagli

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007 Tecica delle misurazioi applicate Esame del 4 dicembre 7 Problema 1. Il propulsore Mod. WEC viee prodotto da ACME Ic. mediate u processo automatizzato: dati storici cofermao che la lavorazioe di ogi elemeto

Dettagli

Montante (C n ) La somma di capitale ed interesse, disponibile alla fine dell'anno, viene chiamata montante:

Montante (C n ) La somma di capitale ed interesse, disponibile alla fine dell'anno, viene chiamata montante: NOZIONI DI CALCOLO FINANZIARIO: a cura del dr. Renato Fucito 1 Introduzione La matematica finanziaria studia i problemi relativi al trasferimento nel tempo di valori. In particolare essa si occupa dei

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y.

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y. DIPENDENZA O CONNESSIONE Due caratteri X e Y cogiutamete cosiderati si dicoo tra loro coessi quado le modalità di u carattere ifluezao il maifestarsi delle modalità dell altro. Ovvero quado la coosceza

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

FONDO EUROPEO DI SVILUPPO REGIONALE. nuove iniziative d impresa

FONDO EUROPEO DI SVILUPPO REGIONALE. nuove iniziative d impresa regioe puglia il lavoro e l iovazioe PO FESR 2007-2013 Asse VI Azioe 6.1.5. idi uove iiziative d impresa Regioe Puglia cosa trovo i questa scheda? Questa scheda cotiee alcue iformazioi sulla Misura Nidi

Dettagli