PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace."

Transcript

1 ITIS G CARDANO PREMESSA In quea lezione verranno epoe le regole per l analii dei iemi coninui con il meodo della Traormaa di Laplace ANALISI DEI SISTEMI CONTINUI Per analizzare un iema di conrollo è neceario coruire un modello maemaico, ovvero occorre deerminare le equazioni maemaiche che permeono di deerminare l andameno nel empo delle ucie noi quelli degli ingrei Il modello può eere aico o dinamico Il modello aico decrive la relazione ra i valori degli ingrei (uppoi coani) e quelli delle ucie una vola che il iema abbia raggiuno la condizione di regime azionario Quea modellizzazione non dà alcuna inormazione ul regime raniorio e quindi ull andameno delle ucie durane il paaggio da uno ao di regime ad un alro Il modello dinamico permee, invece, di deerminare l andameno del egnale di ucia corripondene ad un precio egnale di ingreo e quindi di deerminare la ripoa del iema ad una ecciazione noa Il modello dinamico arà coiuio da una o più equazioni dierenziali che legano le variabili di ingreo, le variabili di ucia e le loro derivae ripeo al empo I iemi dinamici poono eere caraerizzai nel empo in empo-coninui, empo-dicrei e a eveni dicrei Nei primi la variabile empo ha un andameno coninuo, nei econdi l evoluzione del iema avviene ad iani diini nel empo e negli ulimi l evoluzione non dipende dal empo ma dal veriicari di deerminae condizioni (eveni) Lo udio dei iemi di conrollo avviene ipoizzando che il iema ia lineare, ovvero ia applicabile il principio di ovrappoizione degli eei Quea empliicazione, quai empre realizzabile purché i valori delle variabili non ecano da deerminai campi, permee di poer decrivere i enomeni iici con equazioni dierenziali a coeicieni coani TRASFORMATA DI LAPLACE Per eeuare l analii di un iema coninuo lineare occorre: ) individuare gli elemeni che compongono il iema e la unzione che volgono ) deerminare la unzione caraeriica di ogni elemeno 3) deerminare la unzione caraeriica dell inero iema uilizzando le regole dell algebra degli chemi a blocchi 4) analizzare la ripoa del iema nel empo daa una deerminaa olleciazione Un eempio di procedura può eere vio analizzando un pariore di enione come quello nella igura: Dove con Vi( è ao indicao il valore nel empo della enione di ingreo, con Vu( il valore nel Wih he uppor o he Lielong Learning Programme o he European Union Thi projec ha been unded wih uppor rom he European Commiion

2 ITIS G CARDANO empo della enione di ucia e con R e R i uoi elemeni caraeriici coruivi Le unzioni caraeriiche dei due elemeni ono: V R R I( ) e V R R I( ) ( ( Uilizzando il eorema di Kirchho alla maglia i oiene il modello maemaico dell inero iema: dalla quale è anche poibile ricavare l equazione: Vi V ( V ( ( R R ) I( ), ( R R Vi( I( R R Il egnale di ucia è pari alla cadua di poenziale ai capi della reienza R e quindi i oiene dalla relazione: Vu VR ( R I( ) ( E oiuendo a I( l equazione ricavaa precedenemene i oiene l equazione che decrive la ripoa del iema ad una deerminaa olleciazione: R Vu( Vi( R R Gli elemeni del iema poono eere a econda dei cai di ipo: meccanici, elerici, ermici, pneumaici, idraulici Per rovare il loro modello maemaico i può uilizzare una delle re caegorie di leggi della iica: - congruenza degli poameni (i ua nei iemi rigidi) - equilibrio (rierio a orze, momeni, dierenze di poenziale elerico, emperaure, preioni) - bilancio (rierio a energia, quanià di calore, mae, quanià di cariche eleriche) Le unzioni caraeriiche ono peo epree da equazioni dierenziali e ciò rende più diicile la rioluzione del problema dal puno di via maemaico Con la raormazione è, però, poibile raormare operazioni complee in alre più emplici agendo ulle variabili Un emplice eempio del conceo di raormazione può eere vio nella rioluzione di una equazione del quaro grado del ipo: 4 5x x 3 Se oiuiamo x y l equazione verrà raormaa nell epreione: 5y y 3 molo più emplice della precedene eendo di econdo grado Una vola ricavae le due oluzioni y e y occorrerà riraormarle uando la ea legge precedenemene adoaa in: x y e x y per ricavare ue e quaro le oluzione del iema Quea ulima ae è denominaa ani-raormazione Wih he uppor o he Lielong Learning Programme o he European Union Thi projec ha been unded wih uppor rom he European Commiion

3 ITIS G CARDANO Nei iemi di regolazione e conrollo in paricolare i ua la ecnica della raormaa di Laplace, grazie alla quale: - l inegrale divena una diviione e la derivaa una moliplicazione - l equazione dierenziale divena una equazione algebrica Come vio nell eempio precedene l applicazione di queo meodo richiede quaro ai: ) ricavare l equazione dierenziale nel dominio del empo ) arne la raormaa di Laplace 3) riolvere l equazione algebrica nel dominio di 4) arne l ani-raormaa di Laplace Il dominio di uao nella raormaa di Laplace è di ipo arao non eendo poibile aribuire ad eo neun igniicao iico La raormazione avviene in una variabile complea: a ib I imboli maemaici per indicare la raormaa e l ani-raormaa ono ripeivamene: 5) L[ ] 6) L [ ] Alcune delle raormazioni di Laplace più uilizzae ono: TRASFORMATA h e e h ( ) en co en ( a) e h e h co ANTITRASFORMATA ( a) ( a) Wih he uppor o he Lielong Learning Programme o he European Union Thi projec ha been unded wih uppor rom he European Commiion 3

4 ITIS G CARDANO Nella raormazione ove neceario è poibile uilizzare anche alcune regole: L[ a bg( ] a bg( L[ F'( ] ) L ) d e e non i individua ubio l ani-raormazione occorre ricordare che l ani-raormaa di una omma di unzioni è pari alla omma delle ani-raormae delle ingole unzioni Vediamo un eempio di applicazione delle raormae di Laplace nella rioluzione dell equazione dierenziale: y '( y( con condizione iniziale: y ( ) Traormando i oerrà: L[ y'( ] L[ y( ] L[] Traormando i oerrà quindi: dalla quale raccogliendo y(: Ani-raormando i oerrà: y( y( y ( ( ) y( L [ y( ] L e ( ) y ( y( y() y ( La unzione caraeriica di un iema o di un uo elemeno prende il nome di unzione di raerimeno (FDT) ed è rieria al dominio di : U( I( FDT E RISPOSTA ALLE SOLLECITAZIONI DI UN ELEMENTO MECCANICO Vediamo una applicazione praica di uo il procedimeno ad un iema meccanico e prendiamo come eempio una maa m con velocià v al empo Applicando una orza variabile nel empo ( (leera minucola per non cononderla con la ) dopo l inervallo di empo - il corpo avrà ubio una variazione di velocià v -v Con gli chemi a blocchi i decriverà il enomeno con: v( ( v( ( Wih he uppor o he Lielong Learning Programme o he European Union Thi projec ha been unded wih uppor rom he European Commiion 4

5 ITIS G CARDANO Dalla econda legge della dinamica appiamo che: ( m a( v( ma eendo l accelerazione da deinizione: a( v'( oiuendo nell epreione precedene i oiene: ( mv'( Facendo la raormaa di Laplace i ricava la FDT: Se al empo la v ( ) i ha: Quindi la FDT arà: ( m v( v() ( m v( v( v( ( ( m m Fiao l andameno nel empo di ( e calcolaa la ua raormaa di Laplace (() i deerminerà la ripoa nel dominio di (v() eeuando emplicemene il prodoo ra la FDT e la raormaa dell ingreo Per avere la ripoa nel dominio del empo i dovrà are l ani-raormaa di Laplace FDT Se nel noro cao ad eempio ipoizziamo la orza coane: ( co allora: ( L[ ( ] L[ ] e di coneguenza l ucia arà: v( ( m m Per avere la ripoa nel empo i dovrà are l ani-raormaa, e i oerrà: v( m Poiché iica: m è l accelerazione coane che avrà la maa, è aa coì oenua la noa legge della v a Wih he uppor o he Lielong Learning Programme o he European Union Thi projec ha been unded wih uppor rom he European Commiion 5

3. MODELLI MATEMATICI

3. MODELLI MATEMATICI 3. MODE MAEMA ASSFAZONE DE MODE iemi ono decrii da opporuni modelli maemaici. Poiamo claificarli in re caegorie: Modelli maemaici nel dominio del empo o in campo reale Decrivono il comporameno del iema

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Siemi e del Conrollo Compio A del 5 Febbraio 5 Domande ed eercizi Nome: Nr. Ma. Firma: C.L.: Info. Ele. Telec.. Scrivere la oluzione in forma chiua dell equazione differenziale ẋ() = Ax()+Bu()

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli

Basi di Elettronica (1 parte)

Basi di Elettronica (1 parte) Bai di Eleronica ( pare) A TRASFORMATA DI APACE 2 Traformaa invera di aplace 2 Tabella: raformae di aplace di funzioni elemenari 2 Alcune proprieà noevoli della raformaa di aplace 3 Idenià di Pareval 5

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre y=x 2 =i L

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre y=x 2 =i L .9.8.7.6.5.4... - 4 5 6 7 8 9 SOLUZIONI PROVA SRITTA DI AUTOMATIA I (Prof. Biani, BIO A-K) 5 Seembre 6. Si conideri il eguene circuio elerico conenene due reiori, un condenaore e un induore: u A B R v

Dettagli

campionatore - converte un segnale a tempo continuo in una sequenza sono quindi presenti sia variabili a tempo discreto sia variabili a tempo

campionatore - converte un segnale a tempo continuo in una sequenza sono quindi presenti sia variabili a tempo discreto sia variabili a tempo Ingegneria e ecnologie dei Siemi di Conrollo Campionameno e ricoruzione dei egnali Luigi Biagioi DEIS-Univerià di Bologna el. 5 9334 e-mail: lbiagioi@dei.unibo.i Ricoruore di ordine zero Ponendo la equenza

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Biani, BIO A-K 6 Seembre 7 Si conideri il eguene iema dinamico lineare a coefficieni coani a empo coninuo: u ( G ( y ( con G ( 5 a Di quale o quali, ra i iemi

Dettagli

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1 ezione 9. Calcolo dell aniraormaa di aplace. Previdi - ondameni di Auomaica - ez. 9 Schema della lezione. Inroduzione. Aniraormazione di aplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale

Dettagli

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A )

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A ) Fondameni di comunicazioni eleriche (Ing. Eleronica - A.A.-) E. g (, ) rec / dipende dalla variabile aleaoria avene denià di probabilià uniforme nell inervallo [,]. rovare valor medio ed auocorrelazione

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 24 giugno 2002

Esercizi & Domande per il Compito di Elettrotecnica del 24 giugno 2002 Eercizi & Domande per il ompio di Eleroecnica del 4 iuno 00 ESEZO - Traniorio nel dominio di aplace Svolimeno Eercizio - Traniorio nel dominio di aplace coninua i a v v () i a Ω Ω F v (0 - ) v (0 - ) alcolare

Dettagli

Rappresentazione del sistema. Classificazione dei sistemi di controllo

Rappresentazione del sistema. Classificazione dei sistemi di controllo Rappreenazione del iema ẋ= f x,u, (equazione differenziale) y =g x,u, (equazione algebrica) Nomi delle variabili u: ingreo x: ao y: ucia Claificazione dei iemi di conrollo Ordine Il numero n delle variabili

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

Esercizio 1. Sia L : R 3 R 2 l'applicazione lineare rappresentata, rispetto alle basi canoniche, dalla matrice : A =

Esercizio 1. Sia L : R 3 R 2 l'applicazione lineare rappresentata, rispetto alle basi canoniche, dalla matrice : A = Tuoraggio di Algebra Lineare e Geomeria Eercii di ripao ulle applicaioni lineari Eerciio Sia L : R R 2 l'applicaione lineare rappreenaa, ripeo alle bai canoniche, dalla marice : A ( 2 2 Deerminare la marice

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 21 Luglio 2008

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 21 Luglio 2008 SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) Luglio 8. Si conideri il eguene iema dinamico lineare a empo coninuo: x () x() 36 x() + u() x () x() x 3() x() x3() u() y () 5 x() x().a Si

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENO E RICOSRUZIONE DI SEGNALI CAMPIONAMENO E RICOSRUZIONE Numerizzazione dei egnali Nei Nei moderni iemi di di memorizzazione e ramiione i i egnali in in ingreo ono ono di di ipo ipo numerio,

Dettagli

ALGEBRA DEGLI SCHEMI A BLOCCHI. La figura seguente rappresenta una relazione ingresso/uscita in forma grafica.

ALGEBRA DEGLI SCHEMI A BLOCCHI. La figura seguente rappresenta una relazione ingresso/uscita in forma grafica. Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). ALGEBRA DEGLI SCHEMI A BLOCCHI La figura eguene rappreena una relazione ingreo/ucia in forma grafica. U(

Dettagli

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC SiElnB3 2/9/ Ingegneria dell Informazione Obieivi del gruppo di lezioni B Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.3 - Tipologie di amplificaori» Comporameno dinamico di amplificaori»

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Metodo della Trasformata di Laplace (mtl)

Metodo della Trasformata di Laplace (mtl) Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae

Dettagli

Esercizi di supporto al modulo di Comunicazioni Elettriche

Esercizi di supporto al modulo di Comunicazioni Elettriche Eercizi di upporo al modulo di Comunicazioni Eleriche Diplomi Univeriari eledidaici Dario Farina A.A. 3/4 Indirizzo per corripondenza: Dario Farina Dip. di Eleronica Poliecnico di orino Coro Duca degli

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dipene del coro di Analii II verione preliminare Paolo Tilli Diparimeno di Maemaica Poliecnico di Torino email: paolo.illi@polio.i gennaio 25 Capiolo 5 Traformaa di Laplace 5. Inroduzione Sia x() una funzione

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013 Iiuzioni di Probabilià Laurea magirale in Maemaica prova cria del 0/6/03 Exercie. (puni 8 circa) Sia W un moo browniano reale. Sia ϕ : 0, + 0, + una funzione crecene, ia c : 0, + 0, + una funzione miurabile;

Dettagli

L attrito. coefficiente d attrito statico. f s s N = f smax. forza normale. f d = d N. coefficiente d attrito dinamico

L attrito. coefficiente d attrito statico. f s s N = f smax. forza normale. f d = d N. coefficiente d attrito dinamico L aio coefficiene d aio aico f N = f ma foza nomale f d = d N coefficiene d aio dinamico e d dipendono dalla upeficie ma poco dall aea di conao in geneale > d e d = d () 0.05 1.5 Foze iadani b b dipende

Dettagli

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione Inroduzione ai segnali deerminai iolo unià Dalla serie alla rasormaa di ourier Proprieà della rasormaa di ourier Uguaglianza di Parseval e principio di indeerminazione 005 Poliecnico di orino 1 Dalla serie

Dettagli

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11 Poliecnico i Torino ete Dipoiivi e Siemi eccanici Eercizi Eercizio Un moore o è collegao a un argano A i ollevameno econo lo chema in figura. Sull albero moore è ineria una frizione conica Fr, che ramee

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

SCELTA DI UN INNESTO A FRIZIONE

SCELTA DI UN INNESTO A FRIZIONE SELTA DI UN INNESTO A FRIZIONE Si conideri l'impiano in Fig. 1, coiuio da un moore elerico aincrono riae, un inneo a rizione ad azionameno eleromagneico, un riduore ad ingranaggi ed una macchina operarice.

Dettagli

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice.

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice. RICHIAMI SULLE FUNZIONI DI TRASFERIMENTO, TRASFORMATE DI FOURIER E LAPLACE E DIAGRAMMI DI BODE Univerià di Padova Facolà di Ingegneria Coro di Fondameni di Eleronica A.A.4/5 Padova, 4//5 Le noe egueni

Dettagli

Analisi in frequenza di segnali campionati

Analisi in frequenza di segnali campionati Analii in requenza di egnali campionai - 1 Analii in requenza di egnali campionai 1 Analii dei egnali nel dominio della requenza I principali meodi di analii dei egnali di miura poono eere riauni nei concei

Dettagli

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c Algebra eoriale A B modulo, direzione e ero A puno di applicazione Somma e differenza di eori: a + b = c b a c meodo grafico: regola del parallelogramma Proprieà della omma: a + b = b + a (commuaia) (a

Dettagli

Tab. 1 - modulo elastico e resistenza a trazione del calcestruzzo

Tab. 1 - modulo elastico e resistenza a trazione del calcestruzzo 18 Capiolo 5 Tab. 1 - modulo elaico e reienza a razione del calceruzzo clae C2/25 C25/ C28/5 C2/4 ck 2 MPa 25 MPa 28 MPa 2 MPa Ecm MPa 15 MPa 2 MPa MPa cm 2.21 MPa 2.57 MPa 2.77 MPa.2 MPa ck 1.55 MPa 1.8

Dettagli

Modelli circuitali per le linee di trasmissione

Modelli circuitali per le linee di trasmissione Modelli circuiali per le linee di ramiione prof. Anonio Maffucci A. Maffucci, Modelli circuiali per le linee di ramiione [pag. 1/73] Inerconneioni eleriche A vari livelli Board Package hip A. Maffucci,

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Problema: Supponiamo che

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Coro di Fondameni di elecomunicazioni EORIA DEI SEGNALI DEERMINAI Pro. Giovanni Schembra Fondameni di LC - Pro. G. Schembra Sruura della lezione Proprieà dei egnali nel dominio del empo Valore medio, poenza,

Dettagli

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA G. SUPT FUGA MT D TOA D T ovembre CAPTOO 9 - T DAMCH DOMO DA FQUZA pag. / CAPTOO 9 - T DAMCH DOMO DA FQUZA TODUZO l meodo della raformaa di aplace, chiamao anche analii nel dominio della frequenza, è una

Dettagli

DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI

DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI DEFINIZIONE E CLASSIFICAZIONE DEI SEGNALI Con il ermine egnale i indica una funzione, generalmene del empo, che rappreena la legge di variazione di una grandezza fiica, (acuica, elerica, oica ec.) la preione

Dettagli

Vin(t) c) Si assuma per l operazionale una risposta in frequenza ad anello aperto A(s)=A o /(1+sτ ο

Vin(t) c) Si assuma per l operazionale una risposta in frequenza ad anello aperto A(s)=A o /(1+sτ ο Eercizio Fondameni di Eleronica - ngegneria Auomaica - AA 3/4 a rova in iinere- 5 ebbraio 4 ndicare chiaramene la domanda a cui i a riondendo. Ad eemio a) ou() in() - µ µ 3 6 µ µ kω 8kΩ C 3F in() C a)

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 1 giugno 2004

Esercizi & Domande per il Compito di Elettrotecnica del 1 giugno 2004 Eercizi & Domande per il Compio di Eleroecnica del giugno Eercizio N Η Ω Solgimeno Deerminare i parameri z della ree due pore in figura: [ Z] Z Z Η Ω x X ω ω Z Z Z Z H Ω Z Z La ree non è reciproca come

Dettagli

= 1. Le equazioni della trave su suolo elastico considerata illimitata, in presenza di uno spostamento relativo imposto y 0 (Figura 1.

= 1. Le equazioni della trave su suolo elastico considerata illimitata, in presenza di uno spostamento relativo imposto y 0 (Figura 1. STUDIO TEORICO DEL COMPORTAMENTO DELLE GIUNZIONI Appendice A: Valuazione eorica della rigidezza della conneione. Vengono ucceivamene riporai i paaggi maemaici che porano alla formulazione della rigidezza

Dettagli

Esercizi riassuntivi sugli argomenti del corso in preparazione alla prova d esame:

Esercizi riassuntivi sugli argomenti del corso in preparazione alla prova d esame: 8 apiolo Eercizi riaunivi ugli argomeni del coro in preparazione alla prova d eame: Influenza delle funzioni aenuarici ul valore del empo di aeameno. Volendo fare un dicoro qualiaivo, e non formale e rigoroo

Dettagli

Vediamo come si sviluppa la soluzione esplicita del problema. ( t)

Vediamo come si sviluppa la soluzione esplicita del problema. ( t) Analisi ransioria L'analisi dinamica ransioria (dea anche analisi emporale) è una ecnica che consene di deerminare la risposa dinamica di una sruura soggea ad una generica ecciazione emporale Gli effei

Dettagli

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 27/28 (aggiornaa al 8//27) 2 Proprieà della rasformaa

Dettagli

Corso di SEGNALI a.a

Corso di SEGNALI a.a Coro di SEGNALI anno accademico 008-009 Appunti u: Teorema del Campionamento Introduzione Il proceo di campionamento è di enorme importanza ai ini della realizzazione dei dipoitivi digitali per le telecomunicazioni.

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

2.4 Flussi di valore massimo

2.4 Flussi di valore massimo .4 Flui di valore maimo I modelli di fluo hanno variae applicazioni in eori come elecomunicazioni informaica (muliproceori, proocolli inerne) rapori (aereo, radale, ferroviario, merci) Si raa di diribuire

Dettagli

INTRODUZIONE ALLE LEGGI FINANZIARIE

INTRODUZIONE ALLE LEGGI FINANZIARIE Inroduzione alle leggi finanziarie Operazione finanziaria u due dae: S - S + I INTRODUZIONE ALLE LEGGI FINANZIARIE 0 1 anni Legge di equivalenza ineremporale inrodoa dal conrao finanziario: 0 S 1 S + I

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

Trasformata di Laplace

Trasformata di Laplace Traformata di Laplace In matematica e in particolare nell'analii funzionale la traformata di Laplace di una funzione f (t ) (definita per tutti i numeri reali e localmente integrabile) è la funzione F

Dettagli

FUNZIONI DI TRASFERIMENTO

FUNZIONI DI TRASFERIMENTO FUNZIONI DI TRASFERIMENTO Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono

Dettagli

Circuito Simbolico. Trasformazione dei componenti

Circuito Simbolico. Trasformazione dei componenti Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.

Dettagli

RICERCA OPERATIVA GRUPPO A prova scritta del 5 luglio 2010

RICERCA OPERATIVA GRUPPO A prova scritta del 5 luglio 2010 RICERCA OPERATIVA GRUPPO A prova cria del luglio 00. Dao il problema di programmazione lineare P) min z = x +x +x max y + y x x x = y +y < x + x x y + y < x, x, x 0 y y < y > 0 a) coruirne il duale D;

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Progettazione di Algoritmi Anno Accademico Esercizi su Grafi: Parte Seconda

Progettazione di Algoritmi Anno Accademico Esercizi su Grafi: Parte Seconda Progeazione di Algorimi Anno Accademico 0 09 Eercizi Ugo Vaccaro Eercizi u Grafi: Pare Seconda N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

3. La coppia di avviamento [Nm] La coppia massima [Nm] 5

3. La coppia di avviamento [Nm] La coppia massima [Nm] 5 UNESÀ D OMA LA SAPENZA FACOLÀ D NGEGNEA - COSO D LAUEA N NGEGNEA ENEGECA AA 8-9 DSCPLNA D MACCHNE E CONEO D ENEGA ELECA POA SCA D ESAME DEL 5 GUGNO 9.. Sono dai due raformaori rifae della ea oenza nominale

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Problematiche di controllo digitale

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Problematiche di controllo digitale INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Problemaiche di conrollo digiale Prof. Carlo Roi DEIS - Univerià di Bologna Tel: 051 2093020 email: croi@dei.unibo.i Progeo di un conrollore digiale Due

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

Note per la Lezione 33 Ugo Vaccaro

Note per la Lezione 33 Ugo Vaccaro Progeazione di Algorimi Anno Accademico 208 209 Noe per la Lezione 33 Ugo Vaccaro In quea lezione vedremo alcune applicazioni dei riulai ul calcolo del fluo maimo, derivai nelle lezioni precedeni. Prima

Dettagli

APPENDICE. L-trasformazione dei componenti R, L,C Esempi di risoluzione di equazioni differenziali con la T.d.L.

APPENDICE. L-trasformazione dei componenti R, L,C Esempi di risoluzione di equazioni differenziali con la T.d.L. APPENDICE Modelli matematici dei componenti R, L, C Ripota di un circuito nel dominio del tempo con il metodo delle equazioni differenziali Traformata di Laplace L-traformazione dei componenti R, L,C Eempi

Dettagli

PARTE 4: CINEMATICA DEL PUNTO MATERIALE

PARTE 4: CINEMATICA DEL PUNTO MATERIALE PARTE 4: CINEMATICA DEL PUNTO MATERIALE 4. INTRODUZIONE Fiaa una erna di ai careiani (muuamene orogonali fra loro) Oz, con origine nel puno O, i riferica il moo di un corpo maeriale a ale erna, cioè i

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1. Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2017-18 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

K c s h. P(s) 1/K d. U(s) + Y(s)

K c s h. P(s) 1/K d. U(s) + Y(s) Eame di Fondamenti di Automatica Coro di Laurea Vecchio Ordinamento in Ingegneria Elettronica febbraio 3 Compito A Cognome: Nome Matricola: Email:. Ricavare la funzione di traferimento tra u ed y nel eguente

Dettagli

Ulteriori Esercizi su Grafi. Ugo Vaccaro

Ulteriori Esercizi su Grafi. Ugo Vaccaro Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii

Dettagli

Uso della trasformata di Laplace per il calcolo della risposta

Uso della trasformata di Laplace per il calcolo della risposta Uo della traformata di Laplace per il calcolo della ripota Conigli generali (Aggiornato 7//) ) Si vuole qui richiamare l attenzione ul fatto che la preenza di zeri o di una truttura triangolare a blocchi

Dettagli

Note per la Lezione 29 Ugo Vaccaro

Note per la Lezione 29 Ugo Vaccaro Progeaione di Algorimi Anno Accademico 1 1 Noe per la Leione Ugo Vaccaro In quea leione coninueremo lo udio di cammini minimin grafi in cui vi poono eere archi di coo negaivo. Ricordiamo l algorimo baao

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Esempi Calcolo Antitrasformate

Esempi Calcolo Antitrasformate Eempi Calcolo Antitraformate Note per il Coro di FdA - Info April, 05 Il punto focale del coiddetto metodo di Heaviide per l antitraformazione di un egnale regolare a traformata razionale conite nel riconocere

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2016-17 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

Università degli Studi di Napoli. Federico II. Appunti di METODI MATEMATICI PER L INGEGNERIA INDUSTRIALE

Università degli Studi di Napoli. Federico II. Appunti di METODI MATEMATICI PER L INGEGNERIA INDUSTRIALE Carlo Colella Davide Formiano Univerià degli Sudi di Napoli Federico II Diparimeno di Ingegneria Navale Appuni di METODI MATEMATICI PER INGEGNERIA INDUSTRIAE A.A. 8/9 INDICE Capiolo I A TRASFORMAZIONE

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio 1 LA PUNTA ELICOIDALE È l uenile più emplice per l eecuzione di fori cilindrici, generalmene dal pieno. La puna elicoidale è coiuia: da un codolo cilindrico o conico per il cenraggio ul mandrino della

Dettagli

IL METODO FISHER-LANGE

IL METODO FISHER-LANGE IL METODO FISHER-LANGE Maeriale didaico a cura di Domenico Giorgio Auario Danni di Gruppo Socieà Caolica di Aicurazioni Domenico Giorgio Il meodo Fiher-Lange METODO FISHER-LANGE Il meodo Fiher-Lange (di

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Note per la Lezione 28 Ugo Vaccaro

Note per la Lezione 28 Ugo Vaccaro Progeazione di Algorimi Anno Accademico 2017 2018 Noe per la Lezione 28 Ugo Vaccaro In quea lezione udieremo ancora problemi u cammini minimi, ma in grafi in cui vi poono eere archi di coo negaivo. Quindi,

Dettagli

CRESCITA. Modello di Solow

CRESCITA. Modello di Solow CRESCITA Modello di Solow Modello di Solow (956) Idea: la crecia è dovua all accumulo di capiale. Capiale fiico () Y S I ecc. (idea di circolarià, ma aenzione a rendimeni decreceni di Ipoei: Economia chiua

Dettagli

LABORATORIO di ELETTRONICA SEGNALI ELETTRICI PERIODICI

LABORATORIO di ELETTRONICA SEGNALI ELETTRICI PERIODICI LABORAORIO di ELERONICA SEGNALI ELERICI PERIODICI SEGNALI PERIODICI REANGOLARI (Recangular Waveform) Un egnale periodico avene una forma d onda reangolare è caraerizzao da un periodo [ec], una frequenza

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Per decrivere l evoluzione di un itema in regime tranitorio, oia durante il paaggio delle ucite da un regime tazionario ad un altro, è neceario ricorrere ad un modello più generale

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

Analisi nei domini del tempo e della frequenza

Analisi nei domini del tempo e della frequenza Elaborazione digiale dei egnali di miura - 1 Analii nei domini del empo e della requenza Ogni egnale reale può eere prodoo aggiungendo onde inuoidali a) Coordinae ridimenionali: empo, requenza ed ampiezza.

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

Il Luogo delle Radici

Il Luogo delle Radici Il Luogo delle Radici Il luogo delle radici è un procedimento, otanzialmente grafico, che permette di analizzare come varia il poizionamento dei poli di un itema di controllo in retroazione al variare

Dettagli

LA CONDUZIONE TERMICA IN PARETE (SERIE E PARALLELO)

LA CONDUZIONE TERMICA IN PARETE (SERIE E PARALLELO) L CONDUZIONE ERMIC IN PREE (SERIE E PRLLELO Capiolo quino La conduzione 5. Inroduzione Il meccanimo conduivo fa riferimeno al raferimeno di energia ermica in un mezzo o ra più mezzi in conao fiico, unicamene

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Claudio Arbib Università dell Aquila. Ricerca Operativa. Problemi di cammino ottimo

Claudio Arbib Università dell Aquila. Ricerca Operativa. Problemi di cammino ottimo Claudio Arbib Univerià dell Aquila Ricerca Operaiva Problemi di cammino oimo Sommario Il problema del cammino più breve Il problema del cammino più icuro Una formulazione come PL 0- Proprieà della formulazione

Dettagli

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso ISPESL Linea guida raccomandaa per la valuazione della via residua di componeni esercìi in regime di scorrimeno viscoso Calcolo della frazione di via consumaa per scorrimeno viscoso Sezione 2 LG v. 1 Nella

Dettagli

Lezione 9. Schemi di controllo avanzati parte prima. F. Previdi - Controlli Automatici - Lez. 9 1

Lezione 9. Schemi di controllo avanzati parte prima. F. Previdi - Controlli Automatici - Lez. 9 1 Lezione 9. Schemi di controllo avanzati parte prima F. Previdi - Controlli Automatici - Lez. 9 Schema. Regolatori in anello aperto Controllo multivariabile:. Regolatori di diaccoppiamento 3. Controllo

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli

Simulare un sistema dinamico

Simulare un sistema dinamico Simulare un sisema dinamico Serie di Taylor Daa una unzione, ed un puno 0 in cui la unzione sia noa assieme alle sue derivae, è possibile approssimare la unzione ramie serie di Taylor: 0 + ' 0 0 + '' 0

Dettagli