Viene imposto uno spostamento alla traversa e si misura il carico applicato (F) Si misura l allungamento in un tratto del provino ( L)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Viene imposto uno spostamento alla traversa e si misura il carico applicato (F) Si misura l allungamento in un tratto del provino ( L)"

Transcript

1 Prova di trazioe UNI 55/86 556/79 Macchia di prova coloe traversa mobile provio cella di carico morsetti basameto Viee imposto uo spostameto alla traversa e si misura il carico applicato (F) Si misura l allugameto i u tratto del provio ( L) Provii S o L o L c Schema di provio a sezioe circolare L c : lughezza della parte calibrata L o : lughezza tra i riferimeti (iiziale) S o : area della sezioe calibrata (iiziale) Politecico di Torio Pagia di Data ultima revisioe 3/0/00

2 L o L c Schema di provio a sezioe rettagolare L c : lughezza della parte calibrata L o : lughezza tra i riferimeti (iiziale) S o : area della sezioe calibrata (iiziale) Defiizioe elemetare di tesioe e deformazioe tesioe media forza F S o F allugameto allugameto relativo: L Lo ε L L L o L o allugameto percetuale ε 00 L L L Risultato della prova Diagrammi F- L La forza F dipede dalla deformazioe e dall area della sezioe. F m carico massimo ( o di rottura) F eh carico di servameto superiore F el carico di servameto iferiore F p0. carico di scostameto dalla proporzioalità Il primo tratto delle curve è lieare (Fkε) o o Politecico di Torio Pagia di Data ultima revisioe 3/0/00

3 F m F rottura F eh F el deform. plastica uiforme materiale duttile co servameto deform. plastica localizzata ε (%) F m F materiale duttile seza servameto F p 0. rottura deform. plastica uiforme 0.% deform. plastica localizzata ε (%) F rottura F m materiale fragile ε (%) Politecico di Torio Pagia 3 di Data ultima revisioe 3/0/00

4 Diagrammi ε Si ottegoo dai diagrammi precedeti dividedo covezioalmete le forze per la sezioe iiziale (tesioi igegeristiche): R R m m R eh R p 0. ε 0.% R m carico uitario massimo ( tesioe di rottura) R eh carico uitario di servameto superiore (tesioe di servameto) R p0. carico uitario di scostameto dalla proporzioalità (tesioe di servameto Allugameto percetuale a rottura: a s ε L L ( + ε ) + a u o m s L u L L a A u o s ε + m 00 L o L o deformazioe uiforme a R m allugameto dovuto alla strizioe Gli allugameti a rottura soo otteuti co provette di dimesioi stadard. Modulo elastico, Coefficiete di Poisso Cosideriamo solo materiali omogeei (uguali caratteristiche i ogi puto) ed isotropi (uguali caratteristiche i tutte le direzioi) Il rapporto fra le tesioi e le deformazioi logitudiale è detto Modulo elastico () o ache modulo di Youg: Politecico di Torio Pagia 4 di Data ultima revisioe 3/0/00

5 R p 0. HOOK: ut tesio sic vis el tratto rettilieo il coefficiete di proporzioalità è il modulo elastico ε 0.% ε (%) Durate la prova il provio, ache el tratto lieare elastico, si alluga e la sezioe si riduce. Il rapporto (cambiato di sego) fra la cotazioe laterale e quella logitudiale è detto coefficiete di Poisso (ν). νε d d d(+ε ) d(+ ε) d d(+ε ) d(-νε) dz d(+ε z ) dz(-νε) z ε ds o ε d ε ε νε ν z Politecico di Torio Pagia 5 di Data ultima revisioe 3/0/00

6 Valori tipici Carichi di rottura, servameto e allugameti percetuali a rottura Materiale R eh (R p0, ) R (valori miimi) m (MPa) (MPa) acciai al C Fe Fe Fe acciai da boifica A % 6 3 C C Cr NiCrMo ghise grigie G G G ghise sferoidali GS GS GS Uità di misura delle forze Newto (N), delle lughezze millimetri (mm), delle tesioi N/mm MPa Tecicamete si cosiderao fragili i materiali co a<5% e Duttili quelli co a>0% Moduli elastici e coefficieti di Poisso (MPa) ν acciaio al C ghise titaio allumiio Stato di tesioe i u puto (approccio elemetare) Ci chiediamo cosa capita su ua faccia obliqua del provio di trazioe Cosideriamo ua piccola areola attoro al puto di iteresse (area ds) Politecico di Torio Pagia 6 di Data ultima revisioe 3/0/00

7 df df df df df? df Cosideriamo la codizioe di equilibrio: Sulla faccia obliqua vi sarà ua forza ormale alla superficie (dn) ed ua tageziale (dt) dt dn df df Scriviamo le equazioi di equilibrio (NB: QUILIBRIO DLL FORZ) dn dt dt dn df α se l icogita è df: df dncosα + dt siα 0 dn siα dtcosα se le icogite soo dn e dt: dn dfcos α dt df se α Politecico di Torio Pagia 7 di Data ultima revisioe 3/0/00

8 I termii di tesioi bisoga cosiderare che le due aree cosiderate soo ds e ds/cosα ds cos α ds α Sulla faccia icliata si idividuao tesioi ormali alla faccia ( ) e tesioi tageziali alla faccia ( ). Possiamo quidi scrivere: df ds dn ds cos α dt ds cos α e quidi: dn dfcosα ds cos α ds cos α dt df se α ds cos α ds se α che risulta l equazioe di u cerchio el piao. Cerchio di Mohr- Tesioi pricipali (caso elemetare) Il cerchio di Mohr è ua rappresetazioe grafica di quato detto: cos α se α cos α α α Le direzioi ormali alle facce i cui le tesioi tageziali soo ulle soo dette Direzioi pricipali e le corrispodeti tesioi Tesioi ormali pricipali (o tesioi pricipali). Politecico di Torio Pagia 8 di Data ultima revisioe 3/0/00

9 Stato di tesioe tridimesioale (caso geerale) Prediamo, ell itoro di u puto all itero di u corpo sollecitato i modo qualuque, ua superficie elemetare ( S) idividuata da u versore. z M su questa superficie agirao ua forza elemetare F e u mometo elemetare M (soo vettori). Il pricipio di Cauch dice che: M lim 0 S 0 S metre la forza elemetare geera il vettore delle tesioi t: F t lim s 0 S le tesioi ormali e tageziali ageti sulla superficie possoo essere calcolate se si coosce t: Tesioe ormale t Tesioe tageziale t t - Lo stato di tesioe i u puto è oto quado siao oti i vettori delle tesioi t associati a tutte le possibili direzioi () - Cooscedo i vettori delle tesioi i tre direzioi ortogoali è possibile cooscere il vettore delle tesioi t i ua direzioe qualuque z ds ds t z t t z S F t ds t z ds z ds ds ds ds ds ds z z Politecico di Torio Pagia 9 di Data ultima revisioe 3/0/00

10 I vettori delle tesioi soo a tre compoeti: t { ; } T i ii ij; NB: si defiiscoo facce positive del sistema ortogoale coordiato quelle rispetto alle quali il versore è uscete, egative quelle co versore etrate. Le tesioi soo positive se agiscoo su ua faccia positiva ella direzioe positiva oppure se agiscoo su ua faccia egativa i direzioe egativa (versi positivi idicati i figura) z ik z z zz z z Scriviamo l equazioe di equilibrio rispetto alla direzioe : z ds ds ds t z ds z t ds - ds - ds - z ds z 0 t ds - ds - ds - z ds z 0 t z z 0 eseguedo la stessa operazioe elle tre direzioi si ottiee: t z z 0 t z z 0 t z - z - z - z z z 0 che scritte i forma matriciale dao: t t tz o i forma sitetica: Politecico di Torio Pagia 0 di Data ultima revisioe 3/0/00 z z z z zz z

11 [] Politecico di Torio Pagia di Data ultima revisioe 3/0/00 t [] Rappresetazioe matriciale del tesore delle tesioi (tesore di Cauch). Note le 9 compoeti del il tesore di Cauch è quidi oto lo stato di tesioe el puto. Scrivedo opportue equazioi di equilibrio si può dimostrare che il tesore delle tesioi è simmetrico: z z z z e quidi per cooscere lo stato di tesioe i u puto è ecessario poter calcolare 6 compoeti del tesore delle tesioi i tre piai ortogoali. Si oti ioltre che il tesore delle tesioi dipede dal sistema di riferimeto utilizzato per calcolare le compoeti Tesioi e direzioi pricipali (caso geerale) sistoo direzioi privilegiate il cui vettore delle tesioi t è colieare co la ormale alla superficie (compoete tageziale 0). Tali direzioi soo dette direzioi pricipali e le tesioi ormali ageti sulle superfici ortogoali alle direzioi pricipali soo dette tesioi pricipali. per ua direzioe pricipale deve essere z {} t p{ } p[ ]{ } t ma per defiizioe {} t [ ]{ } segue: 0 ([ ] [ ]){ } cioè: p z p z 0 () z z zz p z dove è il versore della direzioe pricipale. Il sistema scritto è u sistema di tre equazioi i 4 icogite. Risolvibile solo se det 0 z p z Quidi per trovare le direzioi pricipali e le tesioi pricipali si deve risolvere u problema agli autovalori. ssedo la matrice simmetrica esistoo tre autovalori reali (le tre tesioi pricipali) e tre direzioi pricipali ortogoali fra loro. p z p z z p

12 Sviluppado il determiate si ottiee la seguete equazioe (equazioe di Lagrage): p p( z) p( z z z z) ( z zz z z z) 0 + Le tesioi pricipali vegoo idicate ormalmete co i simboli,, 3 ( oppure X, Y, Z ) e ordiate, per cosuetudie, i modo che 3. Per le tre direzioi pricipali associate alle tre tesioi pricipali possoo verificarsi tre casi:. se 3 esistoo tre direzioi pricipali mutuamete perpedicolari;. se due tesioi pricipali soo uguali (ad es. 3), la direzioe pricipale corrispodete alla tesioe pricipale diversa è uica, ma ogi direzioe perpedicolare ad essa è pricipale 3. se 3 (stato di tesioe idrostatico) qualuque direzioe è ua direzioe pricipale. U sistema di riferimeto i cui assi soo paralleli alle direzioi pricipali è detto sistema di riferimeto pricipale. Per valutare le direzioi pricipali è sufficiete risolvere il sistema Per ricavare le tre direzioi pricipali rispetto alla tera coordiata assuta come riferimeto per il calcolo del tesore delle tesioi si risolve il sistema () iseredo di volta i volta il valore della i-esima tesioe pricipale per la quale si vuole otteere la direzioe pricipale co la codizioe aggiutiva di ormalizzazioe: i + i + iz Bisoga otare che le tesioi pricipali e le direzioi pricipali soo ua caratteristica itriseca dello stato di sollecitazioe i u puto e quidi soo del tutto idipedeti dal sistema di riferimeto utilizzato per il loro calcolo. Questo implica che i coefficieti dell'equazioe di Lagrage devoo essere costati, o meglio ivariati, al variare del sistema di riferimeto utilizzato per il calcolo delle tesioi pricipali. Questi coefficieti vegoo deomiati primo, secodo e terzo ivariate e soo così defiiti: I + + Politecico di Torio Pagia di Data ultima revisioe 3/0/00 I I 3 z z z z z + + z z z z z z + I u sistema di riferimeto pricipale il tesore delle tesioi risulta: Cerchi di Mohr el caso geerale. Si assuma u sistema di riferimeto pricipale e si cosideri cosa capita su u piao facete parte di u fascio avete per asse ua delle direzioi pricipali (ad esempio la direzioe Z.

13 Operado questa scelta le equazioi di equilibrio riguardao solo le gradezze elle altre due direzioi. dt ds ds X α X ds X dn ds ds ds Y Y ds Y ds dsx dsy cos α se α Per semplicità cosideriamo cosa succede separatamete l effetto delle due tesioi pricipali cosiderate, per poi otteere la soluzioe fiale co la sovrapposizioe degli effetti (valida solo i campo lieare elastico). dt X X ds dn X X ds dt Y Y ds α df Y Y ds Y df X X ds X dn X X ds Co riferimeto alle figure si ha: dsx dn X dfx cos α X X dsx cos α cos α dsx dtx dfx se α X X dsx se α cos α dsy dn Y dfy se α Y Y dsy se α se α dsy dty dfy cos α Y Y dsy se α se α Applicado la sovrapposizioe degli effetti si ottiee + cos α + se α + X Y X X Y X se α cosα Y se α cosα X cioè le equazioi parametriche di u cerchio co diametro ( X Y ) X Y X + cetro Y + Politecico di Torio Pagia 3 di Data ultima revisioe 3/0/00 Y Y X X ( ) ( ) Y Y X X Y Y cos α se α cos α se α se α cosα ( X Y ) cos α ( ) se α cosα Y Y

14 Aaloghi ragioameti si possoo effettuare rispetto alle altre due direzioi pricipali. Si ottegoo cosi tre cerchi di Mohr, oguo relativo ai piai faceti parte del fascio co asse la direzioe pricipale o cosiderata. 3 3 π θ π θ 3 π Si può ache dimostrare che i piai o apparteeti a uo dei tre fasci coordiati hao uo stato di tesioe rappresetato dalla regioe tratteggiata della figura. I cerchi di Mohr soo u utile strumeto per valutare le tesioi pricipali. Nel particolare caso di stato di tesioe i cui si coosca a priori ua direzioe pricipale e la relativa tesioe, cooscedo lo stato di sollecitazioe calcolato i u qualsiasi sistema di riferimeto che abbia u asse coicidete co la direzioe pricipale ota, è possibile tracciare direttamete il cerchio di Mohr corrispodete e ricavare da esso le tesioi pricipali icogite (Fig..7). I questo caso soo oti due puti del cerchio di Mohr, e, ) e si sa a priori che il cetro del cerchio deve giacere el puto medio fra le due tesioi ormali Politecico di Torio Pagia 4 di Data ultima revisioe 3/0/00

15 3 Le tesioi pricipali possoo essere ricavate co semplici cosiderazioi geometriche e valgoo: +, ± + Cooscedo la terza tesioe pricipale è poi possibile ricavare gli altri cerchi di Mohr. Nel caso molto frequete i cui lo stato di sollecitazioe sia completamete defiito da ua tesioe ormale e ua tesioe tageziale ageti sul medesimo piao, come a esempio el puto di progetto di u albero soggetto a flessioe più sforzo ormale e torsioe si ha la situazioe illustrata ella figura. Le tesioi pricipali i questo caso varrao: Politecico di Torio Pagia 5 di Data ultima revisioe 3/0/00

16 Stato di deformazioe Lo spostameto totale dei puti i u cotiuo è dovuto a spostameti rigidi, rotazioi rigide e deformazioi; la deformazioe di u corpo è composta da ua dilatazioe (allugameti delle fibre passati per il puto seza cambiameto degli agoli fra le fibre, legata quidi ai cambiameti di volume) e da ua distorsioe (cambiameto di forma, o meglio degli agoli fra le fibre, seza cambiameto di volume). a) b) c) d) Caso bidimesioale Moti rigidi: a) spostameto rigido; b) rotazioe rigida; Deformazioe: c) dilatazioe ; d) distorsioe I geerale lo stato di è oto se si cooscoo le variazioi di lughezza di tutte le fibre passati per il puto tutte le variazioi fra gli agoli di due fibre passati per il puto. Aalogamete a quato visto per le tesioi tali variazioi soo ote se si cooscoo le variazioi di lughezza e di agoli di tre fibre passati per il puto e parallele ad u sistema di riferimeto cartesiao. Svolgedo gli opportui calcoli si ottiee che lo stato di deformazioe è descritto, a partire dagli spostameti depurati dai moti rigidi, dal seguete tesore: ε ij ε ε ε ε ε ε ε ε ε z z z z zz u u v + u + w z u v + v v + w z u w v w w + + z z z dove du, dv, dw soo le compoeti dello spostameto relativo (cioè depurate dallo spostameti rigidi) del puto. Si oti che tale trattazioe è valida solo se le deformazioi e le rotazioi rigide soo piccole. Nella pratica igegeristica si utilizzao i segueti simboli: Politecico di Torio Pagia 6 di Data ultima revisioe 3/0/00

17 deformazioi uitarie logitudiali: u ε Scorrimeti: ε v ε z w z u v γ γ + u w γ z γ z + z v w γ z γ z + z Si oti ogi scorrimeto può essere visto come l agolo complemetare a quello fra due fibre passati per il puto che prima della deformazioe erao perpedicolari: π γ Si oti che gli agoli così defiiti cotegoo ache ua compoete di rotazioe rigida: + Cioè gli scorrimeti o soo gradezze tesoriali. Utilizzado la simbologia vista il tesore della deformazioe risulta: ε γ γ z εij γ ε γ z γ z γ z ε z evidete l aalogia formale co il tesore delle tesioi; questo sigifica che vi sarao tre direzioi privilegiate (pricipali) lugo le quali vi soo solo dilatazioi e o distorsioi. Per i materiali isotropi le direzioi pricipali delle deformazioi coicidoo co quelle delle tesioi Politecico di Torio Pagia 7 di Data ultima revisioe 3/0/00

18 Aalogamete a quato fatto per il tesore delle tesioi è possibile ricavare i valori delle deformazioi pricipali risolvedo il problema agli autovalori: ε εp γ γ z det γ ε εp γ z 0 γ z γ z εz εp e tracciare i cerchi di Mohr delle deformazioi (i u piao ε, γ/). γ/ ε ε ε 3 ε Leggi costitutive del materiale Abbiamo già visto che i ua prova di trazioe le deformazioi preseti soo legate alla tesioe applicata. Quado lo stato di sollecitazioe è tridimesioale si può dimostrare che le tesioi ormali o producoo scorrimeti, e le tesioi tageziali o producoo dilatazioi Si suppoga adesso di avere u corpo su cui agiscoo tre tesioi ormali perpedicolari fra loro (,, z, ). Applicadole ua alla volta otteiamo la situazioe illustrata ella tabella seguete: ε ε ε z z ν ν Applicado la sovrapposizioe degli effetti si ottiee: ν ν ν z ν z z Politecico di Torio Pagia 8 di Data ultima revisioe 3/0/00

19 ( ν( + z ) ( ν( + z )) ( ν( + ) ε ε εz z Il rapporto fra le tesioi tageziali e gli scorrimeti è ivece dato dal modulo di elasticità tageziale G: ij Gγ ij Si può ioltre dimostrare che le tre costati idividuate (,G, ν) o soo idipedeti e vale la relazioe: G +ν ( ) Ipotesi di cedimeto - Tesioi ideali Le caratteristiche di resisteza di u materiale vegoo determiate co ua prova di trazioe che sollecita uiassialmete il provio. Abbiamo visto che lo stato di sollecitazioe tridimesioale è caratterizzato da u tesore a 6 compoeti idipedeti, o da almeo tre tesioi pricipali. Per valutare il grado di pericolosità di uo stato di tesioe tridimesioale è ecessario fare delle ipotesi sui meccaismi di cedimeto. I particolare si deve idividuare ua gradezza, calcolabile sia ello stato di tesioe uiassiale sia i quello triassiale, che comporti lo stesso grado di pericolo ei due casi. I pratica il modulo della gradezza scelta el mometo i cui si ha cedimeto (servameto o rottura) del compoete soggetto ad uo stato di tesioe tridimesioale deve avere lo stesso valore raggiuto per il cedimeto ella prova di trazioe. Normalmete la verifica viee fatta cosiderado come cedimeto del compoete la codizioe di servameto. Si defiisce quidi ua tesioe ideale id che è possibile calcolare i base allo stato di tesioe tridimesioale che equivale alla tesioe ella prova di trazioe. Fra le varie ipotesi di cedimeto ricordiamo le tre più utilizzate: Ipotesi della tesioe ormale massima. Si ipotizza che la rottura avvega quato la tesioe pricipale massima raggiuga il carico uitario di servameto (o di rottura ) ella prova di trazioe: id Ma {, }, Questa ipotesi si è dimostrata valida per i materiali fragili, ma o adatta ai materiali duttili. 3 Politecico di Torio Pagia 9 di Data ultima revisioe 3/0/00

20 Ipotesi di Tresca o della tesioe tageziale massima. Partedo dall osservazioe che le superfici di frattura dei provii i materiale duttile risultao icliate si circa 45 (piao su cui agisce la tesioe tageziale massima) si ipotizza che il cedimeto avvega quado si raggiuge ua tesioe tageziale limite. La tesioe tageziale massima è pari al raggio del cerchio di Mohr più grade: per lo stato multiassiale : metre per la prova di trazioe: ma ma eq L uguagliaza delle due permette di ricavare la ideale: id 3 3 Nel caso particolare del puto di progetto di u albero i cui agiscoo solo ua tesioe ormale e ua tesioe tageziale la tesioe ideale (pari al diametro del cerchio di Mohr più grade) risulta: 3 id + 4 Ipotesi di vo Mises (detta ache della ottaedrica o dell eergia di distorsioe) La tesioe ideale di vo Mise può essere calcolata co ipotesi di cedimeto diverse. Ua ipotesi prede i cosiderazioe la tesioe tagezaile agete sui piai ottaedrici, cioè i piao i piai che formao agoli uguali rispetto ai tre assi di u sistema di riferimeto pricipale: 3 Politecico di Torio Pagia 0 di Data ultima revisioe 3/0/00

21 Su tali piai agiscoo tesioi ormali tutte uguali fra loro (e pari ad u terzo del primo ivariate) e uguali tesioi tageziali. Co lughi calcoli che qui vegoo omessi la tesioe ideale secodo questa ipotesi risulta: id ( ) + ( ) + ( ) Alla stessa formula si arriva partedo da cosiderazioi diverse, ad esempio cosiderado l eergia di distorsioe, cioè l eergia elastica totale depurata dall eergia che tede semplicemete a far variare di volume l elemeto. No viee cosiderata l itera eergia perché sperimetalmete si ota che uo stato di tesioe idrostatico (tre tesioi pricipali uguali fra loro, co cosegueti deformazioi simmetriche) o porta mai a rottura, ache co tesioi molto elevate. Nel caso particolare del puto di progetto di u albero i cui agiscoo solo ua tesioe ormale e ua tesioe tageziale la tesioe ideale di vo Mises risulta: id Sia l ipotesi di vo Mises sia quella di Tresca soo utilizzate comuemete. L ipotesi di Tresca è più coservativa, quella di vo Mises è più aderete ai dati sperimetali. L ipotesi di vo Mises è valida solo el campo lieare elastico. Coefficieti di sicurezza Il coefficiete di sicurezza viee defiito come rapporto fra la tesioe limite ammissibile e la tesioe ideale applicata. Si può avere u coefficiete di sicurezza cotro lo servameto e uo cotro la rottura duttile. Servameto: + 3 R p0 R CS id moltiplicado tutti i carichi applicati alla struttura per il coefficiete di sicurezza si perviee allo servameto dei puti più sollecitati. Rottura: CS i questo caso il coefficiete di sicurezza ha u sigificato covezioale, i quato le tesioi ideali vegoo calcolate ell ipotesi di tesioi e deformazioi i campo lieare elastico. R m id 3 eh id 3 Politecico di Torio Pagia di Data ultima revisioe 3/0/00

22 sercizio - Dato lo stato di tesioe i u puto di u compoete i Fe430 0 MPa, 0 MPa, 00 MPa, z z 0 MPa e zz 30 MPa:. tracciare i cerchi di Mohr e determiare le tesioi pricipali;. calcolare la tesioe ideale secodo le tre ipotesi idicate; 3. calcolare il coefficiete di sicurezza i quel puto adottado ua opportua ipotesi di cedimeto 4. calcolare le deformazioi el sistema di riferimeto origiario e le deformazioi pricipali. Politecico di Torio Pagia di Data ultima revisioe 3/0/00

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI ROGETTZIONE DELLE COSTRUZIONI ROF. CRELO JORN ING. LUR SGRBOSS ODULO DUE IL ROBLE DELL TRVE DI DE SINT VENNT (RTE B) TERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUERIORE) Esempio di

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA Politecico di Torio Sistemi di Produzioe... CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA... Equazioe di govero Negli ultimi ai il metodo

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Le tensioni interne nelle travi

Le tensioni interne nelle travi Uiversità degli Studi di Roma "La Sapiea" Prima Facoltà di rchitettura "Ludovico Quaroi" CORSO DI LURE SPECILISTIC QUIQUELE I RCHITETTUR UE a.a. 2003/2004 1 semestre Le tesioi itere elle travi arch. Cesare

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

Complementi di Matematica e Statistica

Complementi di Matematica e Statistica Uiversità di Bologa Sede di Forlì Ao Accademico 009-00 Complemeti di Matematica e Statistica (Alessadro Lubisco) Aalisi delle compoeti pricipali INDICE Idice... i Aalisi delle compoeti pricipali... Premessa...

Dettagli

- 1 - L ottica geometrica studia il comportamento dei raggi luminosi. Le leggi che governano il comportamento dei raggi sono 5:

- 1 - L ottica geometrica studia il comportamento dei raggi luminosi. Le leggi che governano il comportamento dei raggi sono 5: - 1-1 CAPITOLO I I questo capitolo cerchiamo di riassumere molto brevemete i pricipali cocetti di ottica geometrica che sarao ecessari el prosieguo di questa dispesa. 1.1 Leggi dell ottica geometrica L

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

Rendita perpetua con rate crescenti in progressione aritmetica

Rendita perpetua con rate crescenti in progressione aritmetica edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

MOTO UNIFORME NEI CANALI A PELO LIBERO

MOTO UNIFORME NEI CANALI A PELO LIBERO Carlo Gregoretti Idraulica capitolo 8 0 Nov. 08 64 MT UNIFRME NEI CANALI A PEL LIBER 8. Leggi di moto uiforme per caali a sezioi compatte Ua correte i u caale di sezioe costate tede ad assumere u regime

Dettagli

Fluidi non newtoniani

Fluidi non newtoniani Petea Aa matricola: 9603 Lezioe del 0/04/00 0:30-3:30 ossi Giulia matricola: 0878 Fluidi o ewtoiai INDICE DELLA LEZIONE DEL 0/04/00 AGOMENTO:FLUIDI NON NEWTONIANI Comportameto reologico dei fluidi... -

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Movimento nominale e perturbato

Movimento nominale e perturbato Fodameti di Automatica. Stabilità itera o alla Lyauov Fodameti di Automatica AYSb FTPb AYSct Igegeria delle Telecomuicazioi e Igegeria Fisica. Stabilità itera o alla Lyauov Stefao Mala Fodameti di Automatica

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

DISPENSE DI MATEMATICA FINANZIARIA

DISPENSE DI MATEMATICA FINANZIARIA SPENSE MATEMATA FNANZAA 3 Piai di ammortameto. 3. osiderazioi geerali. U piao di ammortameto cosiste ella restituzioe di u importo preso a prestito mediate il versameto d'importi distribuiti el tempo.

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

SOLLECITAZIONI SEMPLICI

SOLLECITAZIONI SEMPLICI Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SOLLECITAZIONI SEPLICI AGGIORNAENTO 04/10/2011 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SFORZO NORALE CENTRATO Lo

Dettagli

Ottica geometrica. R. Zei Fisica Applicata alla Biomedicina Slide 1

Ottica geometrica. R. Zei Fisica Applicata alla Biomedicina Slide 1 Ottica geometrica R. Zei Fisica Applicata alla Biomedicia Slide Itroduzioe L ottica geometrica tratta i feomei che possoo essere descritti tramite la propagazioe i liea retta, la riflessioe e la rifrazioe

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

Distribuzione di un carattere

Distribuzione di un carattere Distribuzioe di u carattere Dopo le fasi di acquisizioe e di registrazioe dei dati, si passa al loro cotrollo e quidi alle loro elaborazioe. Si defiisce distribuzioe uitaria semplice di u carattere l elecazioe

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia Itroduzioe Metodi diretti Elimiazioe di Gauss Decomposizioe LU Casi particolari Metodi Iterativi Geeralità e covergeza Metodi di base Cei sui metodi basati sul gradiete Cei sui metodi multigriglia 1 Itroduzioe

Dettagli

A = 10 log. senϕ = n n (3)

A = 10 log. senϕ = n n (3) CORSO DI LABORATORIO DI FISICA A Misure co fibre ottiche Scopo dell esperieza è la misura dell atteuazioe e dell apertura umerica di fibre ottiche di tipo F-MLD-500. Teoria dell esperieza La fisica sulla

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Statica dei sistemi meccanici

Statica dei sistemi meccanici Gruppo di lezioi Ore Pricipali argometi 1 3 4 5 Statica dei sistemi meccaici Statica degli elemeti selli Elemeti di meccaica del cotiuo Meccaica della trave Spostameti di elemeti strutturali e metodi di

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

PARAMETRI DEL MOTO SISMICO

PARAMETRI DEL MOTO SISMICO PARAMETRI DEL MOTO SISMICO Attività microsismica: caratterizzata da vibrazioi di debole ampiezza e periodi molto gradi tali da o essere percepiti dai più comui strumeti di registrazioe (importate soprattutto

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli