MATEMATICA FINANZIARIA Appello del 26 febbraio Cognome e Nome... C.d.L... Matricola n... Firma...

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma..."

Transcript

1 MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi semplici al tasso annuo i = 2%. Si calcoli tale somma S se l interesse di 3 anni risulta di 500 euro. S = euro Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S,S +I}/{0,3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che S = euro e che l investimento frutti quattro rate costanti semestrali posticipate, con tir i = 6%, si calcoli il valore R per la rata. R = euro Esercizio 2. Si consideri l operazione di acquisto congiunto di due ZCB, entrambi con nominale C = 100 euro: il primo è a un anno e costa P 1 = 96 euro; l altro scade dopo due anni e costa P 2 = 90 euro. Si calcoli il tasso interno di rendimento i dell operazione finanziaria e lo si esprima in forma percentuale e su base annua. i = % Si assuma ora di volere investire euro in un portafoglio dei due ZCB, in modo tale che il tasso interno di rendimento dell operazione finanziaria di acquisto sia il 4.6%. Si calcoli quante quote α dello ZCB a un anno e quante quote β dello ZCB a due anni occorre acquistare per raggiungere l obiettivo. α = β =

2 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo al 5.5% annuo per un importo S = euro, da restituirsi in 4 rate annuali posticipate, delle quali le prime due di preammortamento e la quarta ha la rata R 4 = S/6,. Si compili il piano di ammortamento. [Suggerimento: Ricordare che in tutti i piani di ammortamento a rata posticipata risulta C 4 = M 3 e usare questo fatto per ricavare C 4 come la soluzione di un equazione che coinvolga le grandezze dell ultima riga del piano.] rata n. rata quota capitale quota interesse debito residuo

3 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza h(t,s) = 4% %(s t) 2 con i tempi espressi in anni. Sotto tale intensità si calcoli la struttura per scadenza di tassi di interesse a pronti e a termine, sullo scadenzario {1,2,3} anni. i(0,1) = % i(0,2) = % i(0,3) = % i(0,0,1) = % i(0,1,2) = % i(0,2,3) = %. Esercizio 5. Un istituzione detiene al tempo t = 0 due portafogli, il primo indicato con x e dal valore complessivo di 3 milioni di euro, formato per il 20% del valore da ZCB a un anno e per il restante 80% del valore da ZCB a due anni; il secondo, indicato con y, dal valore complessivo di 5 milioni di euro e costituito da una rendita posticipta perpetua con rata annuale R = euro. Assumendo una struttura per scadenza piatta, si calcolino le duration di entrambi i portafogli: D(0, x) = anni D(0, y) = anni e la duration del portafoglio formato da due quota del primo e tre quote del secondo, z = 2x + 3y: D(0, z) = anni

4 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 5%, E 2 = 2% e varianze V 1 = E1, V 2 = E2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b in forma percentuale del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

5 MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi semplici al tasso annuo i = 3%. Si calcoli tale somma S se l interesse di 3 anni risulta di 500 euro. S = euro Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S,S +I}/{0,3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che S = euro e che l investimento frutti quattro rate costanti semestrali posticipate, con tir i = 6%, si calcoli il valore R per la rata. R = euro Esercizio 2. Si consideri l operazione di acquisto congiunto di due ZCB, entrambi con nominale C = 100 euro: il primo è a un anno e costa P 1 = 96 euro; l altro scade dopo due anni e costa P 2 = 90.5 euro. Si calcoli il tasso interno di rendimento i dell operazione finanziaria e lo si esprima in forma percentuale e su base annua. i = % Si assuma ora di volere investire euro in un portafoglio dei due ZCB, in modo tale che il tasso interno di rendimento dell operazione finanziaria di acquisto sia il 4.5%. Si calcoli quante quote α dello ZCB a un anno e quante quote β dello ZCB a due anni occorre acquistare per raggiungere l obiettivo. α = β =

6 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo al 5.6% annuo per un importo S = euro, da restituirsi in 4 rate annuali posticipate, delle quali le prime due di preammortamento e la quarta ha la rata R 4 = S/5,. Si compili il piano di ammortamento. [Suggerimento: Ricordare che in tutti i piani di ammortamento a rata posticipata risulta C 4 = M 3 e usare questo fatto per ricavare C 4 come la soluzione di un equazione che coinvolga le grandezze dell ultima riga del piano.] rata n. rata quota capitale quota interesse debito residuo

7 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza h(t,s) = 4% %(s t) 2 con i tempi espressi in anni. Sotto tale intensità si calcoli la struttura per scadenza di tassi di interesse a pronti e a termine, sullo scadenzario {1,2,3} anni. i(0,1) = % i(0,2) = % i(0,3) = % i(0,0,1) = % i(0,1,2) = % i(0,2,3) = %. Esercizio 5. Un istituzione detiene al tempo t = 0 due portafogli, il primo indicato con x e dal valore complessivo di 4 milioni di euro, formato per il 30% del valore da ZCB a un anno e per il restante 70% del valore da ZCB a due anni; il secondo, indicato con y, dal valore complessivo di 5 milioni di euro e costituito da una rendita posticipta perpetua con rata annuale R = euro. Assumendo una struttura per scadenza piatta, si calcolino le duration di entrambi i portafogli: D(0, x) = anni D(0, y) = anni e la duration del portafoglio formato da due quota del primo e tre quote del secondo, z = 2x + 3y: D(0, z) = anni

8 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 6%, E 2 = 2% e varianze V 1 = E1, V 2 = E2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b in forma percentuale del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

9 MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi semplici al tasso annuo i = 4%. Si calcoli tale somma S se l interesse di 3 anni risulta di 500 euro. S = euro Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S,S +I}/{0,3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che S = euro e che l investimento frutti quattro rate costanti semestrali posticipate, con tir i = 6%, si calcoli il valore R per la rata. R = euro Esercizio 2. Si consideri l operazione di acquisto congiunto di due ZCB, entrambi con nominale C = 100 euro: il primo è a un anno e costa P 1 = 96 euro; l altro scade dopo due anni e costa P 2 = 91 euro. Si calcoli il tasso interno di rendimento i dell operazione finanziaria e lo si esprima in forma percentuale e su base annua. i = % Si assuma ora di volere investire euro in un portafoglio dei due ZCB, in modo tale che il tasso interno di rendimento dell operazione finanziaria di acquisto sia il 4.4%. Si calcoli quante quote α dello ZCB a un anno e quante quote β dello ZCB a due anni occorre acquistare per raggiungere l obiettivo. α = β =

10 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo al 5.7% annuo per un importo S = euro, da restituirsi in 4 rate annuali posticipate, delle quali le prime due di preammortamento e la quarta ha la rata R 4 = S/4,. Si compili il piano di ammortamento. [Suggerimento: Ricordare che in tutti i piani di ammortamento a rata posticipata risulta C 4 = M 3 e usare questo fatto per ricavare C 4 come la soluzione di un equazione che coinvolga le grandezze dell ultima riga del piano.] rata n. rata quota capitale quota interesse debito residuo

11 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza h(t,s) = 4% %(s t) 2 con i tempi espressi in anni. Sotto tale intensità si calcoli la struttura per scadenza di tassi di interesse a pronti e a termine, sullo scadenzario {1,2,3} anni. i(0,1) = % i(0,2) = % i(0,3) = % i(0,0,1) = % i(0,1,2) = % i(0,2,3) = %. Esercizio 5. Un istituzione detiene al tempo t = 0 due portafogli, il primo indicato con x e dal valore complessivo di 6 milioni di euro, formato per il 40% del valore da ZCB a un anno e per il restante 60% del valore da ZCB a due anni; il secondo, indicato con y, dal valore complessivo di 5 milioni di euro e costituito da una rendita posticipta perpetua con rata annuale R = euro. Assumendo una struttura per scadenza piatta, si calcolino le duration di entrambi i portafogli: D(0, x) = anni D(0, y) = anni e la duration del portafoglio formato da due quota del primo e tre quote del secondo, z = 2x + 3y: D(0, z) = anni

12 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 7%, E 2 = 2% e varianze V 1 = E1, V 2 = E2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b in forma percentuale del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

13 MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi semplici al tasso annuo i = 5%. Si calcoli tale somma S se l interesse di 3 anni risulta di 500 euro. S = euro Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S,S +I}/{0,3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che S = euro e che l investimento frutti quattro rate costanti semestrali posticipate, con tir i = 6%, si calcoli il valore R per la rata. R = euro Esercizio 2. Si consideri l operazione di acquisto congiunto di due ZCB, entrambi con nominale C = 100 euro: il primo è a un anno e costa P 1 = 96 euro; l altro scade dopo due anni e costa P 2 = 91.5 euro. Si calcoli il tasso interno di rendimento i dell operazione finanziaria e lo si esprima in forma percentuale e su base annua. i = % Si assuma ora di volere investire euro in un portafoglio dei due ZCB, in modo tale che il tasso interno di rendimento dell operazione finanziaria di acquisto sia il 4.3%. Si calcoli quante quote α dello ZCB a un anno e quante quote β dello ZCB a due anni occorre acquistare per raggiungere l obiettivo. α = β =

14 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo al 5.8% annuo per un importo S = euro, da restituirsi in 4 rate annuali posticipate, delle quali le prime due di preammortamento e la quarta ha la rata R 4 = S/3,. Si compili il piano di ammortamento. [Suggerimento: Ricordare che in tutti i piani di ammortamento a rata posticipata risulta C 4 = M 3 e usare questo fatto per ricavare C 4 come la soluzione di un equazione che coinvolga le grandezze dell ultima riga del piano.] rata n. rata quota capitale quota interesse debito residuo

15 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza delle intensità di rendimento a scadenza h(t,s) = 4% %(s t) 2 con i tempi espressi in anni. Sotto tale intensità si calcoli la struttura per scadenza di tassi di interesse a pronti e a termine, sullo scadenzario {1,2,3} anni. i(0,1) = % i(0,2) = % i(0,3) = % i(0,0,1) = % i(0,1,2) = % i(0,2,3) = %. Esercizio 5. Un istituzione detiene al tempo t = 0 due portafogli, il primo indicato con x e dal valore complessivo di 7 milioni di euro, formato per il 50% del valore da ZCB a un anno e per il restante 50% del valore da ZCB a due anni; il secondo, indicato con y, dal valore complessivo di 5 milioni di euro e costituito da una rendita posticipta perpetua con rata annuale R = euro. Assumendo una struttura per scadenza piatta, si calcolino le duration di entrambi i portafogli: D(0, x) = anni D(0, y) = anni e la duration del portafoglio formato da due quota del primo e tre quote del secondo, z = 2x + 3y: D(0, z) = anni

16 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 8%, E 2 = 2% e varianze V 1 = E1, V 2 = E2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b in forma percentuale del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello del 15 luglio 2009

MATEMATICA FINANZIARIA Appello del 15 luglio 2009 MATEMATICA FINANZIARIA Appello del 15 luglio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%. ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................

Dettagli

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000 MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

AMMORTAMENTO. Generalità e Funzionamento dell applicativo

AMMORTAMENTO. Generalità e Funzionamento dell applicativo AMMORTAMENTO Generalità e Funzionamento dell applicativo Per ammortamento di un prestito (mutuo) indiviso si intende quel procedimento in base al quale un soggetto (unico) cede ad un tempo iniziale (es.

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO

LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO FLAVIO ANGELINI Sommario. In queste note si vuole mostrare come la Duration venga utilizzata quale strumento per la gestione del portafoglio obbligazionario.

Dettagli

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento.

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento. REGIONE TOSCANA Proposta di Legge Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009 Assestamento SOMMARIO Art. 1 - Variazioni delle previsioni di entrata

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

Esercitazione 24 marzo

Esercitazione 24 marzo Esercitazione 24 marzo Esercizio 1 Una persona contrae un prestito di 25000 e, che estinguerà pagando le seguenti quote capitale: 3000 e fra 6 mesi, 5000 e fra un anno, 8000 e fra 18 mesi, 4000 e fra 2

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 22 maggio 2009 Cognome Nome e matr..................................................................................

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 SOMMARIO Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 Art. 2 Autorizzazioni di spesa per l anno 2008 Art. 3 Variazioni alle previsioni del bilancio pluriennale

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

Principi contabili IAS/IFRS : IL BILANCIO DELLE BANCHE ESERCITAZIONE del 21/02/2011

Principi contabili IAS/IFRS : IL BILANCIO DELLE BANCHE ESERCITAZIONE del 21/02/2011 Principi contabili IAS/IFRS : IL BILANCIO DELLE BANCHE ESERCITAZIONE del 21/02/2011 Dott. PAOLO VITALI Università degli Studi di Bergamo Anno accademico 2010/2011 Bergamo, 21 febbraio 2011 Indice degli

Dettagli

MATEMATICA FINANZIARIA Appello del 7 settembre 2010 programma a.a. 2009 10

MATEMATICA FINANZIARIA Appello del 7 settembre 2010 programma a.a. 2009 10 MATEMATICA FINANZIARIA Appello del 7 settembre 2010 programma a.a. 2009 10 Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

1a 1b 2a 2b 3 4 5 6 6 5 4 3

1a 1b 2a 2b 3 4 5 6 6 5 4 3 MATEMATICA FINANZIARIA A e B - Prova scritta del 30 maggio 2000 1. (11 pti) Un tale deve pagare un debito di ammontare D. L ammortamento viene strutturato su 3 anni valutando gli interessi coi tassi variabili

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

Foglio Informativo CR_ACC-MTP01. Foglio Informativo

Foglio Informativo CR_ACC-MTP01. Foglio Informativo Foglio Informativo Infomazioni sulla Banca Banca A.G.C.I. S.p.A. Sede legale e Direzione Generale: Via Alessandrini, 15 40126 Bologna (BO) Capitale sociale Euro 18.000.000 i.v. Riserve per sovrapprezzo

Dettagli

MATEMATICA FINANZIARIA Appello del 27 settembre 2000

MATEMATICA FINANZIARIA Appello del 27 settembre 2000 MATEMATICA FINANZIARIA Appello del 27 settembre 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE Banca Euromobiliare S.p.A.

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento

Dettagli

REGIONE TOSCANA. Bilancio di previsione per l esercizio finanziario 2012 e Bilancio pluriennale 2012 2014. Assestamento.

REGIONE TOSCANA. Bilancio di previsione per l esercizio finanziario 2012 e Bilancio pluriennale 2012 2014. Assestamento. REGIONE TOSCANA Proposta di Legge Bilancio di previsione per l esercizio finanziario 2012 e Bilancio pluriennale 2012 2014 Assestamento SOMMARIO Preambolo Capo I Assestamento del bilancio Art. 1 - Variazioni

Dettagli

Metodi matematici II 15 luglio 2003

Metodi matematici II 15 luglio 2003 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene

Dettagli

YouGo! IMPRESA Investimenti Tasso fisso

YouGo! IMPRESA Investimenti Tasso fisso INFORMAZIONI SULLA BANCA Banca Reale S.p.A. Sede: Corso Vittorio Emanuele II, 101 10128 Torino; Capitale sociale: Euro 30.000.000,00 interamente versato Numero Verde: 803.808; Sito Internet: www.bancareale.it;

Dettagli

CODICE DI CONDOTTA EUROPEO PER MUTUI CASA

CODICE DI CONDOTTA EUROPEO PER MUTUI CASA Foglio N. 0.01.0 informativo Codice Prodotto Redatto in ottemperanza al D.Lgs. 385 del 1 settembre 1993 "Testo Unico delle leggi in materia bancarie creditizia" (e successive modifiche ed integrazioni)

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2013 e Bilancio pluriennale 2013 2015. Assestamento.

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2013 e Bilancio pluriennale 2013 2015. Assestamento. REGIONE TOSCANA Proposta di Legge Bilancio di previsione per l anno finanziario 2013 e Bilancio pluriennale 2013 2015 Assestamento SOMMARIO Preambolo Capo I Assestamento del bilancio Art. 1 - Variazioni

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

SOMMARIO. - Bilancio annuale. - Bilancio pluriennale. Art. 4 - Disavanzo dell esercizio 2007

SOMMARIO. - Bilancio annuale. - Bilancio pluriennale. Art. 4 - Disavanzo dell esercizio 2007 SOMMARIO Art. 1 Art. 2 Art. 3 - Bilancio annuale - Bilancio pluriennale - Allegati Art. 4 - Disavanzo dell esercizio 2007 Art. 5 Art. 6 Art. 7 Art. 8 Art. 9 - Intervento per il Programma pluriennale degli

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 3 Piani di ammortamento Esercizio 1. Un prestito di 12000e viene rimborsato in 10 anni con rate

Dettagli

FOGLIO INFORMATIVO MUTUI AGRARI

FOGLIO INFORMATIVO MUTUI AGRARI INFORMAZIONI SULLA BANCA Banca Popolare di Puglia e Basilicata S.c.p.a.. Via Timmari, n. 25-75100 - Matera Tel: 080/8710870-750 -Fax: 080/8710745 [div.commercial@bppb.it / www.bancavirtuale.com; www.bankpuliabas.it]

Dettagli

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO scheda prodotto FINANZIAMENTO IMPRESA CONVENZIONE FIDIMPRESA LAZIO rilascio del 30.08.2013 FOGLIO INFORMATIVO FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO INFORMAZIONI SULLA BANCA Denominazione

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale Banca Euromobiliare S.p.A. Iscritta

Dettagli

Ammortamento di un debito

Ammortamento di un debito Algoritmi e dintorni: Ammortamento di un debito: Ricerca del tasso Prof. Ettore Limoli Ammortamento di un debito In questa nostra trattazione non ci addentreremo in problemi di matematica finanziaria o

Dettagli

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA Anno scolastico 2008/09 Prof. Romano Oss Matematica finanziaria è uno strumento di calcolo basato sulla teoria dell interesse,

Dettagli

INFORMAZIONI SULLA BANCA

INFORMAZIONI SULLA BANCA Mutuo chirografario offerto ai consumatori MUTUO CREDITO AMICO Riservato ai Soci persone fisiche (alla data richiesta finanziamento) INFORMAZIONI SULLA BANCA Cassa Rurale di Trento - Banca di Credito Cooperativo

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 10 Contenuti della lezione Valutazione di titoli obbligazionari

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo)

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo) MATEMATICA FINANZIARIA ISTITUZIONI L - Z) Pavia 11/ 11/004 COGNOME e NOME:... n.dimatricola:... CODICE ESAME:... Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere

Dettagli