1. INTRODUZIONE 1.1. Problemi analitici quantitativi 1.2. Errori nell analisi quantitativa

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. INTRODUZIONE 1.1. Problemi analitici quantitativi 1.2. Errori nell analisi quantitativa"

Transcript

1 1 1. INTRODUZIONE 1.1. Problemi aaliici quaiaivi I meodi chimico-aaliici rumeali hao lo copo di quaificare o di deermiare proprieà chimico-fiiche di uo o più aalii coeui i ua marice. Tali meodi coioo el meere i relazioe u egale aaliico co la quaià (maa o cocerazioe) o co la proprieà cercaa per l aalia di ieree. Ache le deermiazioi qualiaive (che ripodoo alla domada: l aalia c è o o c è?) oo i realà quaiaive, perché i ogi cao la ripoa aaliica va corredaa di ua iformazioe umerica che quaifica l affidabilià della ripoa ea. 1.. Errori ell aalii quaiaiva Neu riulao aaliico ha eo e o corredao di: errore livello di cofideza = probabilià di dare ua ripoa vera livello di igificaivià = probabilià di dare ua ripoa fala. livello di cofideza + livello di igificaivià=100%

2 1.3. Tipi di errore Gli errori ell aalii quaiaiva i pooo claificare i: errori groolai. Soo dovui a vie macrocopiche. Deermiao la preeza di oulier errori cauali. Fao ì che le igole miure iao caualmee i ecceo o i difeo ripeo al valore vero. Soo dovui a fluuazioi icorollabili delle codizioi perimeali. Deermiao la preciioe della miura ed icidoo ulla ripeibilià e riproducibilià errori iemaici Fao ì che le igole miure iao ue i ecceo o ue i difeo ripeo al valore vero. Soo dovui a o calibrazioe degli rumei o a pregiudizi dell operaore (e: errore di parallae) Deermiao l eaezza di ua miura.

3 3. STATISTICA DELLE MISURE RIPETUTE.1 Media e deviazioe adard Suppoiamo di avere effeuao miure ripeue della gradezza X. Idichiamo i riulai di ali miure co i co i=1,. Si defiice media delle miure ripeue la quaià: i1 i Si defiice umero di gradi di liberà la differeza ra il umero di miure ripeue e il umero di parameri da deermiare. Si defiice deviazioe adard delle miure ripeue la quaià: i1 1 Si dimora che: i, dove -1= gradi di liberà i i i1 1 1 i1 Si defiice variaza delle miure ripeue la quaià:. Si defiice coefficiee di variazioe (CV) o deviazioe adard relaiva (RSD) la quaià, eprea i %: CV RSD 100

4 4. Diribuzioe dei riulai di ua miura Suppoiamo di avere effeuao miure ripeue della gradezza X. I riulai di ali miure ( i, i=1, ) oo u campioe appareee ad ua popolazioe=l iieme di ui i poibili riulai che verrebbero da ifiie miure di X. Suppoiamo che il riulao j-eimo j i preei m j vole. Si defiice frequeza del riulao j-eimo la quaià m j. Si defiice frazioe di miure che hao dao riulao j la quaià: f Si dimora che: k j j1 f j m j 1 Si defiice media peaa delle miure ripeue la quaià: k j1 m j j

5 5..1. Diribuzioi Nella miura di ua gradezza X, i defiice diribuzioe dei riulai la curva che decrive la frequeza dei poibili riulai i fuzioe del valore dei riulai ei. La diribuzioe dei riulai di ua miura è ua proprieà della popolazioe. Il modello maemaico che decrive la diribuzioe dei riulai di ua miura è la diribuzioe Gauiaa o diribuzioe ormale: ( ) 1 f ( ) e... Proprieà della diribuzioe gauiaa f w 1/ (1) Puo di maimo: = µ=valore vero () Maimo: 1 f( ) (3) Pui di fleo: = = deviazioe adard (4) Semi-larghezza a meà alezza w1/ l (5) Larghezza a meà alezza Probabilià che ua miura cada ra =a e =b W 8 l W / 1/ b P a f ( ) d

6 ..3. Diribuzioe gauiaa: ormalizzazioe e probabilià 6 Codizioe di ormalizzazioe f ( ) d 1 f Area= Probabilià che ua miura cada ra =µ- e =µ+ : 68% f Area= Probabilià che ua miura cada ra =µ- e =µ+ : 95% f Area= Probabilià che ua miura cada ra =µ-3 e =µ+3 : 99.7%

7 7..4. Iervallo di cofideza: cao ideale Coideriamo il cao ideale i cui riuciamo ad eeguire ifiie miure di X. Poiamo dire che: il 95% dei riulai è compreo ra =µ- e =µ+ ua uleriore miura di X cadrà ell iervallo =µ± co ua probabilià P del 95%. all iervallo di cofideza =µ± aociamo u livello di cofideza del 95%. Defiizioe: livello di igificaivià = 100% - livello di cofideza livello di cofideza P= probabilià di cadere ell iervallo di cofideza livello di igificaivià = probabilià di cadere elle code della diribuzioe f iervallo di cofideza code

8 8..5. Iervallo di cofideza: cao reale Coideriamo il cao reale i cui eeguiamo u umero fiio di miure di X, cioè abbiamo u campioe appareee ad ua cera popolazioe. La migliore ima di µ è la media: i1 La migliore ima di è la deviazioe adard : i1 i i 1 La migliore ima dell iervallo di cofideza è:, 1 dove è u paramero aiico chiamao di Sude. f - +

9 9.3 Diribuzioe delle medie Suppoiamo di eeguire ifiii eperimei i ciacuo dei quali miuriamo la media co miure. Si dimora che vale il eorema del limie cerale: la diribuzioe delle medie ha lo eo valore vero ma la ua deviazioe adard è pari alla deviazioe adard delle miure igole, divia per la radice quadraa di. f diribuzioe di diribuzioe di.4 Iervallo di cofideza per la media I bae al eorema del limie cerale, l iervallo di cofideza per ua media è:, 1

10 TESTS DI SIGNIFICATIVITÀ Defiizioe di e di igificaivià U e di igificaivià è u meodo aiico che coee di abilire e più riulai iao o meo igificaivamee diveri. Si pare empre da ua ipoei ulla H 0, che è l ipoei che o ci ia differeza igificaiva ra i riulai cofroai. Si abilice quidi e l ipoei ulla è vera o fala al livello di cofideza celo. Pricipali e di igificaivià: -e per la verifica dell eaezza. F-e per la verifica della preciioe. Q-e per la verifica di dai aomali. Te per la verifica della ormalià di ua diribuzioe Defiizioe: accuraezza = eaezza & preciioe Defiizioe: validazioe = verifica di accuraezza

11 e per il cofroo di ua media co u valore oo f oo ab ab o oo (3..1) o o o ab ab l ipoei ulla è acceaa, cioè o c è differeza igificaiva ra e oo al livello di cofideza celo. l ipoei ulla è rigeaa, cioè c è differeza igificaiva ra e oo al livello di cofideza celo. Il livello di cofideza P celo, ovvero il livello di igificaivià celo, e il valore di deermiao il valore umerico di ab. Il -e è u e di eaezza.

12 3..1. Eempio di cofroo di ua media co u valore oo Si oopoe u campioe a cocerazioe oa ad u meodo aaliico. Si vuole verificare e ale meodo dà il riulao aeo. oo = 38.9 ppb Si eeguoo 3 miure e i oegoo i riulai eguei: 1 = 38.9 ppb; = 37.4 ppb; 3 = 37.1 ppb =37.8 ppb 3 ( ) ( ) ( ) 31 =0.964 ppb ab = 0.05, = 4.3 o Poiché o < ab l ipoei ulla è acceaa, cioè o c è differeza igificaiva ra il riulao oeuo e il valore oo, al livello di cofideza del 95%. Il -e appea eeguio equivale a calcolare: * < <40. (iervallo di cofideza) Si oerva che oo cade dero l iervallo di cofideza.

13 e per il cofroo ra due medie Si voglioo cofroare due riulai oeui co due eciche divere ullo eo campioe: riulao 1. 1, 1, 1, 1 riulao.,,, U imile problema i ha per eempio quado i vuole validare u meodo aaliico mediae uo adard cerificao. I queo cao il cofroo ra le due medie è ua verifica di eaezza del meodo oopoo a validazioe. Verificare l ipoei ulla che o ci ia differeza igificaiva ra 1 e equivale a verificare che o ci ia differeza igificaiva ra e lo zero. 1

14 Cao 1: 1 e o oo igificaivamee divere Si eegue u -e i cui: o ( 1) ( 1) (variaza pooled) 1 = umero di gradi di liberà del problema o P, ipoei ulla acceaa o c è differeza igificaiva ra i due riulai Eempio. Due meodi hao dao i eguei riulai ullo eo campioe. 1=8.0 ppm, 1 =0.3 ppm, 1 =10 miure =6.3 ppm, =0. ppm, =9 miure o (10 1) 0.3 (9 1) ab = 0.05,17 = = , = 10+9-=17 o > ab c è differeza igificaiva ra i due riulai.

15 3.3.. Cao : 1 e oo igificaivamee divere 15 Si eegue u -e i cui: o e i arrooda all iero più vicio.

16 Paired -e Il e delle differeze accoppiae i applica quado i abbiao h campioi diveri e u ciacuo i eegua ua igola miura col meodo 1 e ua igola miura col meodo. Siao: i,1 il riulao oeuo ul campioe i-eimo col meodo 1 i, il riulao oeuo ul campioe i-eimo col meodo ,1 1, i,1 i, h,1 h, d1... d i... d d, d, h-1 gradi di liberà Per verificare e ci ia differeza igificaiva ra i vari riulai oeui co le due eciche, i fa l ipoei ulla che d =0 e i eegue u -e co: o d d

17 Eempio Campioe meodo1 meodo d d d ( ) ( ) ( 1.75) (3 1.75) o ,3 =3.18 o < ab ipoei ulla acceaa: i due meodi dao riulai o igificaivamee differei.

18 Te a ua coda, e a due code f e a code iervallo di cofideza f e a 1 coda iervallo di cofideza code coda I -e fiora decrii oo del ipo a due code perché i coidera l eveualià più geerale che i dai di cofroo ripeo ad ua media poao cadere ia al di opra (coda di dera) che al di oo (coda di iira) ripeo all iervallo di cofideza. Quado c è ua moivazioe perimeale al fao che il dao di cofroo poa eere olo più grade o olo più piccolo ripeo ai dai rovai allora i applica u e a 1 coda. Fiai u livello di igificaivià e gradi di liberà, i ha: 1coda code,, 1coda code,, Dove o pecificao, è riferio al cao di code. La fuzioe di Ecel INV.T() è riferia al cao di code.

19 19 Eempio Tiolado 5 ml di u acido fore 0.1 M co ua bae fore 0.1 M, ci i è rei coo di avere uao come idicaore feolfaleia roppo diluia e di avere apprezzao la compara del colore roo i riardo ripeo al puo equivalee, commeedo u errore i ecceo. Si vuole verificare, co u livello di cofideza del 95%, e queo errore ha comporao ua igificaiva macaza di eaezza. Riulai per il volume V di iolae aggiuo (ml). 5.06, 5.18, 4.87, 5.51, 5.34, 5.41 V =5.8 ml = 0.38 ml o coda code 0.05,5 0.10,5.01 o > ab il dao rovao è igificaivamee maggiore ripeo al dao aeo. N.B. e i foe uao come ab il valore i arebbe code 0.05,5.57 cocluo che il dao rovao o è igificaivamee differee ripeo al dao aeo.

20 3.6. F-e per il cofroo ra deviazioi adard Suppoiamo di ooporre a miura uo eo campioe co due meodi diveri. Vogliamo cofroare le preciioi dei due meodi. Dobbiamo cofroare le variaze Defiizioe: 1, 1, e 1 oeue coi due meodi. F, 1 e = umeri di gradi di liberà. A umeraore i poe empre la variaza più grade. Ipoei ulla H 0 : che o ci ia differeza di preciioe ra i meodi F-e a 1 coda Si applica quado i vuole verificare e il meodo è più precio del meodo 1, al livello di igificaivià. Fo 1 F coda,, 1 H 0 acceaa il meodo 1 o è più precio del meodo F-e a code Si applica quado i vuole verificare e ci ia differeza igificaiva ra le preciioi dei due meodi, al livello di igificaivià. Fo F F code F,, F 1 1coda code,,,, 1 1 F 1coda code,,,, 1 1 H 0 acceaa le preciioi dei due meodi o oo igificaivamee differei La fuzioe di Ecel INV.F( ) è riferia al cao di 1 coda.

21 Eempio U aalia propoe u uovo meodo (meodo ) ed afferma che eo è più precio di u meodo già validao (meodo 1). I riulai oo: Meodo Media (mg ml -1 ) (mg ml -1 ) Numero miure Fo F 1 coda 0.05,7, INV.F(0.05;7;7) 1 Fo 1 F coda,, 1 H 0 rigeaa il meodo è più precio del meodo 1. Eempio U aalia propoe u uovo meodo (meodo ) e i chiede e la ua preciioe ia divera ripeo ad u meodo già validao (meodo 1). I riulai oo: Meodo Media (mg ml -1 ) (mg ml -1 ) Numero miure Fo F code 0.05,9, INV.F(0.05;9;9) Fo code F,, 1 H 0 acceaa le preciioi del meodo o oo igificaivamee divere.

22 3.7. Q-e per la verifica di dai aomali Suppoiamo di avere oopoo uo eo campioe a più miure co lo eo meodo. Uo dei dai riula ad occhio molo divero dagli alri. Si vuole verificare e eo ia aomalo. Defiizioe: valore opeo valore più vicio Q ( valore maimo valore miimo ) Q o Q abulao il dao opeo o è rigeabile Valori criici di Q al livello di igificaivià del 5% Numero miure Q Eempio Dai raccoli (mg l -1 ) 0.403, 0.410, 0.401, Q Il dao opeo riula o igificaivamee aomalo al livello di cofideza del 95%.

23 3.8. Te per la verifica della ormalià di ua diribuzioe Suppoiamo di avere effeuao miure (>50) di ua gradezza. Vogliamo verificare e le miure ripeue oo coformi ad ua diribuzioe gauiaa. Ipoei ulla: o c è differeza igificaiva ra la diribuzioe delle miure oervae e ua diribuzioe gauiaa. Dalle miure ripeue calcoliamo e. Suddividiamo l ae i k iervalli. È calcolabile la probabilià P k che u dao cada el k-eimo iervallo. Per e. el cao k=8 iervalli oeui poadoi di ua a parire dalla media i ha: Chiamiamo E k il umero di miure che ci i aede che cada ell iervallo k-eimo. È: Ek P k (3.8.1) Chiamiamo O k il umero di miure che i oervao cadere ell iervallo k-eimo. O Defiiz.:, k E k, k = umero di gradi di liberà (3.8.) k Ek Fiao il livello di igificaivià i ha che: o, k i dai oo diribuii ormalmee (3.8.3) I valori criici di oo abulai e calcolabili co la fuzioe di Ecel INV.CHI(; k)

24 fcum Te della frequeza cumulaiva Suppoiamo di avere effeuao miure (<50) di ua gradezza. Vogliamo verificare e le miure ripeue oo coformi ad ua diribuzioe gauiaa. Ipoei ulla: o c è differeza igificaiva ra la diribuzioe delle miure oervae e ua diribuzioe gauiaa. Si ordiao i dai i modo crecee, aegado a ciacuo u umero d ordie k, chiamao ache frequeza cumulaiva. Si calcola: k fcum 1 E i ripora i grafico f cum i fuzioe dei dai. Se i dai apparegoo ad ua diribuzioe gauiaa i deve oeere ua igmoide. Eempio. dai k f cum dai

Test d ipotesi sulla differenza tra medie Daniel. ESERCIZIO pag

Test d ipotesi sulla differenza tra medie Daniel. ESERCIZIO pag Te d ipoei ulla differeza ra medie Daiel ESERCIZIO pag.7 7.3. Campioe Media Deviazioe adard Paziei o diabeici 79.. Paziei diabeici 74.6. X pueggio oeuo dalla miura del rifleo edieo profodo?: Si può cocludere,

Dettagli

Sia dato un esperimento casuale individuato da uno spazio di probabilità S=

Sia dato un esperimento casuale individuato da uno spazio di probabilità S= Capiolo II CARATTERIZZAZIONE STATISTICA DEI SEGNALI II. - Fuzioi di proailià del primo ordie. Sia dao u eperimeo cauale idividuao da uo pazio di proailià S (, F,Pr) Ω. Per egale aleaorio reale iede u applicazioe

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

Equazioni differenziali: formule

Equazioni differenziali: formule Equazioi differeziali: formule Equazioi a variabili separabili y ' A B y Vale eorema esiseza e uicià locale y ' dy Ad B y y y ' A B y y Si applicao le codizioi alla fie dei due iegrali idefiii, oppure

Dettagli

Teoria delle distribuzioni Parte quinta Limiti nel senso delle distribuzioni

Teoria delle distribuzioni Parte quinta Limiti nel senso delle distribuzioni ezioi di Maemaica e disribuzioi pare 5 Teoria delle disribuzioi Pare quia imii el seso delle disribuzioi operazioe di limie i seso disribuzioale Passiamo a raare, araverso ua serie di esempi precedui da

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica La distribuzioe delle statistiche campioarie Matematica co elemeti di Iformatica Tiziao Vargiolu Dipartimeto di Matematica vargiolu@math.uipd.it Corso di Laurea Magistrale i Chimica e Tecologie Farmaceutiche

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

L INTERVALLO DI CONFIDENZA

L INTERVALLO DI CONFIDENZA L INTERVALLO DI CONFIDENZA http://www.biostatistica.uich.itit POPOLAZIONE POPOLAZIONE CAMPIONAMENTO CAMPIONE PARAMETRO INFERENZA CAMPIONAMENTO? STIMA CAMPIONE Stimare i Parametri della Popolazioe Itervallo

Dettagli

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!)

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) Per fortua le cose o cambiao poi di molto visto che la uova variabile x µ s x co s x

Dettagli

Si dice che f è infinitesima o che è un infinitesimo per x x0 Un infinitesimo, quindi è una variabile che tende a zero.

Si dice che f è infinitesima o che è un infinitesimo per x x0 Un infinitesimo, quindi è una variabile che tende a zero. pag Appui elaborai dal collega Prof. Vicezo De Pasquale Ifiiesimi Si dice che f è ifiiesima o che è u ifiiesimo per se f ( ) U ifiiesimo, quidi è ua variabile che ede a zero. Es. - π y cos è u ifiiesimo

Dettagli

Test d ipotesi: i confronti appaiati. ESERCIZIO pag Dati

Test d ipotesi: i confronti appaiati. ESERCIZIO pag Dati Te ipoei: i cofroi appaiai ESERCIZIO pag.5 7.4.1 Dai 17 X pueggi pre e po raiig (a pueggio > corripoe > cooceza). Pre 7 6 10 16 8 13 8 14 16 11 1 13 9 10 17 8 5 Po 11 14 16 17 9 15 9 17 0 1 14 15 14 15

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

Numeri Reali e Numeri Finiti

Numeri Reali e Numeri Finiti Appui di Calcolo Numerico A.A. 9/ Numeri Reali e Numeri Fiii L impiego di u calcolaore permee di effeuare operazioi elemeari fra umeri i empi molo brevi offredo la poibilià di riolvere problemi molo più

Dettagli

Soluzione IC=[20.6,22.6]

Soluzione IC=[20.6,22.6] Eercizio 1 Suppoiamo di etrarre u campioe cauale di umeroità = da ua popolazioe ormale co deviazioe tadard pari a 5.1. Sapedo che la media campioaria x è pari a 21.6, cotruire u itervallo di cofideza al

Dettagli

L INTERVALLO DI CONFIDENZA

L INTERVALLO DI CONFIDENZA L INTERVALLO DI CONFIDENZA http://www.biostatistica.uich.itit POPOLAZIONE POPOLAZIONE CAMPIONAMENTO CAMPIONE PARAMETRO INFERENZA CAMPIONAMENTO? STIMA CAMPIONE 1 Stimare i Parametri della Popolazioe Itervallo

Dettagli

(per popolazioni finite)

(per popolazioni finite) Se o è oto I geere lo carto quadratico medio della popolazioe, al pari della media μ, o è oto. Pertato, per otteere u itervallo di cofideza per la media della popolazioe, occorre utilizzare la deviazioe

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A Uiversità degli Studi di Padova Corso di Laurea i Medicia e Chirurgia - A.A. 015-16 Corso Itegrato: Statistica e Metodologia Epidemiologica Disciplia: Statistica e Metodologia Epidemiologica Doceti: prof.ssa

Dettagli

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Adolfo Scimoe FORMULE INTEGRAZIONE Pag INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Iegrazioe delle fuzioi razioali frae Se la frazioe è impropria, cioè il grado del umeraore è maggiore o uguale

Dettagli

Risposte nel tempo di sistemi LTI del 1 e 2 ordine

Risposte nel tempo di sistemi LTI del 1 e 2 ordine Ripote el tempo di itemi LTI del e ordie Fodameti di Automatica Prof. Silvia Strada Coro di Studi i Igegeria Getioale (Cogomi H PO) Sitemi del ordie E molto comue crivere G () a b µ + a + τ b τ K τ G ()

Dettagli

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo Abbiamo visto che, data ua v.a. X di cui o si cooscao valore atteso e variaza, tali umeri si possoo stimare putualmete el seguete modo: si prede u casuale X 1,...,X di v.a. aveti la stessa legge di X;

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

Ulteriori Esercizi su Grafi. Ugo Vaccaro

Ulteriori Esercizi su Grafi. Ugo Vaccaro Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

0 per x / ( 1, ). i) (4 p) Trovare per quali valori di α la funzione f è una densità di probabilità (non si chiede di calcolare C α ).

0 per x / ( 1, ). i) (4 p) Trovare per quali valori di α la funzione f è una densità di probabilità (non si chiede di calcolare C α ). Corsi di Probabilià, Saisica e Processi socasici per Ig dell Auomazioe, Iformaica e If Ges Azieda /5/ Esercizio U sisema di preallarme su u velivolo segala ua A allarme oppure ua N o allarme ogi dieci

Dettagli

Tab. 1 - Studenti presenti alla lezione di statistica del per voto alla maturità

Tab. 1 - Studenti presenti alla lezione di statistica del per voto alla maturità 53 Idici di variabilià 531 Iervalli di variazioe Sosiuire ua disribuzioe co u valore medio, per quao esso possa essere rappreseaivo, causa comuque ua fore perdia di iformazioe Divea perciò ecessario rovare

Dettagli

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α=

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α= ESERCIZIO 7. U uovo modello di termotato per frigorifero dovrebbe aicurare, tado alle pecifiche teciche, ua miore variabilità ella temperatura del frigo ripetto ai modelli della cocorreza. I particolare

Dettagli

Statistica I - A.A

Statistica I - A.A Statistica I - A.A. 206-207 Prova scritta - 9 aprile 207 Problema. (pt. 20 U azieda che produce ricambi per stampati esamia la durata di u certo modello di cartuccia d ichiostro, misurata i umero di copie

Dettagli

Prova Scritta di Fondamenti di Automatica del 15 Marzo 2006

Prova Scritta di Fondamenti di Automatica del 15 Marzo 2006 Proa Scria di Fodamei di Aomaica del 5 Marzo 6 Sdee: Maricola: ω ) Si coideri l aomobile chemaizzaa i figra. L igreo del iema è la coppia alle roe morici, l cia è la elocià del eicolo. Si ama di poer ridrre

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6 X c () 0 0 0 0 t dx e x t altrove x e x x f x t x X = =4 =8 E[X] = Var[X] = Teorema Z, Z,, Z N(0 ; ) e idipedeti X= Z + Z + +Z c () Nota Esistoo tavole dei puti percetuali delle distribuzioi chi-quadro

Dettagli

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 30 Gennaio 2019

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 30 Gennaio 2019 Uiversià di Roma Tor Vergaa - Corso di Laurea i Igegeria Aalisi Maemaica I - Prova scria del 3 Geaio 9 Esercizio. [5 pui] Calcolare lo sviluppo di Taylor dell ordie = 5 el puo x = per la seguee fuzioe:

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it Ifereza statistica Dal campioe alla popolazioe Co quale precisioe si possoo descrivere le caratteristiche di ua popolazioe sulla base

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012.

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012. NUMERI REALI Mauro Saita maurosaita@tiscaliet.it Versioe provvisoria. Settembre 2012. Idice 1 Numeri reali. 1 1.1 Numeri aturali, iteri, razioali......................... 1 1.2 La scoperta dei umeri irrazioali.........................

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI TATITICA MEDICA ED EERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioi idipedeti) IL PROBLEMA oo stati rilevati i dati relativi alla frequeza cardiaca (misurata i battiti al miuto)

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim Y557 - ESAME DI STATO DI LICEO SCIETIFICO PIAO AZIOALE DI IFORMATICA CORSO SPERIMETALE Tema di: MATEMATICA (Sessioe ordiaria 2002) QUESTIOARIO 1 Se a e b soo umeri positivi assegati quale è la loro media

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli Esercitazioi del Corso di Probabilitá e Statistica Lezioe 6: Stime di parametri putuali e per itervalli Stefao Patti 1 19 geaio 005 Defiizioe 1 Ua famiglia di desitá f(, θ) ad u parametro (uidimesioale)

Dettagli

Metodi di valutazione delle prestazioni di rete

Metodi di valutazione delle prestazioni di rete Metodi di valutazioe delle prestazioi di rete Prof. Ig. Carla Raffaelli Cofroto di diversi approcci Parametri di cofroto: precisioe requisiti di poteza di calcolo requisiti di memoria facilita' di approccio

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di PSICOMETRIA Eercizi - 06 ) A u campioe i 96 iegati elle cuole meie, ati opo il 970, viee ommiitrata ua cala i Autoritarimo (SA) il cui puteggio va a 8 (bao autoritarimo) a 07 (alto autoritarimo). Si ottegoo

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE 6 INFERENZA STATISTICA Isieme di metodi che cercao di raggiugere coclusioi sulla popolazioe, sulla base delle iformazioi coteute i u campioe estratto da quella popolazioe. INFERENZA

Dettagli

Distribuzione normale

Distribuzione normale Distribuzioe ormale Tra le distribuzioi di frequeze, la distribuzioe ormale riveste u importaza cetrale. Essa ha ua forma a campaa ed è simmetrica rispetto all asse verticale che passa per il vertice (moda).

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità Lezioe III: Variabilità Cattedra di Biostatistica Dipartimeto di Scieze Biomediche, Uiversità degli Studi G. d Auzio di Chieti Pescara Prof. Ezo Balloe Lezioe a- Misure di dispersioe o di variabilità Misure

Dettagli

Le principali procedure inferenziali: nozioni, schemi di procedimento ed esempi di applicazione

Le principali procedure inferenziali: nozioni, schemi di procedimento ed esempi di applicazione Complemeti per il corso di Statistica Medica Le pricipali procedure ifereziali: ozioi, schemi di procedimeto ed esempi di applicazioe IC al livello (-α) % per la media µ Ipotesi: ella popolazioe il feomeo

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO ISPOSTA NEL DOMINIO DEL TEMPO Nel domiio del empo le variabili oo eamiae ecodo la loro evoluzioe emporale. Normalmee i eamia la ripoa del iema a u egale di prova caoico, cioè i ollecia il iema co u: igreo

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Biani, BIO A-K 6 Seembre 7 Si conideri il eguene iema dinamico lineare a coefficieni coani a empo coninuo: u ( G ( y ( con G ( 5 a Di quale o quali, ra i iemi

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Distribuzione normale o gaussiana

Distribuzione normale o gaussiana Distribuzioe ormale o gaussiaa Ua variabile radom si dice distribuita ormalmete (o secodo ua curva gaussiaa) se la sua fuzioe di desità di probabilità è del tipo: f () ( ) ep co - rappreseta il valore

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fodameti di Iformatica Ester Zumpao Programmazioe co Foglio di Calcolo Cei di Statistica Descrittiva Lezioe 3 Formule e Fuzioi Fuzioi Formule predefiite per il calcolo di espressioi matematiche complesse

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 7 LA STRUTTURA A TERMINE DEI TASSI D INTERESSED

ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 7 LA STRUTTURA A TERMINE DEI TASSI D INTERESSED ECONOMIA MONETARIA (pare geerale) Prof. Guido Ascari Ao 2006-2007 2007 LEZIONE 7 LA STRUTTURA A TERMINE DEI TASSI D INTERESSED LA STRUTTURA A TERMINE DEI TASSI D INTERESSED Tioli di debio hao diverse scadeze

Dettagli

campioni estratti da una popolazione finita e quelli che provengono da una popolazione infinita. Capitolo VII

campioni estratti da una popolazione finita e quelli che provengono da una popolazione infinita. Capitolo VII 37 38 Capitolo VII campioi etratti da ua popolazioe fiita e quelli che provegoo da ua popolazioe ifiita. ATTENDIBILITA' DELLE STATISTICHE CAMPIONARIE 1.1 Campioi etratti da ua popolazioe fiita 1. Ditribuzioe

Dettagli

Marco Listanti. Parte 2 Rappresentazione dei segnali e teorema del campionamento. DIET Dept

Marco Listanti. Parte 2 Rappresentazione dei segnali e teorema del campionamento. DIET Dept 1 Marco Lisai Lo srao Fisico Pare Rappreseazioe dei segali e eorema del campioameo elecomuicazioi (Caale - Prof. Marco Lisai - A.A. 017/018 DIE Dep Segale aalogico Segale empo-coiuo adameo el empo di ua

Dettagli

Corso di Insegnamento Tecnico-Pratico per personale ATA a.s. 2005/06

Corso di Insegnamento Tecnico-Pratico per personale ATA a.s. 2005/06 Coro di Iegameto Tecico-Pratico per peroale T a.. 005/06 tutor : Giacarla lberti Dipartimeto di Chimica Geerale Uiverità di Pavia Via Taramelli, 1 7100 Pavia (Italy) tel. + 39 038 987347 e-mail: galberti@uipv.it

Dettagli

Gli Indici di VARIABILITA

Gli Indici di VARIABILITA Elemeti di Statistica descrittiva Gli Idici di VARIABILITA - Campo di variazioe - Scarto dalla media - Variaza - Scarto quadratico medio - Coefficiete di variazioe Idici di Variabilità I valori medi soo

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

CAPITOLO 2 Semplici esperimenti comparativi

CAPITOLO 2 Semplici esperimenti comparativi Douglas C. Motgomer Progettazioe e aalisi degli esperimeti 006 McGraw-Hill CAPITOLO emplici esperimeti comparativi Metodi statistici e probabilistici per l igegeria Corso di Laurea i Igegeria Civile A.A.

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

Impianti Industriali. La previsione della domanda. Metodi di estrapolazione. Ing. Lorenzo Tiacci

Impianti Industriali. La previsione della domanda. Metodi di estrapolazione. Ing. Lorenzo Tiacci Impiai Idusriali a previsioe della domada Meodi di esrapolazioe Ig. orezo Tiacci e compoei della domada Tred Cogiuurale Sagioale Casuale Tedeziali (red) a caraere geeralmee crescee e decrescee Sisemaiche

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

FACOLTA DI INGEGNERIA

FACOLTA DI INGEGNERIA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 4 ARGOMENTO: ANALISI DI BASE DEI DATI CAMPIONARI A.A. 00- ANALISI DEI DATI Il primo

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

PROBLEMI DI INFERENZA SU PERCENTUALI

PROBLEMI DI INFERENZA SU PERCENTUALI ROBLEMI DI INFERENZA SU ERCENTUALI STIMA UNTUALE Il roblema della stima di ua ercetuale si oe allorchè si vuole cooscere, sulla base di osservazioi camioarie, la frazioe π di ua oolazioe N che ossiede

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

Ammortamento di un debito

Ammortamento di un debito Ammorameo di u debio /35 Ammorameo di u debio Che cosa si iede per ammorameo? Ammorameo coabile La quoa di ammorameo cosiuisce la pare del coso di u bee maeriale o immaeriale di ivesimeo da aribuire all

Dettagli

= ed è: n. 2 2 x. tra ns x

= ed è: n. 2 2 x. tra ns x 0/9/6 Itroduzioe all aalisi di variaza: variaza etro e tra gruppi La procedura dell aalisi della variaza sfrutta il fatto che la variaza della popolazioe da cui, i base all ipotesi H 0, provegoo i campioi

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50 Ua delle applicazioi della teoria delle proporzioi è la divisioe di u umero (o di ua gradezza) i parti direttamete o iversamete proporzioali a più umeri o a più serie di umeri dati. Tale tipo di problema

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Qualunque processo che generi risultati eventi che non sono generalizzabili con certezza

Qualunque processo che generi risultati eventi che non sono generalizzabili con certezza CAMPIONAMENTO Esperimeto experimetal desig Qualuque processo che geeri risultati eveti che o soo geeralizzabili co certezza Popolazioe o è fiita Feomeo è sotto cotrollo: stimolo - risposta (pe sperimetazioe

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Tecnica delle misurazioni applicate Esame del 7 gennaio 2008

Tecnica delle misurazioni applicate Esame del 7 gennaio 2008 Tecica delle misurazioi applicae Esame del 7 geaio 008 Problema 1. La Beloiglio rl è u impresa che alleva idusrialmee coigli e da lugo empo uilizza il magime ProRabbi 10% che ha sempre garaio, i u presabilio

Dettagli

LE MISURE DI SINTESI (misure di tendenza centrale)

LE MISURE DI SINTESI (misure di tendenza centrale) STATISTICA DESCRITTIVA LE MISURE DI SINTESI (misure di tedeza cetrale) http://www.biostatistica.uich.itit OBIETTIVO Altezza degli studeti 004-05 (cm) Tabella dei dati Idividuare u idice che rappreseti

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli