F : io sono era di me. B : io faccio bene in qualche sport. S : io studio seriamente. A : mio padre mi apprezza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "F : io sono era di me. B : io faccio bene in qualche sport. S : io studio seriamente. A : mio padre mi apprezza"

Transcript

1 Università di Sien - Anno ccdemico 0-4 Corso di lure in frmci - Corso di mtemtic (prof..bttinelli) Prov di vlutzione in itinere n. dell..0 - Svolgimento - Testo A A De nisco, estrendole dl resoconto del rgionmento proposto, le seguenti proposizioni dichirtive elementri F io sono er di me B io fccio bene in qulche sport S io studio serimente A mio pdre mi pprezz e osservo che d ciò risultno nche implicitmente de nite le negzioni F io non sono er di me B io non fccio bene in lcuno sport S io non studio serimente A mio pdre non mi pprezz Il rgionmento const di tre premesse, che chimo P, P, P, e d un presunt conclusione, che chimo C. Tutte qunte sono composte delle precedenti, e precismente P A ) F P B _ F P S ) B C A ) S Posso schemtizzre l struttur del rgionmento nell form (P ^ P ^ P ) ) C e posso stbilire ch esso è e ettivmente vlido in due modi ppellndomi lle regole di deduzione, oppure costruendo un tbell di verità.. Riconosco nell premess P l form disgiuntiv del condizionle F ) B; e riformulo l premess P sull bse del principio di contrpposizione B ) S. A questo punto mi bst invocre due volte l regol del sillogismo ipotetico dll verità di P (A ) F ) e di P (F ) B) si tre quell di Q A ) B dll verità di Q (A ) B) e P (B ) S) si tre quell di C (A ) S) per ermre che è possibile dedurre l verità dell conclusione C d quell delle premesse P, P, P.

2 . Le 4 proposizioni elementri in esme sono logicmente indipendenti, e occorre quindi un tvol di verità con 4 = 6 righe F j B j S j A j P j P j P j C j Q P ^ P ^ P j Q ) C _ j _ V j V j V j V j V j V j F j F j F j V V j V j V j F j V j V j F j V j F j V V j V j F j V j V j V j V j V j V j V V j V j F j F j V j V j V j V j V j V V j F j V j V j V j F j V j F j F j V V j F j V j F j V j F j V j V j F j V V j F j F j V j V j F j V j V j F j V V j F j F j F j V j F j V j V j F j V F j V j V j V j F j V j F j F j F j V F j V j V j F j V j V j F j V j F j V F j V j F j V j F j V j V j V j F j V F j V j F j F j V j V j V j V j V j V F j F j V j V j F j V j V j F j F j V F j F j V j F j V j V j V j V j V j V F j F j F j V j F j V j V j V j F j V F j F j F j F j V j V j V j V j V j V l qule rivel che nelle condizioni dte l form enuncitiv (P ^ P ^ P ) ) C è ppunto un tutologi. B Rppresento in form d intervllo l incertezz reltiv i due vlori numerici e b 0 00 b 0 9 b b00 deduco d queste i corrispondenti intervlli di incertezz dei vlori derivti d e b medinte le operzioni elementri (tenendo presente che tnto b che b sono numeri negtivi, ed hnno perciò come limitzione inferiore il prodotto e il quoziente - rispettivmente - di mggior vlore ssoluto, e come limitzione superiore quell di minor vlore ssoluto, tr quelli delle corrispondenti limitzioni di e b; vedi svolgimento del gruppo di esercizi n.) 0 + b 0 = + b = 00 + b b 0 = 4 4 b 9 4 = 0 b 00 0 b 00 = b 7 = 00 b 0 00 b 00 = b = 0 b 0 d cui clcolo gevolmente i reltivi vlori centrli ed errori ssoluti e reltivi + b = = + b ( + b) b = = 6; 7 4; = b (b) b = = b ( b) b = = 0; 6 = b b

3 ( + b) + b = = 00% (b) b = ( b) = b = 40% b = b = = 66; 6% = 66; 6% Osserv come le formule di pprossimzione dell errore reltivo (libro di testo, pg.7) conducno nel cso presente soprvvlutre leggermente quelli di b e ; e come l mpiezz dell errore reltivo di + b si dovut essenzilmente b ll diminuzione (rispetto d e b) del vlore ssoluto del vlore centrle + b, dovut l diverso segno di e b. = = % b + b b = 7% b = = 0% C Chimo rispettivmente,, e z le quntità (in cl) di soluzione contenente il soluto A, di soluzione contenente il soluto B, e di solvente puro che utilizzo nell miscel. Il totle di questi tre ingredienti deve mmontre l = 00 cl. Poiché il soluto A è presente nell soluzione concentrzione del 0%, cl dell prim soluzione forniscono cl di soluto A; mentre cl dell second soluzione forniscono cl di soluto B, dto che questo vi è presente concentrzione del 0 0%; in ne, z cl sono di puro solvente. Nell miscel le quntità richieste sono di cl di soluto A e 0 cl di soluto B. Devono pertnto essere soddisftte le seguenti equzioni + + z = 00 che forniscono immeditmente = = 00 = 0 = 0 z = = Per chi m le rppresentzioni decimli, le quntità con cui miscelre sono cl dell prim soluzione, ; cl dell second, e 4; 6 cl di solvente puro. Un ltro metodo per risolvere il problem (proposto dll studentess Frncesc P.). Mi propongo di ottenere le quntità richieste dei due soluti A e B lvorndo seprtmente sulle due soluzioni che li contengono, miscelndo ciscun con il solvente puro del terzo cone; tl ne, decido di preprre

4 mezzo litro di ciscun delle due miscele przili. Dunque il primo mezzo litro che prepro contiene solo soluto A e solvente; e il secondo mezzo litro solo soluto B e solvente. Poichè l proporzione di A nell miscel nle deve essere del %, devo preprre il primo mezzo litro con un proporzione di A del 0%; llo stesso modo, l proporzione del 0% di B nell miscel nle ne richiede un proporzione del 0% nel secondo mezzo litro. Per bbssre l 0% l proporzione di A dl 0% che h nell prim soluzione, bst miscelre l prim soluzione con ltrettnto solvente, quindi cl di prim soluzione e cl di puro solvente. Per il secondo mezzo litro, devo trsformre l proporzione di B dl 0% dell second soluzione l 0%, cioè devo ridurl di ossi moltiplicrl per. A tl ne bst miscelre dell second soluzione con di solvente puro e dunque ; cl di second soluzione e 6; 6 di puro solvente. Il solvente utilizzto complessivmente mmont così 4; 6 cl. D Per trccire il gr co dell funzione de nit dll formul primo membro procedo ttrverso i seguenti pssggi gr. = + rett per (0; ) e coe ciente ngolre nero gr. = j + j simm. vert. (sse X) dell prte ordint < 0 celeste gr. = j + j trslz. vert. in bsso di mpiezz lill gr. 4 = jj + j j simm. vert. (sse X) dell prte ordint > 0 mrrone gr. = jj + j j trslz. vert. in lto di mpiezz blu 4

5 e posso gevolmente delinere l soluzione dell disequzione per vi gr c = jj + j j in blu, = in nero L disequzione è soddisftt nei due intervlli [ ; ] e [0; ]. È nturlmente sempre possibile rppresentre l funzione de nit dll formul presente primo membro in form ltern, procedendo in due stdi = * j j se j + j se = * + se e + se e = * se e + se e

6 e risolvere l disequzione propost ( ) in quttro stdi ( ) + in ; +! S = ( ) + in ( ) in ( ) + in ; ; ;! S =! S =! S = ; 0; ; Poiché S ed S risultno dicenti, e così nche S ed S, essi possono essere descritti congiuntmente come un unico intervllo, ritrovndo l soluzione ottenut per vi gr c. C è nche un terzo modo, forse il più rpido, di risolvere l disequzione per vi purmente lgebric (nche se trscur del tutto l richiest di identi cre l funzione de nit dll formul primo membro e di disegnrne il gr co). Eccolo jj + j j () jj + j j () j + j () j + j ; () [( + ) _ ( + )] ^ [ + ] () [( ) _ ( 0)] ^ [ ] () [( ) ^ ( )] _ [( 0) ^ ( )] () ( ) _ (0 ) 6

7 D b Rppresento in form ltern l funzione de nit dll formul presente primo membro dell disequzione * + se 0 = + se 0 e ne ottengo pertnto il gr co disegnndo destr dell sse Y l prbol d sse verticle col vertice nel punto di coordinte (; ) e concvità verso l lto, e sinistr dell sse Y l prbol d sse verticle col vertice nel punto di coordinte ( ; 4) e concvità verso il bsso. Aggiungendo l rett di equzione =, = + nero, = + blu, = mrrone posso già intrvedere lqunto chirmente l struttur dell insieme delle soluzioni, che ppre composto d un semirett e d un intervllo. Per confermre con esttezz l origine dell prim e gli estremi del secondo, considero le equzioni ssocite = 0 e = 0 che risultno bbstnz semplici, con soluzioni = 0 per entrmbe, e = e = rispettivmente. L insieme delle soluzioni è pertnto ( ; )[(0; ). Anche qui è possibile risolvere lmeno l disequzione in vi purmente lgebric, d esempio così jj + < () jj < () [( > 0) ^ (jj < )] _ [( < 0) ^ (jj > )] _ [( = 0) ^ (0 < 0)] () [( > 0) ^ ( < < )] _ [( < 0) ^ f( < ) _ ( > )g] () (0 < < ) _ ( < ) 7

8 D c Procedo come nel cso precedente l rppresentzione in form ltern dell funzione de nit dll formul primo membro è = * se 0 se 0 pertnto ne ottengo il gr co disegnndo destr dell sse Y l iperbole equilter con sintoto orizzontle di equzione =, sintoto verticle di equzione =, e rmi nei qudrnti dispri (d bc = < 0), e disegnndo sinistr dell sse Y l iperbole equilter con sintoto orizzontle di equzione =, sintoto verticle di equzione =, e rmi nei qudrnti dispri (d bc = < 0). Aggiungendo l rett di equzione = 4, = + nero, = + + blu, = 6 4 mrrone intrvedo nche qui bbstnz chirmente l struttur dell insieme delle soluzioni, costituito dll unione di due semirette con un intervllo. Le due equzioni ssocite sono + = 4 e + + = 4 con soluzioni = 7 l prim e = 7 dell disequzione è pertnto ; l second. L insieme delle soluzioni 7 [ ; 7 [ (; +).

9 L soluzione purmente lgebric dell disequzione può procedere distinguendo i due bituli csi emergenti per l presenz del vlore ssoluto denomintore * + jj 4 () >< > >< > >< () > >< () > Nel primo sistem l non negtività dell frzione richiede concordi di segno tr numertore e denomintore, individundo due possibilità 0 < e 7 oppure > e 7 che identi cno l intervllo 0; 7 e l semirett (; +); nel secondo sistem l non positività dell frzione richiede discordi di segno tr numertore e denomintore, individundo due ulteriori possibilità < e 7 oppure < 0 e 7 7 che identi cno l semirett ; e l intervllo ( ; 0]. Unendo i due intervlli, che risultno dicenti, risult confermt l soluzione ottenut per vi gr c. 9

10 E 6 4 R r P R' T s H T' r' s'' P' 6 Q L rett r contenente l ltezz reltiv l lto P Q è l rett per R perpendicolre l lto P Q, e quindi ll rett r 0 per P e Q; pertnto, scrivo l equzione di r 0 0 = P Q = 7 b 0 = (P Q) = c 0 = P Q QP = 4 r = 0 Ogni perpendicolre d r 0 h i coe cienti delle incognite scmbiti di posto e in un segno; tr di esse determino r imponendo l termine noto di grntire il pssggio per R = b = 7 c = ( R + b R ) = r + 7 = 0 Per le equzioni prmetriche di r posso utilizzre proprio i coe cienti ( 0 ; b 0 ), che (come sempre nell equzione crtesin di un rett nel pino) identi cno un direzione perpendicolre ll rett r 0 e quindi l lto P Q, cioè ppunto l direzione di r = R + 0 t = + 7t = R + b 0 t = t 0

11 Procedendo nello stesso modo per l rett s contenente l ltezz reltiv l lto QR, scrivo l equzione dell rett s 00 per Q ed R 00 = R Q = b 00 = ( R Q ) = 6 c 00 = R Q Q R = 4 s = 0 e, più semplicemente, = 0 e determino s scmbindo di posto e in un segno i coe cienti delle incognite nell equzione di s 00 e imponendo l termine noto di grntire il pssggio per P = b = 4 c = P + b P = s 4 = 0 Le equzioni prmetriche di s sono poi = P + 00 u = + u = P + b 00 u = + 6u Per trovre il punto di incidenz delle due rette metto sistem le loro equzioni e procedo come d uso col metodo di eliminzione < I (r) + 7 = 0 < I + 6 = 0 II (s) 4 = 0 II 4 = 0 < I II = 0 I = 7 + < r\s = r\s = Ho ritrovto le coordinte del punto P, e questo mi conferm qunto suggerito dll gur l ltezz reltiv l lto P Q, contenendo P, non è ltro che il lto P R; in ltre prole, l ngolo in P è retto. Uso le formule presentte lezione e discusse nello svolgimento del 4 gruppo di esercizi (punto D), utilizzndo pesi e per le coordinte di P ed R l ne di ottenere quelle del punto R 0 simmetrico di R rispetto P R 0 = P R = R 0 = P R = 0 Per il simmetrico (ortogonle) di P rispetto ll rett contenente il lto QR (rett s 00 ), determino il piede H dell ltezz d P QR (intersezione tr s ed

12 s 00 ) < < I (s 00 ) = 0 II (s) 4 = 0 4I + II = 0 I 4 = < < 4I = 0 II 9 = 0 H = H = e costruisco P 0 come simmetrico di P rispetto d H con le formule precedenti P 0 = H P = P 0 = H P = L divisione del lto QR in prti di lunghezze in rpporto di 7 00, cioè di 4, si ottiene combinndo le coordinte di Q ed R con pesi + 4 e (vedi ncor lo svolgimento del 4 gruppo di esercizi) T = 7 Q R = 4 7 T 0 = 4 7 Q + 7 R = 0 7 T = 7 Q R = 0 7 T 0 = 4 7 Q + 7 R = 7

F : io sono era di me. B : io faccio bene in qualche sport. S : io studio seriamente. A : mio padre mi apprezza

F : io sono era di me. B : io faccio bene in qualche sport. S : io studio seriamente. A : mio padre mi apprezza Università di Siena - Anno accademico 0-4 Corso di laurea in farmacia - Corso di matematica (prof. a.battinelli) Prova di valutazione in itinere n. dell..0 - Svolgimento - Testo B A De nisco, estraendole

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Contenuto Emanuele Agrimi 1

Contenuto Emanuele Agrimi 1 Contenuto Condizioni di esistenz.... Linee di frzione.... Rdici di indice pri.... Logritmi.... Funzioni goniometriche inverse.... Composizione di condizioni di esistenz... Disequzioni irrzionli.... Esempi....

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 2

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 2 www.mtefili.it Indirizzi: LI, EA SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 5 PROBLEMA Si f l funzione definit d f(x) = (4x ) e x. ) Dimostr che l funzione possiede

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

I.S.I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I.S.I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : B Insegnnte : Ghilrducci Pol I.S.I. E. Fermi - Lucc Istituto Tecnico settore Tecnologico Equzioni e disequzioni di primo grdo : Equzioni intere frtte e letterli

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

). Poiché tale funzione è una parabola, il suo

). Poiché tale funzione è una parabola, il suo PROBLEMA ) Il rggio dell circonferenz di centro B vri tr i vlori: x b) ( x x ) ( PQCR) = ( ABC) ( APR) ( BPQ) = ( x) x = + 8 6 8 I vlori di x che rendono minim o mssim l funzione rendono, rispettivmente,

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Con riferimento ad un sistema di assi cartesiani ortogonali Oxy, si trattino le seguenti questioni.

Con riferimento ad un sistema di assi cartesiani ortogonali Oxy, si trattino le seguenti questioni. www.mtefili.it PNI 008 SESSIONE STRAORDINARIA - PROBLEMA Con riferimento d un sistem di ssi crtesini ortogonli Oxy, si trttino le seguenti questioni. ) Si costruisc il grfico γ dell funzione f(x) = ( x)

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Materia: MATEMATICA Data: 5/04/2005

Materia: MATEMATICA Data: 5/04/2005 Mteri: MATEMATICA Dt: 5/4/25 L disequzione e' un disuguglinz che e' verifict per certi intervlli di vlori Ad esempio l disequzione x - 4 e' verifict per tutti i vlori dell x mggiori di 4, cioè se l posto

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA

ISTITUTO TECNICO INDUSTRIALE E. FERMI LUCCA ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA Anno Scolstico / Progrmm di MATEMATICA svolto dll clsse second se. A INSEGNANTE: MUSUMECI LUCIANA Divisione tr due polinomi.regol di Ruffini. Teorem del resto.

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Scuole italiane all estero - Bilingue italo-slovacca 2005

Scuole italiane all estero - Bilingue italo-slovacca 2005 www.mtefili.it Scuole itline ll estero - Bilingue itlo-slovcc 1) E dt l equzione y x + x + c dove i coefficienti,, c sono numeri reli non negtivi. Determinre tli coefficienti spendo che l prol p, che rppresent

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lucc Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : II C Insegnnte : Podestà Tiin Divisione tr due polinomi.regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

0x3 0x5 2 R. Sistemi di disequazioni. Esercizio no.1. Esercizio no.2. Esercizio no.3. Esercizio no.4. Esercizio no.5. Esercizio no.6. Esercizio no.

0x3 0x5 2 R. Sistemi di disequazioni. Esercizio no.1. Esercizio no.2. Esercizio no.3. Esercizio no.4. Esercizio no.5. Esercizio no.6. Esercizio no. Edutecnic.it Sistemi di disequzioni Sistemi di disequzioni Esercizio no. Esercizio no. Esercizio no. ) ) Esercizio no. ) ) 9 ) Soluzione pg. [ ] Soluzione pg. [ ] Soluzione pg. 9 Soluzione pg. Esercizio

Dettagli

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.mtefili.it ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si D il dominio di un funzione rele di vribile rele f (x) e si x 0 un elemento di D: definire l continuità e l discontinuità di

Dettagli

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero Polo Scientifico Tecnico Professionle Settore Tecnico E.Fermi Progrmm di mtemtic clsse II D e indicioni per il recupero Anno scolstico / Frioni lgeriche e reltive operioni. Le funioni polinomili. Il Teorem

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

Daniela Tondini

Daniela Tondini Dniel Tondini dtondini@unite.it Fcoltà di Medicin veterinri CdS in Tutel e benessere nimle Università degli Studi di Termo 1 IDICI DI FORMA Dopo ver nlizzto gli indici di posizione e di vribilità di un

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI I ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico -7 MATEMATICA Clsse E Istituto tecnico tecnologico Progrmm svolto Insegnnte : Ptrii Consni ALGEBRA: Regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4 Esme di Stto 09 Mtemtic-Fisic Problem Derivimo l funzione d cui x x g x x b e x x xx g ' x e x b x e x b x b g ' x 0 per x b x b 0 b b b b b b b b b x che mmette soluzioni distinte 0. Per l condizione

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

PROPRIETA DELLE POTENZE FUNZIONE ESPONENZIALE

PROPRIETA DELLE POTENZE FUNZIONE ESPONENZIALE PROPRIETA DELLE POTENZE Sino,b,s,t R,b Vlgono le seguenti proprietà: ) s t = s t Il prodotto di potenze dell stess bse è un potenz dell stess bse che h come esponente l somm degli esponenti ) s s t = t

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018 Isi E.Fermi Progrmm di mtemtic clsse II L Prof.ss Tcchi Luci Anno scolstico / Ripsso: Polinomi ed operioni con essi. Prodotti notevoli. Scomposiioni. Frioni lgeriche. Equioni di primo grdo intere letterli

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Soluzioni a cura di Nicola de Rosa

Soluzioni a cura di Nicola de Rosa MINISERO DELL'ISRUZIONE, DELL'UNIVERSIÀ E DELLA RICERCA SCUOLE IALIANE ALL ESERO ESAMI DI SAO DI LICEO SCIENIFICO Sessione suppletiv 005 Clendrio ustrle SECONDA PROVA SCRIA em di Mtemtic PROBLEMA Si consideri

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Nicola De Rosa, Liceo scientifico scuole italiane all estero Americhe sessione ordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico scuole italiane all estero Americhe sessione ordinaria 2012, matematicamente.it PROBLEMA Il tringolo ABC è equiltero di lto unitrio. L rett r prllel d AB intersec i lti AC e BC, rispettivmente, nei punti P e Q.. Si indici con l distnz di r dl vertice C. Per qule vlore di, nel qudriltero

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

Istituto Tecnico Industriale E.Fermi Programma di matematica classe II I Anno scolastico 2017/2018

Istituto Tecnico Industriale E.Fermi Programma di matematica classe II I Anno scolastico 2017/2018 Istituto Tecnico Industrile E.Fermi Progrmm di mtemtic clsse II I Anno scolstico / Insegnnte : Mrco Cmi Divisione tr due polinomi : Regol di Ruffini. Teorem del resto. Scomposiione di un polinomio con

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica Funzioni Lineri : Funzione qudrto: Modulo Funzione omogrfic (iperbole: Funzioni Elementri 1/ y m + q y + b + y y c + + b d c Funzioni Potenz: y Funzione Esponenzile Funzione Logritmic y y log ( Funzioni

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Vediamo quindi l elenco dei limiti fondamentali, il cui risultato daremo per noto d ora in avanti e lo utilizzeremo ogni volta che sarà necessario.

Vediamo quindi l elenco dei limiti fondamentali, il cui risultato daremo per noto d ora in avanti e lo utilizzeremo ogni volta che sarà necessario. . I iti fondmentli Non bisogn pensre l clcolo di un ite come se si trttsse dvvero di eseguire un operzione mtemtic: in reltà non esiste lcun lgoritmo. L procedur si regge invece su questi due pilstri:

Dettagli

RICHIAMI DI MATEMATICA Prof. Erasmo Modica

RICHIAMI DI MATEMATICA Prof. Erasmo Modica RICHIAMI DI MATEMATICA Prof. Ersmo Modic ersmo@glois.it GEOMETRIA ANALITICA LE COORDINATE CARTESIANE Qundo si vuole fissre un sistem di coordinte crtesine su un rett r, è necessrio considerre: un punto

Dettagli

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A Isi E. Fermi Lucc Progrmm di mtemtic Prof.ss Tcchi Luci nno scolstico 7/8 clsse I Gli insiemi numerici i numeri nturli i numeri interi i numeri rzionli ssoluti i reltivi. Potenze nche con esponente intero

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Appunti di Matematica 3 - Iperbole - Iperbole. cioè tali che

Appunti di Matematica 3 - Iperbole - Iperbole. cioè tali che Iperole Comincimo con l definizione: Dti due punti F e F si dice iperole I il luogo geometrico dei punti P del pino per i quli è costnte l differenz delle distnze d F e F cioè tli che F e F si dicono fuochi

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: /7 Progrmm di mtemtic Istituto tecnico settore tecnologico. Clsse II H Disequioni di primo grdo sistemi di disequioni e disequioni frtte. Segno

Dettagli

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica Funzioni Lineri : Funzione qudrto: Modulo Funzione omogrfic (iperbole: Funzioni Elementri 1/ y m + q y + b + y y c + + b d c Funzioni Potenz: y Funzione Esponenzile Funzione Logritmic y y log ( Funzioni

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

equazioni e disequazioni

equazioni e disequazioni T Cpitolo equzioni e disequzioni Disequzioni e princìpi di equivlenz Le disuguglinze sono enunciti fr espressioni che confrontimo medinte le seguenti relzioni d ordine: (minore), (mggiore), # (minore o

Dettagli

MATEMATICA - LEZIONE 3 GEOMETRIA ANALITICA. Relatore prof. re CATELLO INGENITO

MATEMATICA - LEZIONE 3 GEOMETRIA ANALITICA. Relatore prof. re CATELLO INGENITO MATEMATICA - LEZIONE 3 GEOMETRIA ANALITICA Reltore prof. re CATELLO INGENITO Torn l SOMMARIO Torn l SOMMARIO Sommrio dell lezione Pino crtesino e rett Sezioni coniche Coniche sul pino crtesino PIANO CARTESIANO

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GNIMETRI funzioni goniometriche di ngoli qulsisi rof. Clogero Contrino funzioni goniometriche di ngoli qulsisi er mplire il dominio delle funzioni goniometriche è necessrio che: Si estend il concetto

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

PNI 2012 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2

PNI 2012 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 www.mtefili.it PNI SESSIONE STRAORDINARIA - QUESITI QUESITO Alcuni ingegneri si propongono di costruire un glleri rettiline che colleghi il pese A, situto su un versnte di un collin, col pese B, che si

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

Il problema delle scorte tomo G

Il problema delle scorte tomo G Il prolem delle scorte tomo G Esercizi corretti: esercizio pg 6; esercizio 3 pg. 59 N. 5 PAG 389; N. 6 PAG. 389; N. 7 PAG 389; N. 8 PAG. 389; N 9 PAG. 390; N. 30 pg 390, N. 3 pg. 390, N. 33 pg. 390. Per

Dettagli

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate. Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre

Dettagli