MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA Appello del 22 gennaio 2015"

Transcript

1 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore si rivolge a due banche (banca A e banca B) per ottenere un prestito di S = euro. La banca A gli offre un finanziamento da restituire in due rate semestrali pari a R = euro. La banca B gli propone invece un finanziamento al tasso semplice di i S = 5.5%, da restituire in un unica soluzione dopo T = 1 anno e 2 mesi. Si determinino i tassi interni di rendimento dei due finanziamenti, esprimendoli in forma percentuale e su base annua. i A = % i B = % Quale dei due finanziamenti sceglierà l imprenditore, e per quale motivo? Risposta: Esercizio 2. Una famiglia acquista un portafoglio finanziario del valore complessivo, in t = 0, di euro, composto interamente da BTP con maturità di 10 anni e con t.n.a. del 3.5%. Sapendo che il rendimento del portafoglio (espresso in termini di t.i.r.) è del 7.2% si calcoli il flusso di cassa (= pagamento) garantito dall investimento ai tempi T 1 = 1 anno e T 2 = 10 anni. x T1 = mln di euro x T2 = mln di euro Si calcoli il valore montante M e il valore residuo V dell investimento in T 3 = 9 anni e 5 mesi, in base alla legge esponenziale di tasso annuo il t.i.r. del portafoglio M = mln di euro V = mln di euro

2 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = euro, da restituirsi in 4 rate trimestrali al tasso annuo i = 4%. Il mutuo prevede che la prima rata sia di preammortamento, che la seconda e la terza siano uguali fra loro (R 2 = R 3 ) e che la quarta rata sia il doppio della seconda (R 4 = 2R 2 ). Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

3 Esercizio 4. Alla data odierna (tempo zero) nel mercato dei titoli di Stato italiani è in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza: h(0, s) = s anni 1 (tempo s espresso in anni). Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato, esprimendoli in forma percentuale e in base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo P, di un CCT con vita a scadenza un anno e mezzo, nominale 100 euro e spread 70 punti base su ogni cedola (si trascuri la cedola pagata in t = 0). P = euro Esercizio 5. Il sig. Bianchi ha in portafoglio i seguenti titoli: una rendita perpetua con rata annuale di 100 euro; un BOT a sei mesi di nominale euro. Sapendo che sul mercato è in vigore una struttura per scadenza piatta, di tasso annua i=7%, si calcoli il valore V e la duration (in anni) D del portafoglio V = euro D = anni Un consulente finanziario lo convince che il suo portafoglio è troppo rischioso e gli suggerisce di dimezzarne la duration. A questo scopo, gli propone di vendere un po della rendita, per un valore di V euro, e di comprare con questa somma un titolo a cedola nulla a 2 anni. Si determini il valore V necessario allo scopo. V = euro

4 Esercizio 6. Nel mercato telebnk sono quotati alla data t = 0: il tasso a pronti a un anno è il 2.1%; un contratto a termine, che rimborsa euro a due anni a fronte del pagamento del prezzo di 100 euro fra un anno; un titolo cedola fissa annuale, con nominale 100, durata 3 anni, cedola di 2.5 euro e quotato alla pari. Si determini la struttura per scadenza dei tassi a pronti e tassi swap in vigore su questo mercato al tempo t, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i sw (0; 1) = % i(0, 2) = % i sw (0; 2) = % i(0, 3) = % i sw (0; 3) = %

5 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore si rivolge a due banche (banca A e banca B) per ottenere un prestito di S = euro. La banca A gli offre un finanziamento da restituire in due rate semestrali pari a R = euro. La banca B gli propone invece un finanziamento al tasso semplice di i S = 5.5%, da restituire in un unica soluzione dopo T = 1 anno e 2 mesi. Si determinino i tassi interni di rendimento dei due finanziamenti, esprimendoli in forma percentuale e su base annua. i A = % i B = % Quale dei due finanziamenti sceglierà l imprenditore, e per quale motivo? Risposta: Esercizio 2. Una famiglia acquista un portafoglio finanziario del valore complessivo, in t = 0, di euro, composto interamente da BTP con maturità di 10 anni e con t.n.a. del 4.5%. Sapendo che il rendimento del portafoglio (espresso in termini di t.i.r.) è del 7.2% si calcoli il flusso di cassa (= pagamento) garantito dall investimento ai tempi T 1 = 1 anno e T 2 = 10 anni. x T1 = mln di euro x T2 = mln di euro Si calcoli il valore montante M e il valore residuo V dell investimento in T 3 = 9 anni e 5 mesi, in base alla legge esponenziale di tasso annuo il t.i.r. del portafoglio M = mln di euro V = mln di euro

6 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = euro, da restituirsi in 4 rate trimestrali al tasso annuo i = 5%. Il mutuo prevede che la prima rata sia di preammortamento, che la seconda e la terza siano uguali fra loro (R 2 = R 3 ) e che la quarta rata sia il doppio della seconda (R 4 = 2R 2 ). Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

7 Esercizio 4. Alla data odierna (tempo zero) nel mercato dei titoli di Stato italiani è in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza: h(0, s) = s anni 1 (tempo s espresso in anni). Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato, esprimendoli in forma percentuale e in base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo P, di un CCT con vita a scadenza un anno e mezzo, nominale 100 euro e spread 60 punti base su ogni cedola (si trascuri la cedola pagata in t = 0). P = euro Esercizio 5. Il sig. Bianchi ha in portafoglio i seguenti titoli: una rendita perpetua con rata annuale di 100 euro; un BOT a sei mesi di nominale euro. Sapendo che sul mercato è in vigore una struttura per scadenza piatta, di tasso annua i=6%, si calcoli il valore V e la duration (in anni) D del portafoglio V = euro D = anni Un consulente finanziario lo convince che il suo portafoglio è troppo rischioso e gli suggerisce di dimezzarne la duration. A questo scopo, gli propone di vendere un po della rendita, per un valore di V euro, e di comprare con questa somma un titolo a cedola nulla a 2 anni. Si determini il valore V necessario allo scopo. V = euro

8 Esercizio 6. Nel mercato telebnk sono quotati alla data t = 0: il tasso a pronti a un anno è il 2.2%; un contratto a termine, che rimborsa euro a due anni a fronte del pagamento del prezzo di 100 euro fra un anno; un titolo cedola fissa annuale, con nominale 100, durata 3 anni, cedola di 2.6 euro e quotato alla pari. Si determini la struttura per scadenza dei tassi a pronti e tassi swap in vigore su questo mercato al tempo t, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i sw (0; 1) = % i(0, 2) = % i sw (0; 2) = % i(0, 3) = % i sw (0; 3) = %

9 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore si rivolge a due banche (banca A e banca B) per ottenere un prestito di S = euro. La banca A gli offre un finanziamento da restituire in due rate semestrali pari a R = euro. La banca B gli propone invece un finanziamento al tasso semplice di i S = 5.5%, da restituire in un unica soluzione dopo T = 1 anno e 2 mesi. Si determinino i tassi interni di rendimento dei due finanziamenti, esprimendoli in forma percentuale e su base annua. i A = % i B = % Quale dei due finanziamenti sceglierà l imprenditore, e per quale motivo? Risposta: Esercizio 2. Una famiglia acquista un portafoglio finanziario del valore complessivo, in t = 0, di euro, composto interamente da BTP con maturità di 10 anni e con t.n.a. del 5.5%. Sapendo che il rendimento del portafoglio (espresso in termini di t.i.r.) è del 7.2% si calcoli il flusso di cassa (= pagamento) garantito dall investimento ai tempi T 1 = 1 anno e T 2 = 10 anni. x T1 = mln di euro x T2 = mln di euro Si calcoli il valore montante M e il valore residuo V dell investimento in T 3 = 9 anni e 5 mesi, in base alla legge esponenziale di tasso annuo il t.i.r. del portafoglio M = mln di euro V = mln di euro

10 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = euro, da restituirsi in 4 rate trimestrali al tasso annuo i = 6%. Il mutuo prevede che la prima rata sia di preammortamento, che la seconda e la terza siano uguali fra loro (R 2 = R 3 ) e che la quarta rata sia il doppio della seconda (R 4 = 2R 2 ). Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

11 Esercizio 4. Alla data odierna (tempo zero) nel mercato dei titoli di Stato italiani è in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza: h(0, s) = s anni 1 (tempo s espresso in anni). Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato, esprimendoli in forma percentuale e in base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo P, di un CCT con vita a scadenza un anno e mezzo, nominale 100 euro e spread 50 punti base su ogni cedola (si trascuri la cedola pagata in t = 0). P = euro Esercizio 5. Il sig. Bianchi ha in portafoglio i seguenti titoli: una rendita perpetua con rata annuale di 100 euro; un BOT a sei mesi di nominale euro. Sapendo che sul mercato è in vigore una struttura per scadenza piatta, di tasso annua i=5%, si calcoli il valore V e la duration (in anni) D del portafoglio V = euro D = anni Un consulente finanziario lo convince che il suo portafoglio è troppo rischioso e gli suggerisce di dimezzarne la duration. A questo scopo, gli propone di vendere un po della rendita, per un valore di V euro, e di comprare con questa somma un titolo a cedola nulla a 2 anni. Si determini il valore V necessario allo scopo. V = euro

12 Esercizio 6. Nel mercato telebnk sono quotati alla data t = 0: il tasso a pronti a un anno è il 2.3%; un contratto a termine, che rimborsa euro a due anni a fronte del pagamento del prezzo di 100 euro fra un anno; un titolo cedola fissa annuale, con nominale 100, durata 3 anni, cedola di 2.7 euro e quotato alla pari. Si determini la struttura per scadenza dei tassi a pronti e tassi swap in vigore su questo mercato al tempo t, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i sw (0; 1) = % i(0, 2) = % i sw (0; 2) = % i(0, 3) = % i sw (0; 3) = %

13 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore si rivolge a due banche (banca A e banca B) per ottenere un prestito di S = euro. La banca A gli offre un finanziamento da restituire in due rate semestrali pari a R = euro. La banca B gli propone invece un finanziamento al tasso semplice di i S = 5.5%, da restituire in un unica soluzione dopo T = 1 anno e 2 mesi. Si determinino i tassi interni di rendimento dei due finanziamenti, esprimendoli in forma percentuale e su base annua. i A = % i B = % Quale dei due finanziamenti sceglierà l imprenditore, e per quale motivo? Risposta: Esercizio 2. Una famiglia acquista un portafoglio finanziario del valore complessivo, in t = 0, di euro, composto interamente da BTP con maturità di 10 anni e con t.n.a. del 6.5%. Sapendo che il rendimento del portafoglio (espresso in termini di t.i.r.) è del 7.2% si calcoli il flusso di cassa (= pagamento) garantito dall investimento ai tempi T 1 = 1 anno e T 2 = 10 anni. x T1 = mln di euro x T2 = mln di euro Si calcoli il valore montante M e il valore residuo V dell investimento in T 3 = 9 anni e 5 mesi, in base alla legge esponenziale di tasso annuo il t.i.r. del portafoglio M = mln di euro V = mln di euro

14 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = euro, da restituirsi in 4 rate trimestrali al tasso annuo i = 7%. Il mutuo prevede che la prima rata sia di preammortamento, che la seconda e la terza siano uguali fra loro (R 2 = R 3 ) e che la quarta rata sia il doppio della seconda (R 4 = 2R 2 ). Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

15 Esercizio 4. Alla data odierna (tempo zero) nel mercato dei titoli di Stato italiani è in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza: h(0, s) = s anni 1 (tempo s espresso in anni). Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato, esprimendoli in forma percentuale e in base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo P, di un CCT con vita a scadenza un anno e mezzo, nominale 100 euro e spread 40 punti base su ogni cedola (si trascuri la cedola pagata in t = 0). P = euro Esercizio 5. Il sig. Bianchi ha in portafoglio i seguenti titoli: una rendita perpetua con rata annuale di 100 euro; un BOT a sei mesi di nominale euro. Sapendo che sul mercato è in vigore una struttura per scadenza piatta, di tasso annua i=4%, si calcoli il valore V e la duration (in anni) D del portafoglio V = euro D = anni Un consulente finanziario lo convince che il suo portafoglio è troppo rischioso e gli suggerisce di dimezzarne la duration. A questo scopo, gli propone di vendere un po della rendita, per un valore di V euro, e di comprare con questa somma un titolo a cedola nulla a 2 anni. Si determini il valore V necessario allo scopo. V = euro

16 Esercizio 6. Nel mercato telebnk sono quotati alla data t = 0: il tasso a pronti a un anno è il 2.4%; un contratto a termine, che rimborsa euro a due anni a fronte del pagamento del prezzo di 100 euro fra un anno; un titolo cedola fissa annuale, con nominale 100, durata 3 anni, cedola di 2.8 euro e quotato alla pari. Si determini la struttura per scadenza dei tassi a pronti e tassi swap in vigore su questo mercato al tempo t, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i sw (0; 1) = % i(0, 2) = % i sw (0; 2) = % i(0, 3) = % i sw (0; 3) = %

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Esempi di Asset swap

Esempi di Asset swap Esempi di Asset swap La società A e la società B possiedono entrambe un portafoglio di attività finanziarie La società A possiede BTP 1/07/19 con cedola semestrale del 3, 375% per un valore nominale di

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000 MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 27 settembre 2000

MATEMATICA FINANZIARIA Appello del 27 settembre 2000 MATEMATICA FINANZIARIA Appello del 27 settembre 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

INFORMAZIONI SULLA BANCA

INFORMAZIONI SULLA BANCA Mutuo chirografario offerto ai consumatori MUTUO CREDITO AMICO Riservato ai Soci persone fisiche (alla data richiesta finanziamento) INFORMAZIONI SULLA BANCA Cassa Rurale di Trento - Banca di Credito Cooperativo

Dettagli

Foglio Informativo CR_ACC-MTP01. Foglio Informativo

Foglio Informativo CR_ACC-MTP01. Foglio Informativo Foglio Informativo Infomazioni sulla Banca Banca A.G.C.I. S.p.A. Sede legale e Direzione Generale: Via Alessandrini, 15 40126 Bologna (BO) Capitale sociale Euro 18.000.000 i.v. Riserve per sovrapprezzo

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail INFORMAZIONI SULLA BANCA Cassa di Risparmio di Cento S.p.A. Sede Legale e Direzione generale: Via Matteotti 8/B - 44042 CENTO (FE) Tel. 051 6833111 - Fax 051 6833237 CODICE FISCALE, PARTITA IVA e Numero

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?

Dettagli

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1 ISSIS DON MILANI LICEO Corso di DIRITTO ed ECONOMIA POLITICA 1 NEL MERCATO FINANZIARIO SI NEGOZIANO TITOLI CON SCADENZA SUPERIORE A 18 MESI AZIONI OBBLIGAZIONI TITOLI DI STATO 2 VALORE DEI TITOLI VALORE

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia Titoli indicizzati Flavio Angelini Università di Perugia Titoli indicizzati Tra i principali titoli indicizzati del mercato monetario ci sono: Mutui a Tasso Variabile, Obbligazioni a Tasso Variabile, Forward

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

SOLUZIONI ESERCIZI PROGRAMMATI MODULO 3 UNITÀ 2

SOLUZIONI ESERCIZI PROGRAMMATI MODULO 3 UNITÀ 2 Esercizi programmati modulo 3 unità 2 pag. 1 di 5 SOLUZIONI ESERCIZI PROGRAMMATI MODULO 3 UNITÀ 2 I calcoli finanziari per la funzione finanza 1. Calcola l interesse semplice completando le formule. a.

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

YouGo! IMPRESA Investimenti Tasso fisso

YouGo! IMPRESA Investimenti Tasso fisso INFORMAZIONI SULLA BANCA Banca Reale S.p.A. Sede: Corso Vittorio Emanuele II, 101 10128 Torino; Capitale sociale: Euro 30.000.000,00 interamente versato Numero Verde: 803.808; Sito Internet: www.bancareale.it;

Dettagli

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI Università degli Studi di Parma Corso di Asset and liability management Il rischio di interesse sul banking book ESERCIZI Prof.ssa Paola Schwizer Anno accademico 2010-2011 Riclassificazione del bilancio

Dettagli

MATEMATICA FINANZIARIA Appello del 30 giugno 2016

MATEMATICA FINANZIARIA Appello del 30 giugno 2016 MATEMATICA FINANZIARIA Appello del 30 giugno 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Foglio Informativo del Servizio/Prodotto. PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015

Foglio Informativo del Servizio/Prodotto. PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015 Foglio Informativo del Servizio/Prodotto INFORMAZIONI SULLA BANCA PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015 Banca Popolare del Lazio Via Martiri

Dettagli

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail INFORMAZIONI SULLA BANCA Cassa di Risparmio di Cento S.p.A. Sede Legale e Direzione generale: Via Matteotti 8/B - 44042 CENTO (FE) Tel. 051 6833111 - Fax 051 6833237 CODICE FISCALE, PARTITA IVA e Numero

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2001

MATEMATICA FINANZIARIA Appello del 10 luglio 2001 MATEMATICA FINANZIARIA Appello del 10 luglio 2001 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

PRESTITO D ONORE. Cassa Rurale di Trento - Banca di Credito Cooperativo - Società cooperativa

PRESTITO D ONORE. Cassa Rurale di Trento - Banca di Credito Cooperativo - Società cooperativa Il presente foglio informativo non costituisce offerta al pubblico ai sensi dell art. 1336 Cod.Civ. PRESTITO D ONORE FONDO PER LA VALORIZZAZIONE E LA PROFESSIONALIZZAZIONE DEI GIOVANI (Apertura di credito

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE Banca Euromobiliare S.p.A.

Dettagli

YouGo! IMPRESA Investimenti Tasso fisso

YouGo! IMPRESA Investimenti Tasso fisso INFORMAZIONI SULLA BANCA Banca Reale S.p.A. Sede: Corso Vittorio Emanuele II, 101 10128 Torino; Capitale sociale: Euro 30.000.000,00 interamente versato Numero Verde: 803.808; Sito Internet: www.bancareale.it;

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale Banca Euromobiliare S.p.A. Iscritta

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse

Dettagli

FOGLIO INFORMATIVO MUTUI AGRARI

FOGLIO INFORMATIVO MUTUI AGRARI INFORMAZIONI SULLA BANCA Banca Popolare di Puglia e Basilicata S.c.p.a.. Via Timmari, n. 25-75100 - Matera Tel: 080/8710870-750 -Fax: 080/8710745 [div.commercial@bppb.it / www.bancavirtuale.com; www.bankpuliabas.it]

Dettagli

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 15 luglio 2009

MATEMATICA FINANZIARIA Appello del 15 luglio 2009 MATEMATICA FINANZIARIA Appello del 15 luglio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Indice dei contenuti. La nuova Organizzazione della CDP. I Nuovi Strumenti e Servizi per gli Enti Locali. Appendice Lista Contatti

Indice dei contenuti. La nuova Organizzazione della CDP. I Nuovi Strumenti e Servizi per gli Enti Locali. Appendice Lista Contatti Indice dei contenuti La nuova Organizzazione della CDP La gestione separata e la gestione ordinaria Le innovazioni 2005 I Nuovi Strumenti e Servizi per gli Enti Locali Prestito Flessibile di Scopo Fondo

Dettagli

Foglio informativo (I0404) MUTUO IPOTECARIO TASSO MISTO CON OPZIONE TRIENNALE (Cat. 59)

Foglio informativo (I0404) MUTUO IPOTECARIO TASSO MISTO CON OPZIONE TRIENNALE (Cat. 59) Foglio informativo (I0404) MUTUO IPOTECARIO TASSO MISTO CON OPZIONE TRIENNALE (Cat. 59) INFORMAZIONI SULLA BANCA Banca di Credito Cooperativo di Cambiano (Castelfiorentino Firenze) Società Cooperativa

Dettagli

Foglio Informativo del Servizio/Prodotto. PRESTITO D ONORE ai sensi della Legge regionale n. 19/99

Foglio Informativo del Servizio/Prodotto. PRESTITO D ONORE ai sensi della Legge regionale n. 19/99 Foglio Informativo del Servizio/Prodotto PRESTITO D ONORE ai sensi della Legge regionale n. 19/99 INFORMAZIONI SULLA BANCA Serie FI0290 Condizioni praticate dal 13/10/2014 Banca Popolare del Lazio Via

Dettagli

1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università

Dettagli

esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI

esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI 1 Cambi 2 Valuta: qualsiasi mezzo di pagamento utilizzabile negli scambi internazionali, es. banconote,

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

Foglio Informativo del Servizio/Prodotto PORTAFOGLIO ARTIGIANO CHIROGRAFARIO M.T. AI SOCI DELLA COOPERATIVA ARTIGIANA DI GARANZIA DI ROMA

Foglio Informativo del Servizio/Prodotto PORTAFOGLIO ARTIGIANO CHIROGRAFARIO M.T. AI SOCI DELLA COOPERATIVA ARTIGIANA DI GARANZIA DI ROMA Foglio Informativo del Servizio/Prodotto PORTAFOGLIO ARTIGIANO CHIROGRAFARIO M.T. AI SOCI DELLA COOPERATIVA ARTIGIANA DI GARANZIA DI ROMA INFORMAZIONI SULLA BANCA Serie FI0370 Condizioni praticate dal

Dettagli

Dati e qualifica soggetto incaricato dell offerta fuori sede

Dati e qualifica soggetto incaricato dell offerta fuori sede Cassa Lombarda S.p.A. 1 di 7 FOGLIO INFORMATIVO MUTUO CHIROGRAFARIO A TASSO VARIABILE Il presente Foglio Informativo è rivolto ai clienti non Consumatori e ai clienti Consumatori che intendono richiedere

Dettagli

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ]

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 2 Del precedente esercizio calcolare il montante in regime di capitalizzazione composta.

Dettagli

FOGLIO INFORMATIVO MUTUO FONDIARIO INFORMAZIONI SULLA BANCA CARATTERISTICHE E RISCHI TIPICI

FOGLIO INFORMATIVO MUTUO FONDIARIO INFORMAZIONI SULLA BANCA CARATTERISTICHE E RISCHI TIPICI FOGLIO INFORMATIVO MUTUO FONDIARIO Aggiornamento nr. 6 del 1 Ottobre 2015 INFORMAZIONI SULLA BANCA BANCA STABIESE S.p.A. Sede Legale ed Amministrativa in Via Ettore Tito 1, 80053 Castellammare di Stabia

Dettagli

Generalità del soggetto che effettua l offerta fuori sede (nome e cognome indirizzo/sede legale- e-mail n. tel.) Qualifica del soggetto sopraindicato

Generalità del soggetto che effettua l offerta fuori sede (nome e cognome indirizzo/sede legale- e-mail n. tel.) Qualifica del soggetto sopraindicato PRESTITO PERSONALE AGGIORNAMENTO 1 Maggio 2015 INFORMAZIONI SULLA BANCA BANCA FINNAT EURAMERICA S.p.A. Sede legale e amministrativa: Piazza del Gesù, n. 49 00186 ROMA Tel.: 06.69933.1; Fax.: 06.6784950

Dettagli

MATEMATICA FINANZIARIA Appello del 11 febbraio 2016

MATEMATICA FINANZIARIA Appello del 11 febbraio 2016 MATEMATICA FINANZIARIA Appello del 11 febbraio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali ORGANISMO BILATERALE PER LA FORMAZIONE

Dettagli

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO scheda prodotto FINANZIAMENTO IMPRESA CONVENZIONE FIDIMPRESA LAZIO rilascio del 30.08.2013 FOGLIO INFORMATIVO FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO INFORMAZIONI SULLA BANCA Denominazione

Dettagli

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito DURATA FINANZIARIA CORRISPONDENTE AL TASSO FINANZIARIAMENTE EQUIVALENTE Il calcolo della Durata Finanziaria Corrispondente (DFC) al Tasso Finanziariamente Equivalente del Prestito () ha come obiettivo

Dettagli