INTRODUZIONE AI SEGNALI. 1 Fondamenti di segnali e trasmissione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTRODUZIONE AI SEGNALI. 1 Fondamenti di segnali e trasmissione"

Transcript

1 INRODUZIONE AI SEGNALI Fndameni di segnali e rasmissine

2 Classificazine dei segnali () I segnali rappresenan il cmpramen di grandezze fisiche (ad es. ensini, emperaure, pressini,...) in funzine di una piu variabili indipendeni (ad es. il emp, l spazi x,...). I segnali mndimensinali sn rappresenai da funzini di una sla variabile e pssn essere: cninui > se la variabile indipendene assume cn cninuia ui i valri reali Fndameni di segnali e rasmissine

3 Classificazine dei segnali () discrei > se la variabile indipendene assume valri mulipli ineri di un inervall prefissa.5 x n n reali > se il segnale assume sl valri reali cmplessi > se il segnale assume valri cmplessi (pare reale + pare immaginaria ppure mdul + fase) 3 Fndameni di segnali e rasmissine

4 Classificazine dei segnali (3) peridici > se il segnale si ripee uguale a se sess dp un qualsiasi inervall mulipl di un perid di duraa. L invers della duraa del perid viene de frequenza fndamenale f del segnale peridic. Se e peridic, cn perid, e se cn y( si indica rnca ad un sl perid, e evidene che il segnale peridic pu essere espress cme: y( n n ) y( Fndameni di segnali e rasmissine

5 Energia, penza e cmpnene cninua (valr medi) Energia E d Penza isananea P i Penza media P lim / / d Penza media di un segnale peridic Aenzine: nn sn energie e penze fisiche. P / / d Cmpnene cninua (valr medi) m lim / / d Cmpnene cninua (valr medi) di un segnale peridic m / d / 5 Fndameni di segnali e rasmissine

6 Riard τ ) τ Il segnale e riarda di rispe a ; e rasla rigidamene vers desra - ) Fndameni di segnali e rasmissine

7 Anicip + τ ) τ Il segnale e anicipa di rispe a ; e rasla rigidamene vers sinisra - +) Fndameni di segnali e rasmissine

8 Scalaura a a Il segnale e scala di rispe a ; a < a > e dilaa se e cmpress se x 8 Fndameni di segnali e rasmissine

9 ESEMPI: csane e reangl x ( C x ( rec( Csane E Reangl E P C P m C m Fndameni di segnali e rasmissine

10 Mliplicazine di un segnale per il reangl y( x ( rec( - - y( - - Fndameni di segnali e rasmissine

11 ESEMPI: scalin ed espnenziale.5.5 Scalin E u( P > < m exp( a u( Espnenziale E a P a > m Fndameni di segnali e rasmissine

12 L impuls: definizine L impuls (de anche dela di Dirac) pu essere defini (ralasciand il rigre maemaic) cme un reangl di base e alezza / quand ende a zer: δ ( lim rec L impuls e dunque un segnale lcalizza nell rigine cn base infiniesima, ampiezza infinia, ma area (inegrale) uniaria:.5 / A δ ( d - Fndameni di segnali e rasmissine.5

13 ( ) ( lim rec x δ lim) rec L impuls: regle di calcl - Un segnale mliplica per un impuls e uguale al valre del segnale in per l impuls sess ) δ ( Fndameni di segnali e rasmissine - - / rec(/) - Un segnale mliplica per un impuls riarda di τ e uguale al valre del segnale in τ per l impuls sess: ( τ) τ δ( τ) x ( δ ) 3 - L inegrale di un segnale mliplica per un impuls riarda di τ e uguale al valre del segnale in τ : ( τ ) d ) x ( δ τ

14 Simbl dell impuls δ (-) δ ( δ (+) - 4 Fndameni di segnali e rasmissine

15 ( π f + ϕ ) Acs Csinuside P Ampiezza Frequenza Fase (iniziale) A f Perid ( ) π 5cs π Fndameni di segnali e rasmissine

16 Csinuside Acs πf + ϕ Acs πf Csinuside: ampiezza, fase, frequenza ( ) + ϕ πf Aumenare la fase della csinuside equivale ad anicipare Aumena l ampiezza Fndameni di segnali e rasmissine Aumena la fase iniziale Aumena la frequenza

17 sin exp { π f } Im{} L espnenziale cmpless (Euler) Cmpneni reale e immaginaria { j π f } { π f } cs Re{} { π f } Mdul e fase Fndameni di segnali e rasmissine 5

18 L espnenziale cmpless (Euler) Im{} cs{ π f } { } / π f Re{} exp exp { j π f } + { } j π f / { π f } sin{ π f } j exp exp { j π f } { } j π f 8 Fndameni di segnali e rasmissine

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INRODUZIONE AI SEGNALI Fndameni Segnali e rasmissine Classificazine dei segnali ( I segnali rappresenan il cmpramen di grandezze fisiche (ad es. ensini, emperaure, pressini,... in funzine di una piu variabili

Dettagli

INTRODUZIONE. Sistema di comunicazione

INTRODUZIONE. Sistema di comunicazione INTRODUZIONE Fndameni di Segnali e Trasmissine Sisema di cmunicazine Trasmissine di infrmazine da un miene ad un desinaari aravers una successine di prcessi: La srgene genera un messaggi (vce, musica,

Dettagli

INTRODUZIONE AI SEGNALI

INTRODUZIONE AI SEGNALI INRODUZIONE AI SEGNALI INRODUZIONE AI SEGNALI Segnale insieme di quantità fisiche che varian rispett ad una variabile ad un insieme di variabili indipendenti. [s, s, s 3... s M ] f(x, x, x 3... x N ) M-canali

Dettagli

SEGNALI NON PERIODICI: LA TRASFORMATA DI FOURIER

SEGNALI NON PERIODICI: LA TRASFORMATA DI FOURIER SEGNALI NON PERIODICI: LA RASFORMAA DI FOURIER Fndameni di Segnali e rasmissine Inrduzine Se il segnale d ingress di un sisema Lineare emp-invariane LI e un espnenziale cmpless, l uscia sara ancra un espnenziale

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI L RSFORM DI FOURIER: PROPRIE ed ESEMPI RSFORM DI FOURIER Prprieà della DF ( x( DF ( LINERI : la DF della cmbinazine lineare (smma pesaa di due segnali e uguale alla cmbinazine lineare delle DF dei due

Dettagli

MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a

MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a. 2008.09 Crs inegra cn Teria dei Segnali Maredì 8,30-11,30 Mercledì 8,30-10,30 Givedì 8,30-10,30 Esame del crs inegra: è cmplea quand si è supera sia sia Maemaica

Dettagli

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA. 1 Fondamenti Segnali e Trasmissione

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA. 1 Fondamenti Segnali e Trasmissione SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA Fndameni Segnali e Trasmissine Perche si uilizza la rappresenazine cmplessa In naura esisn sl segnali reali, uavia e pssibile pensare a segnali che abbian

Dettagli

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA Fndameni di segnali Fndameni e rasmise TLC Perche si uilizza la rappresenazine cmplessa In naura esisn sl segnali reali, uavia e pssibile pensare a segnali

Dettagli

Convertitori alternata / continua

Convertitori alternata / continua Crs di ELETTRONCA NDUSTRALE CONVERTTOR CA/CC A TRSTOR 12 1 Cnveriri alernaa / cninua Per la cnversine dalla crrene alernaa mnfase rifase alla crrene cninua si usan spess schemi a pne di Graez Si usan didi

Dettagli

[ ] ( ) ( ) ( ) Accelerazione. dv t d r t. dt dt. t d y t. dt dt. dt dt. Dimensioni fisiche. v l m. t = = dv t d z t. dt dt. x 2.

[ ] ( ) ( ) ( ) Accelerazione. dv t d r t. dt dt. t d y t. dt dt. dt dt. Dimensioni fisiche. v l m. t = = dv t d z t. dt dt. x 2. a Accelerazine dv d r a = = dv ( ) x d x = = ( ) dv y d y ay = = x Dimensini fisiche ( ) ( ) a ( ) ( ) dv d z = = z z [ ] [ ] [] [] v l m a = = S.I. s [] S. Viale A.A. 003-004 1 Valri ipici Accelerazine

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Nozioni elementari di Analisi Matematica applicate alla Fisica Generale

Nozioni elementari di Analisi Matematica applicate alla Fisica Generale Nzini elemenari i Analisi Maemaica applicae alla Fisica Generale Nzine i limie i una funzine in Analisi Maemaica e in Fisica La naura elle relazini ra granezze fisiche richiee una cera aenzine, e in alcuni

Dettagli

R. Cusani, F. Cuomo: Telecomunicazioni - Fondamenti sui segnali analogici, Marzo 2010

R. Cusani, F. Cuomo: Telecomunicazioni - Fondamenti sui segnali analogici, Marzo 2010 1 Fondameni dei segnali analogici R. Cusani, F. Cuomo: elecomunicazioni - Fondameni sui segnali analogici, Marzo 010 Segnali analogici (1/ Collegameni analogici puno-puno unidirezionali (es. radiodiusione

Dettagli

Nei termini dell Analisi Matematica, si dice allora che v(t) è una primitiva di a(t). L insieme delle primitive di a(t) è l integrale indefinito:

Nei termini dell Analisi Matematica, si dice allora che v(t) è una primitiva di a(t). L insieme delle primitive di a(t) è l integrale indefinito: C4. Inegrazine delle equazini del m Si è is, nel paragraf precedene, cme l algrim di deriazine permea di calclare elcià e accelerazine a parire dalla legge raria. Si pne ra il prblema iners: cme si deermina

Dettagli

SISTEMI POLIFASI. (Ultima aggiornamento.06/05/2013)

SISTEMI POLIFASI. (Ultima aggiornamento.06/05/2013) SST POLFAS lima aggirnamen.6/5/ Sisemi plifasi Sisemi plifasi:dire e invers pag. Sisema rifase: dire e invers pag. 5 Cllegamen delle fasi a sella a riangl pag. 7 Alimenazine cn cllegamen a sella: ensine

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondameni TLC Propriea della () LINEARITA : la della combinazione lineare (somma pesaa) di due segnali e uguale alla combinazione lineare delle dei due segnali.

Dettagli

Componenti ideali e reali

Componenti ideali e reali Cmpneni ideali e reali Cme si vedrà anhe più deagliaamene nel segui, il funzinamen dei mpneni uilizzai nell elernia di penza è del ip n ff --> esursus Le araerisihe di ineresse sn essenzialmene: Caraerisihe

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

DIPLOMA A DISTANZA IN INGEGNERIA ELETTRICA

DIPLOMA A DISTANZA IN INGEGNERIA ELETTRICA DPOA A DTAZA GEGERA EETTRCA CORO D EETTROCA DTRAE D POTEZA ezine 7 Cnveriri Bs e BuckBs Dcene: Pal Teni Diparimen di Elernica e nfrmaica niversiá di Padva Argmeni raai Cnverire innalzare di ensine (Bs

Dettagli

SEGNALI PERIODICI: LA SERIE DI FOURIER

SEGNALI PERIODICI: LA SERIE DI FOURIER SEGNLI PERIODICI: L SERIE DI FOURIER Fdmei di Segli e rsmissie Rppreseie dei segli peridici U segle peridic c perid pu essere rpprese cme smm di espeili cmplessi c reque pri d u mulipl ier dell reque dmele

Dettagli

EFFETTO DELL INDUTTANZA DI RETE

EFFETTO DELL INDUTTANZA DI RETE EFFETTO DE NDUTTANZA D RETE Vgliam adess aluare l effe causa dall ineiabile presenza dell induanza ree. a R si riiene rascurabile. Circui equialene secnd Theenin R i RADDRZZATORE CONTROATO MONOFAE CON

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

SEGNALI PERIODICI, SEQUENZE, TRASFORMATA DISCRETA DI FOURIER. 1 Fondamenti Segnali e Trasmissione

SEGNALI PERIODICI, SEQUENZE, TRASFORMATA DISCRETA DI FOURIER. 1 Fondamenti Segnali e Trasmissione SEGALI PERIODICI, SEQUEZE, RASFORMAA DISCREA DI FOURIER Fndamenti Segnali e rasmissine Rappresentazine dei segnali peridii () Un segnale peridi n perid pu essere rappresentat me smma di espnenziali mplessi

Dettagli

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE U N I V E R S I T À D E G L I S T U D I D I P I S A DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Cmunicazini numeriche Esercizi su sistemi di variabili aleatrie-e sui prcessi stcastici Sistemi di variabili

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

Page 1. Corso di ELETTRONICA INDUSTRIALE. Argomenti trattati. Convertitore Buck Passaggio dal funzionamento continuo a quello discontinuo

Page 1. Corso di ELETTRONICA INDUSTRIALE. Argomenti trattati. Convertitore Buck Passaggio dal funzionamento continuo a quello discontinuo Crs di EETTRONCA NDSTRAE Argmeni raai Analisi del funzinamen discninu del cnverire buc Equazini fndamenali Funzinamen discninu del cnverire buc. Caraerisiche di cnrll e d uscia Frme d nda Caraerisiche

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INTRODUZIONE AI SEGNALI Classiicazione dei segnali ( I segnali rappresenano il comporameno di grandezze isiche (ad es. ensioni, emperaure, pressioni,... in unzione di una o piu variabili indipendeni (ad

Dettagli

Formulario di Elettronica per l informatica A cura di: Christian Marongiu - Andrea Leonardi - Giovanni Cabiddu Linee di trasmissione

Formulario di Elettronica per l informatica A cura di: Christian Marongiu - Andrea Leonardi - Giovanni Cabiddu Linee di trasmissione + A G B Frmulari di Elernica per l infrmaica A cura di: Chrisian Marngiu - Andrea enardi - Givanni Cabiddu inee di rasmissine Z G C dx d ( x) ( + jω) ( x) dx d( x) ( G+ jωc) ( x) dx Csani primarie per

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione RISPOSTA IN FREQUENZA DEI SISTEMI LTI Fondameni Segnali e Trasmissione Risposa in requenza dei sisemi LTI Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso l

Dettagli

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali.

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali. INRODUZIONE Definizione e classificazione dei segnali. Una grandezza fisica, alla cui variazione in funzione di deerminae variabili, quali, ad esempio, il empo, le coordinae di un puno nel piano o enrambe,

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

Controlli Automatici L

Controlli Automatici L Segnali e rasformae - Corso di Laurea in Ingegneria Meccanica Segnali e rasformae DEIS-Universià di Bologna el. 5 93 Email: crossi@deis.unibo.i URL: www-lar.deis.unibo.i/~crossi Segnali e rasformae - Segnali

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

La velocità Pagina 1 di 18

La velocità Pagina 1 di 18 La velcià Pagina di 8 Il pun maeriale in m Il m di un gge può essere sudia uilizzand il mdell del pun maeriale quand l gge è ml piccl rispe alle disanze che percrre. Si chiama raieria la linea che percrre

Dettagli

riepilogo: Equazione d onda Proprietà delle onde elettromagnetiche 1 c 2

riepilogo: Equazione d onda Proprietà delle onde elettromagnetiche 1 c 2 riepilg: Equazine d nda Prprietà delle nde elettrmagnetiche E = µ ε E t E e B sn in fase. E e B nn sn indipendenti: E e B sn rtgnali tra lr: (e alla direzine di prpagazine) E x B dà direzine e vers di

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

4 C. Prati. Il teorema del campionamento

4 C. Prati. Il teorema del campionamento 4 C. Prati Il terema del campinament Esercizi di verifica degli argmenti svlti nel quart capitl del test Segnali e Sistemi per le Telecmunicazini McGraw-Hill. ESERCIZIO Sia dat il seguente segnale temp

Dettagli

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata.

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata. 8.. STRUMENTI MATEMATICI 8. Equazini alle differenze. Sn legami statici che legan i valri attuali (all istante k) e passati (negli istanti k, k, ecc.) dell ingress e k e dell uscita u k : u k = f(e 0,

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUII IN ON ONINUA rcu (carca del cndensare) S cnsder un crcu almena da un generare che frnsce una fem cnnua ε, cllega n sere ad una ressenza e ad un cndensare nzalmene scarc, d capacà. Quand l nerrure

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Cap. 6 Proprietà Strutturali dei Modelli LTI

Cap. 6 Proprietà Strutturali dei Modelli LTI Cap. 6 Prprieà Sruurali dei Mdelli LI Nell ambi dell sudi dei mdelli LI, sn di nevle ineresse praic i segueni re prblemi. 1) Si cnsideri il sisema LI nell sa iniziale x 0 all isane iniziale 0 = 0. Si desidera

Dettagli

Soluzioni di gas in acqua

Soluzioni di gas in acqua Sluzini di gas in acqua Cefficieni di assrbimen di gas in acqua. Le misure sn sae effeuae alla pressine di 1 am; i valri C a (T C) sn espresse in cc di gas discili in 1 cc di H 2 O alle emperaure indicae,

Dettagli

ASINTOTI di una funzione

ASINTOTI di una funzione LEZIONI ASINTOTI di una funzine Definizine Sia il grafic di una funzine di equazine y f ( ) avente un ram che si estende all'infinit e sia P un su punt. Una retta r si dice asintt per tale funzine se la

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

Formule di telecomunicazioni

Formule di telecomunicazioni Frmule di telecmunicazini PAM descrizine generica di un segnale PAM: N/2 s(t) = n = - N/2 a n g(t nt) a n = sequenza di simbli N + 1 = lunghezza della sequenza di simbli (può essere finita infinita) T

Dettagli

Concetti di base: segnali - Classificazione dei segnali -

Concetti di base: segnali - Classificazione dei segnali - Corso di Tecnologie per le Telecomunicazioni e sviluppo in serie di Fourier 1 - Classificazione dei segnali - Le forme d onda di interesse per le Telecomunicazioni possono essere sia una tensione v(t)

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

3 C. Prati. Risposta in frequenza di sistemi LTI e Trasformata di Fourier

3 C. Prati. Risposta in frequenza di sistemi LTI e Trasformata di Fourier Segnali e sistemi per le telecmunicazini /ed Cpyright The McGraw-Hill Cmpanies srl 3 C. Prati Rispsta in requenza di sistemi LTI e Trasrmata di Furier Esercizi di veriica degli argmenti svlti nel terz

Dettagli

Integrazioni di alcuni argomenti che nel testo di riferimento fossero assenti oppure trattati con un diverso formalismo.

Integrazioni di alcuni argomenti che nel testo di riferimento fossero assenti oppure trattati con un diverso formalismo. File: Inegine cinemic - vesine (sgge evisine) del 5 febbi 013 Inegini di lcuni gmeni che nel es di ifeimen fsse sseni ppue i cn un dives fmlism Agmen 11 Ei di misu e l ppgine Gnde fisic eni misubile esise

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

Mode Locking. Generazione di impulsi laser di brevissima durata temporale. Simone Cialdi

Mode Locking. Generazione di impulsi laser di brevissima durata temporale. Simone Cialdi Mde Lckin Generazine di ipulsi laser di brevissia duraa eprale Sine Cialdi Ouline nalisi delle ulie isure Sper delle scillazini di rilassaen Mdulare O per Q-swich Misura del delay ie per la frazine dell

Dettagli

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione Inroduzione ai segnali deerminai iolo unià Dalla serie alla rasormaa di ourier Proprieà della rasormaa di ourier Uguaglianza di Parseval e principio di indeerminazione 005 Poliecnico di orino 1 Dalla serie

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONE. Esercizi per il corso di Analisi Matematica 1, DTG, Università degli Studi di Padova

ESERCIZI SULLO STUDIO DI FUNZIONE. Esercizi per il corso di Analisi Matematica 1, DTG, Università degli Studi di Padova ESERCIZI SULLO STUDIO DI FUNZIONE FRANCESCA ALBERTINI, LAURA CARAVENNA, MONICA MOTTA Esercizi per il crs di Analisi Matematica 1, DTG, Università degli Studi di Padva Per le seguenti funzini determinare:

Dettagli

ENERGIA - POTENZA - CORRELAZIONE

ENERGIA - POTENZA - CORRELAZIONE ENERGIA e POENZA: ENERGIA - POENZA - CORRELAZIONE Energia in (, ) : (, ) ( ) Poenza media in (, ) : P(, ) E = d (, ) (, + Δ ) E E = = Δ Segnali periodici: Δ = = periodo Segnali di energia (es: un impulso):

Dettagli

Richiami principali ai segnali

Richiami principali ai segnali CAPITOLO 1 Richiami principali ai segnali 1.1. Inroduzione La definizione di segnale pare dall esperienza comune. Esempi di segnale nella via quoidiana sono il segnale acusico che viene prodoo da uno srumeno

Dettagli

Soluzione Es.1- In generale, le equazioni orarie del moto lungo l'asse orizzontale x e quello verticale y si possono scrivere come: (1a) (1b) (1c)

Soluzione Es.1- In generale, le equazioni orarie del moto lungo l'asse orizzontale x e quello verticale y si possono scrivere come: (1a) (1b) (1c) Sluzine Es.1- In generale, le equazini rarie del mt lung l'asse rizzntale x e quell verticale si pssn scrivere cme: ( t) h + v (csα) t gt / h + v t / gt / (1a) v ( t) v csα gt v / gt (1b) x( t) v (sinα

Dettagli

Giustificare adeguatamente tutti i passaggi. + EX. 1 Si studi la convergenza (semplice, assoluta, totale) della serie 6 2

Giustificare adeguatamente tutti i passaggi. + EX. 1 Si studi la convergenza (semplice, assoluta, totale) della serie 6 2 Prva scritta di Analisi Matematica II - 4 giugn 013 Cmpit A COGNOME...... NOME. Matr... Crs di Laurea Ambiente Territri e Risrse Infrmazine Meccanica firma Giustificare adeguatamente tutti i passaggi +

Dettagli

PROGETTO E VERIFICA DI GENERATORI D ONDA TRIANGOLARE E QUADRA CON FREQUENZA E AMPIEZZA FISSE E CON FREQUENZA ED AMPIEZZA REGOLABILI

PROGETTO E VERIFICA DI GENERATORI D ONDA TRIANGOLARE E QUADRA CON FREQUENZA E AMPIEZZA FISSE E CON FREQUENZA ED AMPIEZZA REGOLABILI POGEO E EIFICA DI GENEAOI D ONDA IANGOLAE E QUADA CON FEQUENZA E AMPIEZZA FISSE E CON FEQUENZA ED AMPIEZZA EGOLABILI POGEO E EIFICA DI UN GENEAOE D ONDA IANGOLAE E QUADA A FEQUENZA ED AMPIEZZA FISSA Schema

Dettagli

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini)

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini) Il segnale sinusoidale (rao da: Segnali elerici, a cura del Do..Scalia, Ing. F.Guidi, Do..Sperini). Inroduzione Fenomeni oscillaori sono preseni in forma empirica nel mondo della fisica: ra gli esempi

Dettagli

Equazioni. Prerequisiti. Definizioni e concetti generali. Incognita Lettera (di solito X) alla quale è possibile sostituire dei valori numerici

Equazioni. Prerequisiti. Definizioni e concetti generali. Incognita Lettera (di solito X) alla quale è possibile sostituire dei valori numerici Scmpsizini plinmiali Calcl del M.C.D. e del m.c.m. tra plinmi P), cn P) plinmi di grad qualsiasi Equazini Prerequisiti Definizini e cncetti generali Incgnita Lettera di slit ) alla quale è pssibile sstituire

Dettagli

Terza lezione: Processi stazionari

Terza lezione: Processi stazionari Teoria dei processi casuali a empo coninuo Terza lezione: Concei inroduivi Il conceo di sazionarieà Sazionarieà in senso lao Esempi e modelli 005 Poliecnico di Torino 1 Concei inroduivi Significao di sazionarieà

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III Meodi di Calcolo per la Chimica A.A. 6-7 Marco Ruzzi a rasformaa di Fourier: basi maemaiche ed applicazioni Pare Showing a Fourier ransform o a physics suden generally produces he same reacion as showing

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 7-8 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b]

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b] U n i v e r s i à d e g l i S u d i d i C a a n i a - C o r s o d i s u d i o i n I n g e g n e r i a I n f o r m a i c a - D i p a r i m e n o d i F i s i c a e s r o n o m i a MOI OSCILLOI - Moo armonico

Dettagli

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza elemeni di segnali elemeni di segnali SEGNALE il segnale segnale e informazione segnale analogico e digiale il segnale digiale il segnale il segnale si può genericamene definire come una grandezza che

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fndamenti di Autmatica Allievi in Ingegneria Elettrica - Prf. P. Claneri Appell del Lugli 4 Cgnme Nme N di Matricla Firma Durante la prva nn è cnsentita la cnsultazine di libri, dispense e quaderni. Quest

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Crs d EERONCA NRAE Cnverre nnalzare d ensne (bs) Cnverre Bs Cnverre nnalzare d ensne (bs) Cnverre nnalzare d ensne (bs) C C Ne: ) l dd cllega dreamene ngress e usca e mpne che sa > ) a crrene assrba dall

Dettagli

Misure di Resistenza: Ohmmetro

Misure di Resistenza: Ohmmetro Misure di esisenza: Ohmmer Ques circui nn cnsene di variare la sensibilià dell srumen nè di cmpensare variazini di ensine della baeria. =resisenza che permee di variare la praa; f=f.e.m. baeria =resisenza

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

R R. Misure di Resistenza: Ohmmetro. Misure di Resistenza: Ohmmetro La corrente I che passa nell amperometro vale

R R. Misure di Resistenza: Ohmmetro. Misure di Resistenza: Ohmmetro La corrente I che passa nell amperometro vale ues circui nn cnsene di variare la sensibilià dell srumen nè di cmpensare variazini di ensine della baeria. =resisenza che permee di variare la praa; f=f.e.m. baeria =resisenza inerna ampermer =resisenza

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

Unità Didattica N 28

Unità Didattica N 28 Unità Didattica N 8 Estremi,Asintti,lessi del graic di una unzine Unità Didattica N 8 Estremi, asintti, lessi del graic di una unzine ) Estremi delle unzini derivabili ) Prprietà degli estremi delle unzini

Dettagli

METODI PER LA STIMA DELLE PORTATE DI PIENA

METODI PER LA STIMA DELLE PORTATE DI PIENA METODI PER LA STIMA DELLE PORTATE DI PIENA METODO STATISTICO DIRETTO: analisi saisica di porae massime annuali applicabile solo in prossimià di sezioni fluviali con misure di poraa disponibili su moli

Dettagli

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite INTEGRALI IMPROPRI Tes di auovaluazione. L inegrale improprio 5 d : (a) vale 4 5 (c) vale 5 4 (d) è negaivo.. L inegrale improprio 4 + 5 d : (a) vale 4 5 (c) vale 4 5 (d) ende a.. L inegrale improprio

Dettagli

Le disequazioni di primo grado

Le disequazioni di primo grado ) Disequazini di prim grad intere Le disequazini di prim grad Cnsider due plinmi A() e B(), entrambi di prim grad in. Le seguenti espressini: A()>B() A() B() A() B() A()

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

P posizione i occupata dal punto materiale all istante di tempo t: x ( t ) coordinata del punto P. x ( t ) = x ( t) i vettore posizione all istante t

P posizione i occupata dal punto materiale all istante di tempo t: x ( t ) coordinata del punto P. x ( t ) = x ( t) i vettore posizione all istante t MOTO RETTILINEO: formalismo eoriale Il puno maeriale si muoe lungo una rea O O origine x () P asse X P posizione i occupaa dal puno maeriale all isane di empo : x ( ) coordinaa del puno P x ( ) x ( ) i

Dettagli

LE FUNZIONI REALI DI VARIABILE REALE

LE FUNZIONI REALI DI VARIABILE REALE LE FUNZIONI REALI DI VARIABILE REALE 1. La deinizine di unzine reale di variabile reale.. Le rappresentazini di una unzine reale di variabile reale. La classiicazine delle unzini. 4. Il dmini delle unzini.

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

Astronave, atomo, etc..

Astronave, atomo, etc.. Cinematica del punt materiale Punt materiale: ggett di dimensini lineari trascurabili rispett alla precisine cn cui se ne vule determinare la psizine z x Astrnave, atm, etc.. z r Crdinate nell spazi Lntan

Dettagli

Correnti variabili nel tempo. Carica e scarica di un condensatore. Carica e scarica di un condensatore. Carica e scarica di un condensatore

Correnti variabili nel tempo. Carica e scarica di un condensatore. Carica e scarica di un condensatore. Carica e scarica di un condensatore rreni variabili nel emp Finra abbiam sudia circuii in crrene cninua, ciè circuii in cui siam a regime, ml emp ( >> i dp l inizi del prcess, quand ue le crreni si sn sabilizzae. Oggi cminciam a sudiare

Dettagli

Soluzioni di gas in acqua

Soluzioni di gas in acqua Sluzini di gas in acqua Cefficieni di assrbimen di gas in acqua. Le misure sn sae effeuae alla pressine di 1 am; i valri C a (T C) sn espresse in cc di gas discili in 1 cc di H 2 O alle emperaure indicae,

Dettagli

1. Calcolare l insieme delle soluzioni della seguente equazione differenziale: y y y y x cos x P t t t t t t 2

1. Calcolare l insieme delle soluzioni della seguente equazione differenziale: y y y y x cos x P t t t t t t 2 EQUAZIONI DIFFERENZIALI A COEFFICIENTI COSTANTI Callare l insieme delle sluzini della seguente equazine differenziale: y y y y s P t t t t t t, n radii, i Plinmi aratteristi: Sluzine generale dell equazine

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

( ) ( ) ( ) ( ω ) Funzione di trasferimento e segnali periodici: c = x t e dt. Effetto della funzione di trasferimento della rete quadripolare:

( ) ( ) ( ) ( ω ) Funzione di trasferimento e segnali periodici: c = x t e dt. Effetto della funzione di trasferimento della rete quadripolare: Funzione di rasferimeno e segnali periodici: ( ) x T K = T + 2 ( ) jkω0 c = x e d k = + T 2 c e k jkω 0 x() T(ω) y() Effeo della funzione di rasferimeno della ree quadripolare: + + + jkω0 jkω0 jkω0 k 0

Dettagli

DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI

DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI Con il ermine segnale si indica una funzione, generalmene del empo, che rappresena la legge di variazione di una grandezza fisica: (acusica, elerica, oica, ) ad

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Descrizione cicli standard

Descrizione cicli standard Descrizine cicli sandard 04-04-05 Viene ripraa la descrizine di alcuni cicli che frnisce grauiamene. Ques sfware gira sulle versini hw: COM0 IS, COM20 IS, COM30 IS e COM 5 IS dve I sa per inelligene ed

Dettagli