MATEMATICA FINANZIARIA Appello del 10 luglio Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR)."

Transcript

1 MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un impreditore ottiene in prestito S = euro da un istituto di credito per 5 anni e 2 mesi e deve scegliere fra le seguenti condizioni del prestito: (a) rimborsare alla scadenza M a = ; (b) rimborsare alla scadenza il valore montante determinato al tasso annuo semplice del 10%. Si calcoli anzitutto il rimborso M b nella modalità (b) e i tassi interni di rendimento in base annua i a e i b delle due condizioni di finanziamento. M b = euro i a = % i b = % Si individui poi quale delle due modalità sceglierà l imprenditore, motivando la risposta. Risposta: Esercizio 2. Un emittente di titoli obbligazionari vuole progettare un titolo a cedola fissa annuale con durata due anni e facciale C = euro, in modo che il prezzo di emissione sia P = euro e il tasso interno di rendimento in base annua sia i = 5%. Si determini che cedola I deve fissare contrattualmente per soddisfare la richiesta. Si calcoli inoltre: (1) quale tasso interno di rendimento in base annua i 1 si avrebbe se, a parità di nominale e prezzo, la cedola fosse I 1 = 50 euro; (2) quale prezzo P 2 si avrebbe se, a parità di nominale, la cedola fosse I 2 = 50 euro e il tasso interno di rendimento fosse i 2 = 5%. I = euro i 1 = % P 2 = euro

2 Esercizio 3. Una banca propone il Mutuo Amaranto, un prestito rimborsabile con 5 rate trimestrali al tasso annuo i = 9%, con le seguenti caratteristiche: la prima rata è di preammortamento; la seconda e la quinta rata sono uguali e ciascuna delle due è un quarto del prestito iniziale; la quota capitale della terza rata è un quinto del prestito iniziale. Si compili il piano di ammortamento per un prestito di euro. rata n. rata quota capitale quota interesse debito residuo

3 Esercizio 4. Nel mercato obbligazionario vigente al tempo t = 0, due TCN quotati con scadenza a un anno (in t 2 = 1), uno a pronti e uno a termine con pagamento in t 1 = 0.5, hanno lo stesso prezzo 97 a fronte di un nominale pari a 100. Un TCN a pronti con scadenza in t 3 = 1.5 anni ha invece prezzo 90 e nominale 100. In tale mercato, si calcoli la struttura per scadenza, a pronti e a termine, dei tassi di interesse annui equivalenti in legge esponenziale, esprimendoli in forma percentuale e su base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % In tale mercato si determini poi il valore V di una rendita francese con durata m = 3 semestri e rata R = 500 euro. V = euro Esercizio 5. Si consideri un portafoglio obbligazionario del valore complessivo di 500 mln di euro, investito per il 30% del valore in BOT a un anno, e per il resto in BTP con duration di 9 anni. La struttura dei tassi di interesse è piatta al tasso annuo i = 4.25%. Si calcoli la duration D del portafoglio. D = anni Si decide di ribilanciare il portafoglio per aumentarne la duration di 8 mesi, vendendo un certo ammontare V di BOT e acquistando rendite immediate, posticipate a rata annuale costante con durata m = 20 anni per un valore identico. Si calcoli il valore V da disinvestire (e reinvestire) a tale scopo V = mln

4 Esercizio 6. Il Tesoro decide di emettere un CCT special, con maturità di 1.5 anni, cedola semestrale e spread 4.50% su ciascuna cedola. Se la struttura dei tassi di interesse è piatta al tasso annuo del 5.50%, e immaginando di acquistarlo sul mercato secondario in un istante immediatamente successivo all emissione, si calcoli prezzo P (relativo ad un facciale pari a 100) e la duration D del CCT. P = D = Una banca investe 150 mln di euro in questo CCT, ma decide di rivenderli tre giorni dopo. Si determini, anche approssimativamente, il ricavo dell operazione (di acquisto e successiva vendita) dei CCT se la struttura per scadenza è cresciuta, nei tre giorni in questione, di 18 punti base per tutte le maturità, giustificando adeguatamente la risposta. ricavo = euro

5 MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un impreditore ottiene in prestito S = euro da un istituto di credito per 5 anni e 3 mesi e deve scegliere fra le seguenti condizioni del prestito: (a) rimborsare alla scadenza M a = ; (b) rimborsare alla scadenza il valore montante determinato al tasso annuo semplice del 10%. Si calcoli anzitutto il rimborso M b nella modalità (b) e i tassi interni di rendimento in base annua i a e i b delle due condizioni di finanziamento. M b = euro i a = % i b = % Si individui poi quale delle due modalità sceglierà l imprenditore, motivando la risposta. Risposta: Esercizio 2. Un emittente di titoli obbligazionari vuole progettare un titolo a cedola fissa annuale con durata due anni e facciale C = euro, in modo che il prezzo di emissione sia P = euro e il tasso interno di rendimento in base annua sia i = 5%. Si determini che cedola I deve fissare contrattualmente per soddisfare la richiesta. Si calcoli inoltre: (1) quale tasso interno di rendimento in base annua i 1 si avrebbe se, a parità di nominale e prezzo, la cedola fosse I 1 = 50 euro; (2) quale prezzo P 2 si avrebbe se, a parità di nominale, la cedola fosse I 2 = 50 euro e il tasso interno di rendimento fosse i 2 = 5%. I = euro i 1 = % P 2 = euro

6 Esercizio 3. Una banca propone il Mutuo Amaranto, un prestito rimborsabile con 5 rate trimestrali al tasso annuo i = 7%, con le seguenti caratteristiche: la prima rata è di preammortamento; la seconda e la quinta rata sono uguali e ciascuna delle due è un quarto del prestito iniziale; la quota capitale della terza rata è un quinto del prestito iniziale. Si compili il piano di ammortamento per un prestito di euro. rata n. rata quota capitale quota interesse debito residuo

7 Esercizio 4. Nel mercato obbligazionario vigente al tempo t = 0, due TCN quotati con scadenza a un anno (in t 2 = 1), uno a pronti e uno a termine con pagamento in t 1 = 0.5, hanno lo stesso prezzo 96 a fronte di un nominale pari a 100. Un TCN a pronti con scadenza in t 3 = 1.5 anni ha invece prezzo 90 e nominale 100. In tale mercato, si calcoli la struttura per scadenza, a pronti e a termine, dei tassi di interesse annui equivalenti in legge esponenziale, esprimendoli in forma percentuale e su base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % In tale mercato si determini poi il valore V di una rendita francese con durata m = 3 semestri e rata R = 500 euro. V = euro Esercizio 5. Si consideri un portafoglio obbligazionario del valore complessivo di 500 mln di euro, investito per il 30% del valore in BOT a un anno, e per il resto in BTP con duration di 11 anni. La struttura dei tassi di interesse è piatta al tasso annuo i = 4.25%. Si calcoli la duration D del portafoglio. D = anni Si decide di ribilanciare il portafoglio per aumentarne la duration di 8 mesi, vendendo un certo ammontare V di BOT e acquistando rendite immediate, posticipate a rata annuale costante con durata m = 20 anni per un valore identico. Si calcoli il valore V da disinvestire (e reinvestire) a tale scopo V = mln

8 Esercizio 6. Il Tesoro decide di emettere un CCT special, con maturità di 1.5 anni, cedola semestrale e spread 5.50% su ciascuna cedola. Se la struttura dei tassi di interesse è piatta al tasso annuo del 6.50%, e immaginando di acquistarlo sul mercato secondario in un istante immediatamente successivo all emissione, si calcoli prezzo P (relativo ad un facciale pari a 100) e la duration D del CCT. P = D = Una banca investe 150 mln di euro in questo CCT, ma decide di rivenderli tre giorni dopo. Si determini, anche approssimativamente, il ricavo dell operazione (di acquisto e successiva vendita) dei CCT se la struttura per scadenza è cresciuta, nei tre giorni in questione, di 18 punti base per tutte le maturità, giustificando adeguatamente la risposta. ricavo = euro

9 MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un impreditore ottiene in prestito S = euro da un istituto di credito per 5 anni e 4 mesi e deve scegliere fra le seguenti condizioni del prestito: (a) rimborsare alla scadenza M a = ; (b) rimborsare alla scadenza il valore montante determinato al tasso annuo semplice del 10%. Si calcoli anzitutto il rimborso M b nella modalità (b) e i tassi interni di rendimento in base annua i a e i b delle due condizioni di finanziamento. M b = euro i a = % i b = % Si individui poi quale delle due modalità sceglierà l imprenditore, motivando la risposta. Risposta: Esercizio 2. Un emittente di titoli obbligazionari vuole progettare un titolo a cedola fissa annuale con durata due anni e facciale C = euro, in modo che il prezzo di emissione sia P = euro e il tasso interno di rendimento in base annua sia i = 5%. Si determini che cedola I deve fissare contrattualmente per soddisfare la richiesta. Si calcoli inoltre: (1) quale tasso interno di rendimento in base annua i 1 si avrebbe se, a parità di nominale e prezzo, la cedola fosse I 1 = 50 euro; (2) quale prezzo P 2 si avrebbe se, a parità di nominale, la cedola fosse I 2 = 50 euro e il tasso interno di rendimento fosse i 2 = 5%. I = euro i 1 = % P 2 = euro

10 Esercizio 3. Una banca propone il Mutuo Amaranto, un prestito rimborsabile con 5 rate trimestrali al tasso annuo i = 5%, con le seguenti caratteristiche: la prima rata è di preammortamento; la seconda e la quinta rata sono uguali e ciascuna delle due è un quarto del prestito iniziale; la quota capitale della terza rata è un quinto del prestito iniziale. Si compili il piano di ammortamento per un prestito di euro. rata n. rata quota capitale quota interesse debito residuo

11 Esercizio 4. Nel mercato obbligazionario vigente al tempo t = 0, due TCN quotati con scadenza a un anno (in t 2 = 1), uno a pronti e uno a termine con pagamento in t 1 = 0.5, hanno lo stesso prezzo 95 a fronte di un nominale pari a 100. Un TCN a pronti con scadenza in t 3 = 1.5 anni ha invece prezzo 90 e nominale 100. In tale mercato, si calcoli la struttura per scadenza, a pronti e a termine, dei tassi di interesse annui equivalenti in legge esponenziale, esprimendoli in forma percentuale e su base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % In tale mercato si determini poi il valore V di una rendita francese con durata m = 3 semestri e rata R = 500 euro. V = euro Esercizio 5. Si consideri un portafoglio obbligazionario del valore complessivo di 500 mln di euro, investito per il 30% del valore in BOT a un anno, e per il resto in BTP con duration di 13 anni. La struttura dei tassi di interesse è piatta al tasso annuo i = 4.25%. Si calcoli la duration D del portafoglio. D = anni Si decide di ribilanciare il portafoglio per aumentarne la duration di 8 mesi, vendendo un certo ammontare V di BOT e acquistando rendite immediate, posticipate a rata annuale costante con durata m = 20 anni per un valore identico. Si calcoli il valore V da disinvestire (e reinvestire) a tale scopo V = mln

12 Esercizio 6. Il Tesoro decide di emettere un CCT special, con maturità di 1.5 anni, cedola semestrale e spread 6.50% su ciascuna cedola. Se la struttura dei tassi di interesse è piatta al tasso annuo del 7.50%, e immaginando di acquistarlo sul mercato secondario in un istante immediatamente successivo all emissione, si calcoli prezzo P (relativo ad un facciale pari a 100) e la duration D del CCT. P = D = Una banca investe 150 mln di euro in questo CCT, ma decide di rivenderli tre giorni dopo. Si determini, anche approssimativamente, il ricavo dell operazione (di acquisto e successiva vendita) dei CCT se la struttura per scadenza è cresciuta, nei tre giorni in questione, di 18 punti base per tutte le maturità, giustificando adeguatamente la risposta. ricavo = euro

13 MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un impreditore ottiene in prestito S = euro da un istituto di credito per 5 anni e 5 mesi e deve scegliere fra le seguenti condizioni del prestito: (a) rimborsare alla scadenza M a = ; (b) rimborsare alla scadenza il valore montante determinato al tasso annuo semplice del 10%. Si calcoli anzitutto il rimborso M b nella modalità (b) e i tassi interni di rendimento in base annua i a e i b delle due condizioni di finanziamento. M b = euro i a = % i b = % Si individui poi quale delle due modalità sceglierà l imprenditore, motivando la risposta. Risposta: Esercizio 2. Un emittente di titoli obbligazionari vuole progettare un titolo a cedola fissa annuale con durata due anni e facciale C = euro, in modo che il prezzo di emissione sia P = euro e il tasso interno di rendimento in base annua sia i = 5%. Si determini che cedola I deve fissare contrattualmente per soddisfare la richiesta. Si calcoli inoltre: (1) quale tasso interno di rendimento in base annua i 1 si avrebbe se, a parità di nominale e prezzo, la cedola fosse I 1 = 50 euro; (2) quale prezzo P 2 si avrebbe se, a parità di nominale, la cedola fosse I 2 = 50 euro e il tasso interno di rendimento fosse i 2 = 5%. I = euro i 1 = % P 2 = euro

14 Esercizio 3. Una banca propone il Mutuo Amaranto, un prestito rimborsabile con 5 rate trimestrali al tasso annuo i = 3%, con le seguenti caratteristiche: la prima rata è di preammortamento; la seconda e la quinta rata sono uguali e ciascuna delle due è un quarto del prestito iniziale; la quota capitale della terza rata è un quinto del prestito iniziale. Si compili il piano di ammortamento per un prestito di euro. rata n. rata quota capitale quota interesse debito residuo

15 Esercizio 4. Nel mercato obbligazionario vigente al tempo t = 0, due TCN quotati con scadenza a un anno (in t 2 = 1), uno a pronti e uno a termine con pagamento in t 1 = 0.5, hanno lo stesso prezzo 94 a fronte di un nominale pari a 100. Un TCN a pronti con scadenza in t 3 = 1.5 anni ha invece prezzo 90 e nominale 100. In tale mercato, si calcoli la struttura per scadenza, a pronti e a termine, dei tassi di interesse annui equivalenti in legge esponenziale, esprimendoli in forma percentuale e su base annua. i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % In tale mercato si determini poi il valore V di una rendita francese con durata m = 3 semestri e rata R = 500 euro. V = euro Esercizio 5. Si consideri un portafoglio obbligazionario del valore complessivo di 500 mln di euro, investito per il 30% del valore in BOT a un anno, e per il resto in BTP con duration di 15 anni. La struttura dei tassi di interesse è piatta al tasso annuo i = 4.25%. Si calcoli la duration D del portafoglio. D = anni Si decide di ribilanciare il portafoglio per aumentarne la duration di 8 mesi, vendendo un certo ammontare V di BOT e acquistando rendite immediate, posticipate a rata annuale costante con durata m = 20 anni per un valore identico. Si calcoli il valore V da disinvestire (e reinvestire) a tale scopo V = mln

16 Esercizio 6. Il Tesoro decide di emettere un CCT special, con maturità di 1.5 anni, cedola semestrale e spread 7.50% su ciascuna cedola. Se la struttura dei tassi di interesse è piatta al tasso annuo del 8.50%, e immaginando di acquistarlo sul mercato secondario in un istante immediatamente successivo all emissione, si calcoli prezzo P (relativo ad un facciale pari a 100) e la duration D del CCT. P = D = Una banca investe 150 mln di euro in questo CCT, ma decide di rivenderli tre giorni dopo. Si determini, anche approssimativamente, il ricavo dell operazione (di acquisto e successiva vendita) dei CCT se la struttura per scadenza è cresciuta, nei tre giorni in questione, di 18 punti base per tutte le maturità, giustificando adeguatamente la risposta. ricavo = euro

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000 MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

LA GESTIONE FINANZIARIA:REPERIMENTO DI RISORSE E INVESTIMENTI IN TITOLI

LA GESTIONE FINANZIARIA:REPERIMENTO DI RISORSE E INVESTIMENTI IN TITOLI Esercizio 3 In data 1/6 la società Delta S.p.A. ottiene un anticipazione bancaria con scadenza al 1/8 per l importo di 10.000. Gli interessi sono liquidati in via posticipata ed ammontano a 500. In data

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia Titoli indicizzati Flavio Angelini Università di Perugia Titoli indicizzati Tra i principali titoli indicizzati del mercato monetario ci sono: Mutui a Tasso Variabile, Obbligazioni a Tasso Variabile, Forward

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

I titoli obbligazionari

I titoli obbligazionari I titoli obbligazionari 1 Tipologie di titoli La relazione di equivalenza consente di attribuire un valore oggi ad importi monetari disponibili ad una data futura. In particolare permettono di determinare

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

CONTRATTI E TASSI SWAP

CONTRATTI E TASSI SWAP CONTRATTI E TASSI SWAP FLAVIO ANGELINI Sommario. In queste note vengono definite, analizzate e valutate le tipologie più comuni di contratti interest rate swap e si discute l importanza che i tassi swap

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

MATEMATICA FINANZIARIA Appello del 11 febbraio 2016

MATEMATICA FINANZIARIA Appello del 11 febbraio 2016 MATEMATICA FINANZIARIA Appello del 11 febbraio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

MATEMATICA FINANZIARIA Appello del 30 giugno 2016

MATEMATICA FINANZIARIA Appello del 30 giugno 2016 MATEMATICA FINANZIARIA Appello del 30 giugno 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Scheda prodotto. 100% dell importo nominale sottoscritto. 1 obbligazione per un valore nominale di Euro 1.000

Scheda prodotto. 100% dell importo nominale sottoscritto. 1 obbligazione per un valore nominale di Euro 1.000 Caratteristiche principali del Prestito Obbligazionario Scheda prodotto Denominazione Strumento Finanziario Tipo investimento Emittente Rating Emittente Durata Periodo di offerta Data di Godimento e Data

Dettagli

Scegli la tua Banca...

Scegli la tua Banca... Caratteristiche principali del Prestito Obbligazionario. Denominazione Strumento Finanziario Tipo investimento Emittente Rating Emittente Tasso Variabile con Minimo e Massimo 2016 - ISIN IT000532187 Obbligazione

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

MATEMATICA FINANZIARIA Appello del 27 settembre 2000

MATEMATICA FINANZIARIA Appello del 27 settembre 2000 MATEMATICA FINANZIARIA Appello del 27 settembre 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

I VALORI MOBILIARI I VALORI MOBILIARI I VALORI MOBILIARI CORSI DI RIALLINEAMENTO 19/10/2011

I VALORI MOBILIARI I VALORI MOBILIARI I VALORI MOBILIARI CORSI DI RIALLINEAMENTO 19/10/2011 CORSI DI RIALLINEAMENTO ECONOMIA AZIENDALE A.A. 2011-2012 Sono titoli di credito negoziabili e trasferibili emessi da enti pubblici o da società private, che rappresentano crediti fruttiferi in denaro

Dettagli

Ministero dell Economia e delle Finanze

Ministero dell Economia e delle Finanze Ministero dell Economia e delle Finanze Quale titolo di Stato per quale profilo di investitore? Forum della PA - 25 maggio 2007 Dott.ssa Maria Cannata Direttore Generale del Debito Pubblico -1- Introduzione

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento.

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento. REGIONE TOSCANA Proposta di Legge Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009 Assestamento SOMMARIO Art. 1 - Variazioni delle previsioni di entrata

Dettagli

Metodi matematici 2 21 settembre 2006

Metodi matematici 2 21 settembre 2006 Metodi matematici 1 settembre 006 TEST (Nuovo ordinamento) Cognome Nome Matricola Rispondere alle dieci domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione. 1.2 Grandezze fondamentali

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione. 1.2 Grandezze fondamentali Prestiti divisi 1 I prestiti obbligazionari 1.1 Introduzione Nell ammortamento di prestiti indivisi (mutui), un unico soggetto (creditore o mutuante) presta denaro ad un unico soggetto debitore (mutuatario).

Dettagli

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?

Dettagli

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007 Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 27. Bobo e Bubi affrontano la loro prima crisi familiare a causa della mancanza di una lavastoviglie. Decidono pertanto di acquistarne

Dettagli

IL FINANZIAMENTO DEGLI ENTI PUBBLICI

IL FINANZIAMENTO DEGLI ENTI PUBBLICI IL FINANZIAMENTO DEGLI ENTI PUBBLICI A cura di Gian Nereo Mazzocco Verona, 11 febbraio 2006 Le anticipazioni di tesoreria (art. 222 Tuel) Controparte: istituto tesoriere Limiti: 3/12 delle entrate correnti

Dettagli

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI CAPITOLATO SPECIALE Servizio di erogazione alla Provincia di Genova di mutui o di sottoscrizione di prestiti obbligazionari in più emissioni parziali fino all importo complessivo di Euro 20.000.000,00

Dettagli

Prima Emissione Esempi di calcolo

Prima Emissione Esempi di calcolo BTP Italia Prima Emissione Esempi di calcolo Calcolo del coefficiente di indicizzazione, delle cedole e della rivalutazione del capitale Vediamo nel dettaglio come funziona il meccanismo di costruzione

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali ORGANISMO BILATERALE PER LA FORMAZIONE

Dettagli

Biblioteca di Telepass + 2 o biennio TOMO c

Biblioteca di Telepass + 2 o biennio TOMO c Biblioteca di Telepass + 2 o biennio TOMO c Le negoziazioni dei titoli di debito Documento Esercizi Calcolo delle cedole su obbligazioni indicizzate Acquisto di obbligazioni da parte di un risparmiatore

Dettagli

Appunti di Calcolo finanziario. Mauro Pagliacci

Appunti di Calcolo finanziario. Mauro Pagliacci Appunti di Calcolo finanziario Mauro Pagliacci c Draft date 4 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati per le applicazioni

Dettagli

Ministero dell Economia e delle Finanze

Ministero dell Economia e delle Finanze Ministero dell Economia e delle Finanze Quale titolo di Stato per quale profilo di investitore? Forum della PA - 25 maggio 2007 Dott.ssa Maria Cannata Direttore Generale del Debito Pubblico -1- Introduzione

Dettagli

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1 ISSIS DON MILANI LICEO Corso di DIRITTO ed ECONOMIA POLITICA 1 NEL MERCATO FINANZIARIO SI NEGOZIANO TITOLI CON SCADENZA SUPERIORE A 18 MESI AZIONI OBBLIGAZIONI TITOLI DI STATO 2 VALORE DEI TITOLI VALORE

Dettagli

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI CAPITOLATO SPECIALE Servizio di erogazione alla Provincia di Genova di mutui o di sottoscrizione di prestiti obbligazionari in più emissioni parziali fino all importo complessivo di Euro 11.000.000,00

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2001

MATEMATICA FINANZIARIA Appello del 10 luglio 2001 MATEMATICA FINANZIARIA Appello del 10 luglio 2001 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

CONDIZIONI DEFINITIVE DEL PRESTITO OBBLIGAZIONARIO CASSA PADANA TASSO VARIABILE

CONDIZIONI DEFINITIVE DEL PRESTITO OBBLIGAZIONARIO CASSA PADANA TASSO VARIABILE A.9 MODELLO DELLE CONDIZIONI DEFINITIVE CASSA PADANA Banca di Credito Cooperativo, Società Cooperativa in qualità di Emittente CONDIZIONI DEFINITIVE DEL PRESTITO OBBLIGAZIONARIO CASSA PADANA TASSO VARIABILE

Dettagli

LA VALUTAZIONE DEI TITOLI A TASSO VARIABILE

LA VALUTAZIONE DEI TITOLI A TASSO VARIABILE LA VALUTAZIONE DEI TITOLI A TASSO VARIABILE FLAVIO ANGELINI, STEFANO HERZEL Sommario Queste note sono state pensate come supporto per i corsi di Matematica Finanziaria da noi tenuti presso l Università

Dettagli

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1. Un capitale C = 15 000 euro viene investito in RIC per anni al tasso di interesse trimestrale i 1 = 0.03. Il montante che si ottiene

Dettagli

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI CON CARATTERISTICHE STANDARD A TASSO VARIABILE

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI CON CARATTERISTICHE STANDARD A TASSO VARIABILE CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI CON CARATTERISTICHE STANDARD A TASSO VARIABILE Banca Popolare del Lazio T.V. 31/01/2008 31/01/2011 36ª, Codice Isin

Dettagli

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI CON CARATTERISTICHE STANDARD A TASSO VARIABILE

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI CON CARATTERISTICHE STANDARD A TASSO VARIABILE CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI CON CARATTERISTICHE STANDARD A TASSO VARIABILE Banca Popolare del Lazio T.V. 12//08/2008 12/08/2011 41ª, Codice Isin:

Dettagli

Contratti indicizzati a tassi di interesse

Contratti indicizzati a tassi di interesse Contratti indicizzati a tassi di interesse Claudio Pacati Università degli Studi di Siena Dipartimento di Economia Politica Dispensa del corso di Matematica Finanziaria, aa 2000 0 Da ormai parecchi anni

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti Finanziari a medio - lungo termine CCT: Certificati di Credito del Tesoro

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti Finanziari a medio - lungo termine CCT: Certificati di Credito del Tesoro AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Prodotti Finanziari a medio - lungo termine CCT: Certificati di Credito del Tesoro ORGANISMO BILATERALE

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse

Dettagli