ALGEBRA DEGLI SCHEMI A BLOCCHI. La figura seguente rappresenta una relazione ingresso/uscita in forma grafica.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ALGEBRA DEGLI SCHEMI A BLOCCHI. La figura seguente rappresenta una relazione ingresso/uscita in forma grafica."

Transcript

1 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). ALGEBRA DEGLI SCHEMI A BLOCCHI La figura eguene rappreena una relazione ingreo/ucia in forma grafica. U( G( Y( La relazione ingreo-ucia è eprea graficamene aravero un blocco funzionale. L ingreo è rappreenao ramie una freccia enrane e l ucia ramie una freccia ucene. Il legame ra l ingreo e l ucia è: Y(=G(U(. I blocchi elemenari poono eere collegai in modo compleo per rappreenare la dinamica di iemi complei coiuii da iemi elemenari inerconnei. Di eguio eporremo le operazioni per raformare un inieme di blocchi inerconnei in un blocco elemenare. Collegameno in parallelo Il eguene collegameno è deo in parallelo G G U( U( + G U+ G U=U(G +G ) G G U( Può eere raformao nel blocco equivalene G +G In alre parole blocchi collegai in parallelo ono equivaleni ad un blocco dao dalla omma dei blocchi. Il cerchieo con il egno + i chiama nodo ommaore. Eo effeua la omma delle variabili rappreenae dalle frecce enrani. Le variabili ono inee poiive a meno che non vi ia un egno negaivo eplicio come nella figura eguene: U ( Y(=U (+U ( + - U ( Collegameno in erie

2 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). Il eguene collegameno è deo in erie o in cacaa: U( G G (U( G G (G U( Può eere raformao nel eguene blocco equivalene: G G In alre parole blocchi collegai in erie ono equivaleni ad un blocco che è il prodoo dei blocchi. Eempio: Coniderao il circuio RC erie vio in precedenza, i è vio che V ( = RI ( + I( = R + I( C C Si può quindi rappreenare con lo chema a blocchi eguene RI( I( R C I ( C I ( RI ( + + C oppure, orienando il iema in un alro modo Lo chema a blocchi divena V ( V ( C I( = = = V ( RC + + RC R + C C V( V(G ( C=G ( V(G =G ( (G ( + RC

3 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). Collegameno conenene un ramo di reroazione Si conideri il iema decrio dal eguene chema a blocchi r() e() G( y() - + L apeo fondamenale di ale iema è la preenza di un ramo di reroazione o di feedback che ripora indiero la variabile d'ucia. In queo cao l'ingreo del iema divena l errore e()=r()- y(). Speo i iemi in reroazione preenano il vanaggio di ridurre a zero o a valori piccoli l'errore e(). Ciò ignifica che la variabile y() inegue il valore di riferimeno r(). Un iema in reroazione "funziona" anche e i ha una G+ G (anziché la ola G(), oia il iema è in grado di funzionare anche in preenza di incerezza ulla funzione di raferimeno. La reroazione in genere è negaiva (i dice conroreazione) ed eplica coì un azione ull ingreo che ende ad oppori alle variazioni dell ucia. Si può avere anche una reroazione poiiva che in genere produce un iema inabile o un ocillaore. Un eempio dell effeo di una reroazione poiiva è il caraeriico fichio che i produce quando i avvicina un microfono al uo aloparlane: in queo cao i verifica che il egnale audio all ucia di un aloparlane enra nel microfono generando un "loop" poiivo o rigeneraivo. In paricolare in queo cao il fichio è l effeo del rumore ad ala frequenza che viene amplificao. Rumore di fondo aloparlane voce + amplificaore G( Il egnale che enra nell amplificaore è la omma della voce voce più il riorno dall'aloparlane e quindi la G( amplificherà la ua ea ucia generando una ucia ancora più ala e coì via. E' evidene che il iema è inabile. In aenza di parlao, arà il rumore di fondo ad eere amplificao e i udirà un fichio. La reroazione, anche quella negaiva, può generare un iema con dinamica inabile. Un eempio i ha nel cao della regolazione di emperaura effeuaa da un uomo oo la doccia. In al cao il comporameno dell'uomo realizza una reroazione negaiva in quano aumena la poraa di acqua

4 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). calda e percepice una emperaura baa e vicevera. A caua del riardo con cui una variazione di emperaura impoa ramie il micelaore raggiunge l uomo (il riardo è dovuo al empo di propagazione dell'acqua nei ubi) l'uomo ende ad un ecceo di correzione perché non ene immediaamene l'effeo della ua azione. L ecceo di correzione richiede una ucceiva correzione in eno conrario. Anche ale correzione può eere ecceiva per i moivi già dei per cui i inneca un ciclo d'ocillazioni (caarofe di regolazione). Modello e chema a blocchi della regolazione di emperaura nel cao di una doccia L=v T(-) 38 C k y=t e - T() al micelaore Poraa acqua fredda Poraa acqua calda Schema a blocchi Sia 38 C la emperaura deideraa e T la emperaura reale dell'acqua. La emperaura T al micelaore raggiunge l uomo dopo aver percoro la dianza L a velocià v, cioe dopo il empo =L/v. Quindi ra correzione ed effeo eie un riardo puro che può eere rappreenao dalla funzione di raferimeno e -. Calcoliamo ora la fd equivalene nel cao generale in cui nel ramo di reroazione è preene una fd G ( come in figura. R( + E( G ( Y( - G ( Si ha che:

5 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). Y=E(G ( e poichè E(=R(-G (Y( riula: Y(=[R(-G (Y(]G ( da cui, riolvendo ripeo a Y(: G Y(= + G G Nel cao di reroazione poiiva (ramo di reroazione enrane col egno + nel nodo ommaore) la fd equivalene è: Y R( G = R + GG SISTEMI DEL PRIMO ORDINE Si definice ordine di un iema l'ordine del polinomio al denominaore della funzione di N ( raferimeno G ( =, cioè l'ordine è il grado del polinomio D(. Equivalenemene, l'ordine D( corriponde al grado maimo con cui compare la derivaa dell'ucia nella equazione differenziale lineare a coefficieni coani che decrive un iema LTI. Per eempio, coniderao il circuio RC vio in precedenza, upponiamo di eere inereai alla enione v C () ai capi del condenaore in ripoa alla enione d'ingreo e()=v(). Dall'Eleroecnica è noo che un qualiai elemeno circuiale può eere epreo ramie una grandezza chiamaa impedenza operazionale, indicaa normalmene con Z, che è pari a Z = R + + L C dove R,C,L ono ripeivamene la reienza, la capacià e l induanza. La definizione di impedenza permee di oiuire alle equazioni inegro-differenziali una equazione algebrica, poiché riula empre valida la legge di Ohm generalizzaa V = Z I Nauralmene il conceo d impedenza operazionale deriva dalla raformazione econdo Laplace delle equazioni differenziali del prim ordine decriive della dinamica di un condenaore e un induore. Applicando la regola del pariore di enione poiamo agilmene ricavare la relazione ra V( e V C ( V ( V ( V c ( = = C + RC R + C da cui, indicando con = RC la coane di empo, i ricava la eguene fd

6 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). Vc ( G( = = V ( + Si raa della forma andard di un iema del primo ordine (il grado del denominaore è pari a ). Si oervi che nella forma andard G(0)=. G(0) i dice guadagno aico del iema. Chiariamo brevemene il ignificao di guadagno aico. Conideraa una generica inuoide di pulazione ω=πf è noo che diminuendo la frequenza il egnale divena empre più lenamene variabile. Al limie per ω 0 la inuoide è coì lenamene variabile da divenare praicamene un egnale coane. Aumendo =jω, per ω 0 riula 0 per cui, in condizioni lenamene variabili, G( G(0) e G(0) rappreena il guadagno aico, cioè abilice una relazione ra l ingreo e l ucia ucia a regime. Queo conceo verrà ripreo e chiario ucceivamene quando i illurerà la funzione di ripoa armonica. Nel dominio del empo un iema del prim'ordine in forma andard è decrio dalla equazione differenziale dy dy Y( = U ( U ( = Y( + Y( u( ) = y( ) + oppure = y( ) + u( ) + d d Riolvendo l omogenea aociaa la oluzione è y( ) = y(0) e che rappreena un'evoluzione libera perché è il riulao della ola condizione iniziale y(0) e non dell'ingreo u(). Dall Analii i a che la oluzione di un equazione differenziale non omogenea è pari alla omma della oluzione generale più una oluzione paricolare; perano la oluzione complea è y( ) = y(0) e + g( ) u( ) d =y L ()+y p () in cui l inegrale rappreena l evoluzione forzaa (cioè dipendene dall ingreo). 0 Abbiamo vio che la fd G( è uno rumeno di decrizione/previione del comporameno ingreo-ucia di un iema lineare empoinvariane. U( G( Y( Aniraformando la relazione Y(=G(U(:

7 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). y( ) = g( ) u( ) d 0 I egnali canonici coniderai hanno le egueni raformae: Funzione f() Traformaa di Laplace impulo δ() gradino () rampa uniaria () rampa parabolica coω () inω () () 3 + ω ω + ω La ripoa all'impulo del iema è la raformaa di Laplace dell'impulo, cioè L[δ()]=. Quindi la ripoa impuliva è L - [Y(]=L - [G(]=g() La ripoa impuliva è una caraerizzazione complea del iema perché fornice la funzione di raferimeno G(=L[g()], cioè la ua equazione differenziale nel empo. Eercizio Coniderao un circuio RC erie, i conideri come ingreo del iema la enione e() e come ucia la enione v c (). R e() C v c ()

8 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). Si è vio che queo iema ha funzione di raferimeno G(= + dove =RC. Eendo noa la G( i può rovare la ripoa del iema a qualunque ingreo. Supponendo che l'ingreo ia un impulo i oiene che U(= e quindi Y(=G(=V c ( cioè la ripoa è l'aniraformaa della funzione di raferimeno. In queo cao: v c ()=L - [V c (]=L - + Poichè L[e k ]= k egue che, evidenziando, la aniraformaa riula G( = + L e = v ( ) cioè è un andameno eponenziale endene ainoicamene a zero per. Aumendo un impulo di enione e()=δ(), la funzione v c () raffiguraa di eguio v c () c RC rappreena l'evoluzione libera a parire da 0 + (poiché il egnale d'ingreo è nullo a parire da 0 +. L'impulo ha infai cambiao la condizione iniziale del iema (i è uppoo che le condizioni iniziali iano nulle e che l'impulo ia ao applicao a =0). In alre parole paando da 0 - a 0 + il iema cambia le ue condizioni per effeo dell impulo.

9 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). L'impulo è un paricolare ingreo che è divero da zero olo per un iane; i noi che e la funzione d'ingreo non è impuliva non i può avere una variazione finia in un inervallo infinieimo (0 -,0 + ). Coniderao un ingreo a gradino e()=e() che, per eempio, può rappreenare un inerruore che viene chiuo all'iane =0, i oiene: =0 R E C E Y(=G(U(= + Per aniraformare econdo Laplace la Y( i può applicare queo ragionameno: la funzione di raferimeno è moliplicaa per una coane E e poi per il ermine che corriponde ad un'operazione di inegrazione in. Per cui inegrando la aniraformaa di + (cioè e ) e moliplicando per E (proprieà di linearià): ' E ( e 0 y ) = d' = -E e = E e 0 che rappreena la carica di un condenaore; graficamene i ha che y() E La derivaa di y()

10 Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). dy = d E e calcolaa nell'origine rappreena il coefficiene angolare della angene alla curva, cioè y& (0)= E. E Queo ignifica che e la pendenza della rea è allora dopo il empo la rea aume il valore E. La coane di empo di un iema di primo ordine quindi miura la velocià del iema. Infai, miurando il empo come muliplo di i oiene che: per =4 y() = 0.98E per =3 y() = 0.95E I empi 3 e 4 ono anche dei empi di aeameno (eling ime) ripeivamene al 5% e al % poiché in quell'iane l'ucia raggiunge ripeivamene il 95% ed il 98% del valore a regime. Come precedenemene vio, il valore a regime i calcola ramie il guadagno aico, cioè il valore della G( per =0; infai G ( 0) = = per cui Y(0) = G(0)E = E + 0

Basi di Elettronica (1 parte)

Basi di Elettronica (1 parte) Bai di Eleronica ( pare) A TRASFORMATA DI APACE 2 Traformaa invera di aplace 2 Tabella: raformae di aplace di funzioni elemenari 2 Alcune proprieà noevoli della raformaa di aplace 3 Idenià di Pareval 5

Dettagli

Rappresentazione del sistema. Classificazione dei sistemi di controllo

Rappresentazione del sistema. Classificazione dei sistemi di controllo Rappreenazione del iema ẋ= f x,u, (equazione differenziale) y =g x,u, (equazione algebrica) Nomi delle variabili u: ingreo x: ao y: ucia Claificazione dei iemi di conrollo Ordine Il numero n delle variabili

Dettagli

PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace.

PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace. ITIS G CARDANO PREMESSA In quea lezione verranno epoe le regole per l analii dei iemi coninui con il meodo della Traormaa di Laplace ANALISI DEI SISTEMI CONTINUI Per analizzare un iema di conrollo è neceario

Dettagli

Metodo della Trasformata di Laplace (mtl)

Metodo della Trasformata di Laplace (mtl) Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice.

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice. RICHIAMI SULLE FUNZIONI DI TRASFERIMENTO, TRASFORMATE DI FOURIER E LAPLACE E DIAGRAMMI DI BODE Univerià di Padova Facolà di Ingegneria Coro di Fondameni di Eleronica A.A.4/5 Padova, 4//5 Le noe egueni

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli

Ulteriori Esercizi su Grafi. Ugo Vaccaro

Ulteriori Esercizi su Grafi. Ugo Vaccaro Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA G. SUPT FUGA MT D TOA D T ovembre CAPTOO 9 - T DAMCH DOMO DA FQUZA pag. / CAPTOO 9 - T DAMCH DOMO DA FQUZA TODUZO l meodo della raformaa di aplace, chiamao anche analii nel dominio della frequenza, è una

Dettagli

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11 Poliecnico i Torino ete Dipoiivi e Siemi eccanici Eercizi Eercizio Un moore o è collegao a un argano A i ollevameno econo lo chema in figura. Sull albero moore è ineria una frizione conica Fr, che ramee

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dipene del coro di Analii II verione preliminare Paolo Tilli Diparimeno di Maemaica Poliecnico di Torino email: paolo.illi@polio.i gennaio 25 Capiolo 5 Traformaa di Laplace 5. Inroduzione Sia x() una funzione

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di

Dettagli

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC SiElnB3 2/9/ Ingegneria dell Informazione Obieivi del gruppo di lezioni B Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.3 - Tipologie di amplificaori» Comporameno dinamico di amplificaori»

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

Vin(t) c) Si assuma per l operazionale una risposta in frequenza ad anello aperto A(s)=A o /(1+sτ ο

Vin(t) c) Si assuma per l operazionale una risposta in frequenza ad anello aperto A(s)=A o /(1+sτ ο Eercizio Fondameni di Eleronica - ngegneria Auomaica - AA 3/4 a rova in iinere- 5 ebbraio 4 ndicare chiaramene la domanda a cui i a riondendo. Ad eemio a) ou() in() - µ µ 3 6 µ µ kω 8kΩ C 3F in() C a)

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

LA CONDUZIONE TERMICA IN PARETE (SERIE E PARALLELO)

LA CONDUZIONE TERMICA IN PARETE (SERIE E PARALLELO) L CONDUZIONE ERMIC IN PREE (SERIE E PRLLELO Capiolo quino La conduzione 5. Inroduzione Il meccanimo conduivo fa riferimeno al raferimeno di energia ermica in un mezzo o ra più mezzi in conao fiico, unicamene

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Velocità. s t. m = m s. Il concetto di velocità. Abbiamo rappresentato le posizioni di un oggetto nel tempo. Come rappresentare ora le sue velocità?

Velocità. s t. m = m s. Il concetto di velocità. Abbiamo rappresentato le posizioni di un oggetto nel tempo. Come rappresentare ora le sue velocità? Pagina 1 di 12 Verione 17/02/04 Velocià Il conceo di velocià Abbiamo rappreenao le poizioni di un oggeo nel empo. Come rappreenare ora le ue velocià? Il conceo di velocià viene uao normalmene nel linguaggio

Dettagli

INTRODUZIONE ALLE LEGGI FINANZIARIE

INTRODUZIONE ALLE LEGGI FINANZIARIE Inroduzione alle leggi finanziarie Operazione finanziaria u due dae: S - S + I INTRODUZIONE ALLE LEGGI FINANZIARIE 0 1 anni Legge di equivalenza ineremporale inrodoa dal conrao finanziario: 0 S 1 S + I

Dettagli

= 1. Le equazioni della trave su suolo elastico considerata illimitata, in presenza di uno spostamento relativo imposto y 0 (Figura 1.

= 1. Le equazioni della trave su suolo elastico considerata illimitata, in presenza di uno spostamento relativo imposto y 0 (Figura 1. STUDIO TEORICO DEL COMPORTAMENTO DELLE GIUNZIONI Appendice A: Valuazione eorica della rigidezza della conneione. Vengono ucceivamene riporai i paaggi maemaici che porano alla formulazione della rigidezza

Dettagli

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano.

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano. Facolà di Ingegneria dell Informazione, Informaica e Saiica Appuni dalle lezioni di Ricerca Operaiva (Maimo Fluo) ede di Laina Giovanni Faano faano@unive.i hp://venu.unive.i/ faano anno accademico 2013-2014

Dettagli

FUNZIONI DI TRASFERIMENTO

FUNZIONI DI TRASFERIMENTO FUNZIONI DI TRASFERIMENTO Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Coro di Fondameni di elecomunicazioni EORIA DEI SEGNALI DEERMINAI Pro. Giovanni Schembra Fondameni di LC - Pro. G. Schembra Sruura della lezione Proprieà dei egnali nel dominio del empo Valore medio, poenza,

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Problema: Supponiamo che

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2016-17 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

2.4 Flussi di valore massimo

2.4 Flussi di valore massimo .4 Flui di valore maimo I modelli di fluo hanno variae applicazioni in eori come elecomunicazioni informaica (muliproceori, proocolli inerne) rapori (aereo, radale, ferroviario, merci) Si raa di diribuire

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Semplificazioni di schemi a blocchi

Semplificazioni di schemi a blocchi Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento di blocchi

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c ; P 1 1( ( + 4 ; P ( ( + ( + 3 ;

Dettagli

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma Principi i Ingegneria Chimica Anno Accaemico 2010 2011 Cognome Nome Maricola Firma Problema 1. Uno cambiaore i calore è coiuio a ue ubi coaiali i iameri D 1 e D 2, con parei i peore racurabile e lunghezza

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio 1 LA PUNTA ELICOIDALE È l uenile più emplice per l eecuzione di fori cilindrici, generalmene dal pieno. La puna elicoidale è coiuia: da un codolo cilindrico o conico per il cenraggio ul mandrino della

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa)

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa) Capitolo 4 Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

3. La coppia di avviamento [Nm] La coppia massima [Nm] 5

3. La coppia di avviamento [Nm] La coppia massima [Nm] 5 UNESÀ D OMA LA SAPENZA FACOLÀ D NGEGNEA - COSO D LAUEA N NGEGNEA ENEGECA AA 8-9 DSCPLNA D MACCHNE E CONEO D ENEGA ELECA POA SCA D ESAME DEL 5 GUGNO 9.. Sono dai due raformaori rifae della ea oenza nominale

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Lezione 11. Progetto del controllore

Lezione 11. Progetto del controllore Lezione Progetto del controllore Specifiche di progetto Conideriamo nuovamente un itema di controllo in retroazione: d y + + + y () G() + + n Fig : Sitema di controllo Supporremo aegnata la funzione di

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Tab. 1 - modulo elastico e resistenza a trazione del calcestruzzo

Tab. 1 - modulo elastico e resistenza a trazione del calcestruzzo 18 Capiolo 5 Tab. 1 - modulo elaico e reienza a razione del calceruzzo clae C2/25 C25/ C28/5 C2/4 ck 2 MPa 25 MPa 28 MPa 2 MPa Ecm MPa 15 MPa 2 MPa MPa cm 2.21 MPa 2.57 MPa 2.77 MPa.2 MPa ck 1.55 MPa 1.8

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Fabio Peron. La trasmissione del calore: 1. conduzione termica. Le modalità di scambio del calore. L esperienza di J.B. Fourier. La conduzione termica

Fabio Peron. La trasmissione del calore: 1. conduzione termica. Le modalità di scambio del calore. L esperienza di J.B. Fourier. La conduzione termica Coro i Progeaione Ambienale prof. Fabio Peron Le moalià i cambio el calore Una ifferena i emperaura coiuice uno uilibrio che la naura cerca i annullare generano un fluo i calore. La ramiione el calore:.

Dettagli

Modellistica e controllo PID di un pendolo inverso

Modellistica e controllo PID di un pendolo inverso Modellitica e controllo PID di un pendolo invero Note per le lezioni del coro di Controlli Automatici - A.A. 2009/0 Prof.a Maria Elena Valcher Modellitica Un ata di maa m è incernierata ad un carrello

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

Problema del flusso massimo

Problema del flusso massimo Rei di fluo Problema del fluo maimo Moivazione iniziale: problemi di raffico u rei di raporo Trapori ferroviari, auoradali, Traporo di liquidi in rei idriche Traporo di pacchei di dai in una ree di comunicazione.

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

SCELTA DI UN INNESTO A FRIZIONE

SCELTA DI UN INNESTO A FRIZIONE SELTA DI UN INNESTO A FRIZIONE Si conideri l'impiano in Fig. 1, coiuio da un moore elerico aincrono riae, un inneo a rizione ad azionameno eleromagneico, un riduore ad ingranaggi ed una macchina operarice.

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Corso di Teoria dei Circuii Regime lenamene variabile Diparimeno di Ingegneria Elerica www.unipv.i/elecric/cad Regime lenamene variabile v(),

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5 . Introduzione... 2 2. Il convertitore a emplice emionda... 3 2. Il itema di controllo... 5 3. Il convertitore monofae nella configurazione a ponte... 7 4. Il fenomeno della commutazione... . Introduzione

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

MATEMATICAMENTE.IT MAGAZINE. attualizzato, ovvero il valore al tempo t di un importo Xs. disponibile al tempo s sarà (1) NUMERO 15 MAGGIO 2011

MATEMATICAMENTE.IT MAGAZINE. attualizzato, ovvero il valore al tempo t di un importo Xs. disponibile al tempo s sarà (1) NUMERO 15 MAGGIO 2011 NUMERO 5 MAGGIO 5. Il modello maemaico ooane alla curva dei rendimeni della BCE di Gabriella D Agoino, Anonio Guglielmi {gabriella.dagoino; anonio.guglielmi}@unialeno.i [Dip. SEMS - Univerià del Saleno]

Dettagli

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso ISPESL Linea guida raccomandaa per la valuazione della via residua di componeni esercìi in regime di scorrimeno viscoso Calcolo della frazione di via consumaa per scorrimeno viscoso Sezione 2 LG v. 1 Nella

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace)

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace) ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI coro: Teoria dei Circuiti docente: Stefano PASTORE 1 Eempio di tableau dinamico (tempo e Laplace) 1.1 Dominio del tempo Conideriamo il eguente circuito dinamico

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

ω 1+ ω ω = = 1 = G Vi = = Calcolo dell uscita del circuito di figura: Si definisce Funzione di Trasferimento il rapporto tra Uscita ed Ingresso:

ω 1+ ω ω = = 1 = G Vi = = Calcolo dell uscita del circuito di figura: Si definisce Funzione di Trasferimento il rapporto tra Uscita ed Ingresso: DIARAMMI DI BODE alcolo dell ucita del circuito di figura: X j j Vo Vi Vi Vi R X jr R j j Vi jr Si definice Funzione di Traferimento il rapporto tra Ucita ed Ingreo: Vo Vo [] FdT j Vi Vi jr Vo Vi Vo Vi

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI + SVOLGIMENTO CINEMATICA II 1. Un oeo i muoe u una aieoia cicolae. Deeminae di quano aia la elocià quando l oeo paa da un puno della ciconfeenza al puno,

Dettagli

IL MODELLO LOGISTICO NEL CASO CONTINUO

IL MODELLO LOGISTICO NEL CASO CONTINUO IL MODELLO LOGISTICO NEL CASO CONTINUO I modelli discrei si basano sull ipoesi cha la riproduzione sia concenraa in una sagione dell anno. Il passaggio da una generazione all alra è descrio dalla variabile

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGATIVI Provvisori circa: isposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione)

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione) Eame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento 6 Giugno 28 (Bozza di oluzione NB. Si coniglia vivamente di ripaare anche argomenti non trettamente inerenti la materia oggetto della prova

Dettagli

Appendici analitico-formali

Appendici analitico-formali Appendici analiico-formali (con la collaborazione di Marco aarella * ) Appendice 1. l prezzo dei beni capiali e il doppio richio legao all inveimeno er Minky il livello reale dell inveimeno effeuao dalla

Dettagli

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza :

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza : L impedena RASSUNTO Richiamo: algebra dei numeri complessi FASOR Derivae e inegrali Esempio: circuio RC Transiene Soluione saionaria l conceo di impedena : Resisena: Z R R nduana: Z L ω L Capacia : Z C

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

DINAMICA STUDIA IL MOTO DEI CORPI E LE CAUSE CHE LO PRODUCONO. ITIS MAJORANA SERIATE (BG) Prof. E. Morandini

DINAMICA STUDIA IL MOTO DEI CORPI E LE CAUSE CHE LO PRODUCONO. ITIS MAJORANA SERIATE (BG) Prof. E. Morandini DINAMICA STUDIA IL MOTO DEI CORPI E LE CAUSE CHE LO PRODUCONO DINAMICA SI BASA SU 3 PRINCIPI ONDAMENTALI PRINCIPIO DI INERZIA (ALILEI) ONI CORPO PERSEVERA NEL PROPRIO STATO DI QUIETE O DI MOTO INCHÈ NON

Dettagli

Insegnamento di Complementi di idrologia. Esercitazione n. 2

Insegnamento di Complementi di idrologia. Esercitazione n. 2 Insegnameno di Complemeni di idrologia Eserciazione n. 2 Deerminare, con un procedimeno di araura per enaivi, i parameri del modello DAFNE per il bacino del fiume Tinaco a Puene Nuevo (Venezuela). Conrollare

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID Controllo di Azionamenti Elettrici Lezione n 3 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di alermo Caratteritiche e predipoizione dei regolatori ID 1 Introduzione

Dettagli

CONTROLLI AUTOMATICI L-B ESERCIZI SUL CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI L-B ESERCIZI SUL CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI L-B ESERCIZI SUL CONTROLLO IN RETROAZIONE Ing. Nicola Diolaiti DEIS-Univerità di Bologna Tel. 5 29379 / 68 e-mail: ndiolaiti@dei.unibo.it http://www-lar.dei.unibo.it/people/ndiolaiti

Dettagli

GENERATORE DI ONDE QUADRE REALIZZATO CON AMPLIFICATORE OPERAZIONALE A SINGOLA ALIMENTAZIONE

GENERATORE DI ONDE QUADRE REALIZZATO CON AMPLIFICATORE OPERAZIONALE A SINGOLA ALIMENTAZIONE LASSE : A E.T.A. 007-008 ALUNNO: Bovino Silvano GENERATORE DI ONDE QUADRE REALIZZATO ON AMPLIFIATORE OPERAZIONALE A SINGA ALIMENTAZIONE SOPO:onfrono ra la frequenza eorica e quella sperimenale del segnale

Dettagli