Modulo di Manovre e Stabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modulo di Manovre e Stabilità"

Transcript

1 Univesià degli udi di Npoli Fedeio II Folà di Ingegnei ue in Ingegnei Aeospzile Anno Ademio 1/11 odulo di nove e ilià (llievi J-Z) Doene: Agosino De o Esempio di lolo dell od medi, del eno eodinmio, di α, di C di un l fini 1

2 imoli ed unià di misu imolo Unià di misu Desizione α gdi Angolo d o AR dimensionle Allungmeno le Λ le gdi Angolo di fei λ dimensionle Rppoo di semzione ( / ) m Cod di die m Cod d esemià ε gdi vegolmeno die (nullo pe definizione) ε gdi vegolmeno d esemià α l (deo nhe α l,d ) gdi Angolo di ponz null del pofilo α (deo nhe α,w ) gdi Angolo di ponz null dell l Δα l gdi Vizione ngolo di ponz null di pofilo m Apeu le η dimensionle emiod le dimensionlizz m men eodnmi hod, m. C dimensionle Coeffiiene di momeno dell l ispeo ll (C ) dimensionle Coniuo l C dovuo l io ddizionle (C ) dimensionle Coniuo l C dovuo l io sio m upefiie le f m upefiie ineess dl flp m m Posizione dell m. x m m Posizione dell m. C m dimensionle Coeffiiene di momeno del pofilo C lα 1/gdi Pendenz dell e di ponz del pofilo x,d m Posizione dell di pofilo x,w m Posizione dell dell l x,w dimensionle x,w/ ȳ dimensionle Posizione in peu dell eff m egge effeiv delle ode ell m egge ellii delle ode

3 C l m Cio ole (C l ) m Cio ddizionle (C l ) m Cio sio Di inizili AR 6 1, m λ,5 Pofilo di die NACA 418 α l,3 C m,5 C lα,13 (1/gdi) x,d,41 Pofilo d esemià NACA 141 α l 1,1 C m,5 C lα,18 (1/gdi) x,d,5 ε 3, Gndezze he desivono l esensione e l effeo dell deflessione dei flp: η i, η o,7 Δα l 5 (vizione unifome inodo dll deflessione) volgimeno A pie di di i poponimo di deemine: l ngolo di ponz null α dell l fini in onfiguzione puli (flps-up) e on i flp esesi (flps-down). l od medi eodinmi de d o in vni m. (men eodnmi hod), l posizione x,w del eno eodinmio deo d o in vni (eodnmi ene). Al in onfiguzione puli Inizimo dll onfiguzione puli dell l (flps-up). Conosendo il ppoo di semzione λ lolimo l od d esemià λ,5 m peu le si può lole, d esempio, mie l seguene fomul 3

4 ( osε + ) he espime l supefiie le ome il doppio dell e di un semil di fom in pin pezoidle. Il pezio h pe se mggioe, pe se minoe os ε, lezz /. Imponendo l uguglinz del seondo memo pe il podoo dell od medi geomei pe l si oiene m 5 m Con li infomzioni possimo disegne l fom in pin dell l supefiie le è 3,37 m AR Pe le ode lungo l semipeu le ssumimo un legge linee on ( ) ( ) ( 1.) (m) In queso modo possimo ivi l m. ( ) d ( ) d.778 m posizione dell m. possimo vlul mie ( ) ( ) d m xm. xl. e. ( ) d ( ) d.985 m m. 4

5 posizione e l lunghezz dell m. possono essee vlue mie fomule ppossime d Toeneek Ege - nhesis of usoni Aiplne Design pg λ + λ 1+ λ.778 m 1+ λ 3 ( 1+ λ) m. 1. m i noi ome l uilizzo delle fomule ppossime i di dei isuli molo soddisfeni, l m. è l sess mene l m. evidenzi un eoe peenule minoe del % (vloe eile). Pe poedee ipoizzimo un ndmeno linee lungo l semipeu le nhe pe le esni gndezze ole lle ode, e pendo di di inizili elivi i due pofili seli oenimo C Cm α lα ε ( ) ε ( ε ε ) 1.33 (gdi) ( ) C ( C C ) m m m ( ) α ( α α ) (gdi) l l l l ( ) C ( C C ) (1/gdi) lα lα lα ( x x ).41. x x Noi gli ndmeni (linei) delle gndezze in gioo i ivimo l ngolo d o di ponz null dell l α l d 44 ( ) [ α ( ) ε ( ) ]. Pe lole l posizione del eno eodinmio dell l () uilizzimo le segueni espessioni x C ( ) C ( ) x ( ) d. l C ( ) C ( ) d Come i si può endee ono imo isogno di ivi il io ddizionle (C l ) dell semil pes in onsidezione. A l fine pplihimo il eodo di l 5

6 henk pe egimi linei osì ome è espesso negli ppuni osio - Teoi e meodi di eonui ppli (pg 5-53). Tle meodo onside il io gene su un semil pi ll somm di due oniui, il io sio e il io ddizionle ( C l ) ( C l ) + ( C l ) ( C l ) + C ( C l ) 1 Il oniuo ddizionle è espimiile ome il podoo di C pe un funzione (C l ) 1 indipendene dll ngolo d o (he idelmene oisponde l io ddizionle pe C 1). Pe quno igud il io sio esso è il io he si mnifes sull l (semil) qundo è invesi d un oene pllel ll.p.n. (e di ponz null) e quindi dipende d pmei geomeii dell l (semil) 1 ( ) ( ) C ( ) [ ε ( ) α ] Cl lα Il io ddizionle viene vluo ome medi l disiuzione di ode dell l (semil) onside e l disiuzione di ode di un l (semil) ellii vene l sess e ed peu di quell onside ( C ) l 1 + Tle elzione è vlid se lo spessoe peenule dei pofili dell l (semil) è osne lungo l peu, nel so he simo nlizzndo imo due ipi di pofili on divesi spessoi peenuli, uno ll die e uno ll esemià on un vizione linee lungo l peu le e queso ompo neessià di pplie l seguene fomul leniv ( C ) l 1 nell qule l disiuzione di ode ellii è ell 4 π eff ell + ell 1 mene l disiuzione di ode effeiv ( ) C ( ) nell qule C lα eff C lα lα ( ) ( ).15 (1/gdi) Clα d eseguendo il meodo su esposo on l usilio di un foglio di lolo, oenimo sull semil quno segue: 6

7 eodo henk (m) η ε (gdi) C lα (1/ ) (m) eff (m) ell (m) (Cl) (m) (Cl) (m) Cl (m),,,13 1,,985,954,97,3,99,45, -,6,14,9,895,935,915 -,8,98,9,4-1,,15,8,83,875,839 -,3,87 1,35,6-1,8,16,7,71,764,737 -,51,686 1,8,8 -,4,17,6,614,573,593 -,63,53,,9 -,7,175,55,566,416,491 -,67,44,14,95 -,85,178,55,541,98,4 -,68,351,19,975 -,93,179,515,59,1,37 -,69,3,5 1, -3,,18,5,517,,, (si omee l esne pe dei di) I vloi peedeni, ipoi in gfio, sono i segueni D noe he si è poso (C l ) e (C l ) nulli η in viù del fo he ll esemià il io è nullo, quindi neessimene ll esemià il meodo è ppossimo. Un vol oenuo il io ddizionle i possimo lole l posizione del eno eodinmio dell l (semil) he sà x, W C ( ) C ( ) x ( ) d.467 [ 4.67% di ].19 m l ( ) C ( ) d.985 m, W l C Ripoimo l e l m. sull l (semil) 7

8 Pe lole il oeffiiene di momeno ispeo l eno eodinmio dell l (semil) doimo vlue due oniui ome è ipoo in Roskm - Aiplne Fligh Dnmis nd Auomi Fligh Conols (pg. 5) quello dovuo l io sio ( C ) ( C ) C + π ( C ) [ α + ε ( ) α ( ) ] ( ) [ x ( ) x ] d. 7 g l,d,w e quello dovuo l io ddizionle ( C ) C ( ) ( ) d. 4 quindi in definiiv imo he il oeffiiene di momeno ispeo l eno eodinmio dell l è C m.375 Al on flp eseso Pssimo o d nlizze l nos l (semil) on flp eseso. Ci poponimo di ove gli sessi pmei ivi pe l l (semil) in onfiguzione puli Pe inizie vluimo l ngolo di ponz null dell l (semil) on flp eseso on α l f ( ) [ α ( ) ε ( ) ] d + 3. α.7 ( ) d [ ( )] d. m η f 87 η. i 8

9 quniò f ppesen, ome si no dll espessione, l pe dell l (semil) ineess dl flp (dl odo d o fino l odo d usi). Pe il lolo dell posizione del eno eodinmio dell l (semil) on flp eseso imo isogno del io ddizionle e pe le gione pplihimo il eodo di henk on un peiszione impone, negli ppuni osio - Teoi e meodi di eonui ppli (pg. 5-53) l evenule pesenz di un flp deve essee onside ome un impovviso svegolmeno e quindi le nozione isul fondmenle pe il lolo del io sio quindi ( C l ) ( C l ) + C ( C l ) on C 1. Pe il io sio doimo disinguee due zone, quell ineess l flp e quell esen l flp, quindi il io sio è somm di e liquoe on η ηi ( C ) ( C ) + ( C ) + ( C ) l l l η l ηi ηi ( C ) ( ) C ( ) [ ε ( ) α α ] l η 1 l α qunià Δα l ppesen l vizione dell ngolo di ponz null dei pofili ineessi dll zon del flp e quindi il suo vloe mio di segno ppesen l vizione (deflessione) del flp, quindi se Δα l è negivo iò impli he l ngolo del flp è posiivo (deflesso veso il sso). Pe le gione he è so uso il segno negivo pim di Δα l in viù del fo he un deflessione veso il sso del flp (vloe negivo di Δα l ) ompo un inemeno di iolzione nell zon influenz d esso e quindi un umeno del io e dell ponz I esni oniui del io sio sono simi on l espessione uilizz pe l l (semil) in onfiguzione puli enendo ono delle limizioni dell inevllo. l 9

10 Noimo espliimene he mene il io sio umen pe l deflessione del flp, il io ddizionle non vi in quno dipende, ome già deo, dll disiuzione delle ode, disiuzione he non vi pe l pesenz del flp. Con il io ddizionle i possimo lole l posizione del dell l (semil) on flp eseso x C ( ) C ( ) x ( ) d.475 [ 4.75% di ].19 m l l C ( ) C ( ) d.975 m Pe lole il oeffiiene di momeno ispeo l eno eodinmio dell l (semil) doimo vlue due oniui quello dovuo l io sio C π ( C ) α + ε ( ) α ( ).. ( C ) + ( C ) [ α ] ( ) [ x ( ) x ]. 76 l l d e quello dovuo l io ddizionle he è somm di e liquoe η ηi ( C ) ( C ) + ( C ) + ( C ) η η i 1

11 Tle ppoio è neessio poihé nell zon ineess dl flp i pofili suisono un modifi dell uvu, in piole un deflessione posiiv del flp (veso il sso) ompo un umeno dell uvu posiiv Pe i oniui eseni ll zon ineess dl flp poedimo on i di elivi i pofili inizili mene nell zon enle doimo vlue il C m dei pofili mggiomene uvi. A l fine i simo sevii del pogmm Jvfoil epeiile ll indiizzo on il qule imo vluo il C m del pofilo di die NACA 418 e del pofilo d esemià NACA 141 enmi on flp deflesso di 5 veso il sso. Poi imo onsideo un vizione linee del C m dll die ll esemià e uilizzo l pe ppenene ll zon ineess dl flp pe il lolo di (C ) dovuo d esso ( ) η ηi ( ) ( ) + ( ) ( ) + C Cm d Cm d Cm ( ) ( ) flp η ( C ) Quindi in definiiv imo he il oeffiiene di momeno ispeo l eno eodinmio dell l è C.6656 Il oeffiiene di momeno ispeo d è umeno in vloe ssoluo iò è dovuo ll deflessione posiiv del flp he modifi l geomei dei pofili ineessi d esso, in piole le deflessione ompo un umeno dell uvu (posiiv) dei pofili e quindi un umeno (in vloe ssoluo) del C. η i d 11

Modulazione QAM: idea base

Modulazione QAM: idea base Modulzione QAM: ide se x I i di sono ppeseni Alenivmene d e d x q x i Si iese smeee l sess inomzione on un empo di i eeivo doppio Modulzione QAM: shem di pinipio Il lusso di di poveniene dll sogene viene

Dettagli

FISICA A Particella o punto materiale: punto matematico senza dimensioni. Ha solo un tipo di moto traslatorio;

FISICA A Particella o punto materiale: punto matematico senza dimensioni. Ha solo un tipo di moto traslatorio; hp://www.ing.info.oo.i FISIC Piell o puno meile: puno memio senz dimensioni. H solo un ipo di moo sloio; Consideo uno sposmeno, ioè l vizione dell posizione di un puno meile, he vviene in un inevllo di

Dettagli

Le grandezze vettoriali nella cinematica. del punto materiale

Le grandezze vettoriali nella cinematica. del punto materiale 26 U.D. N 3 Le gndezze veoili nell cinemic del puno meile U.D. N 3 Le gndezze veoili nell cinemic del puno meile 01) L nozione di segmeno oieno 02) L nozione di veoe 03) Gndezze scli e gndezze veoili.

Dettagli

Elementi di Cinematica COORDINATE CARTESIANE. r r. & r. & r COOORDINATE LOCALI. r τ COORDINATE POLARI. r = r. λ r

Elementi di Cinematica COORDINATE CARTESIANE. r r. & r. & r COOORDINATE LOCALI. r τ COORDINATE POLARI. r = r. λ r Elemeni di Cinemic COORDINTE CRTESINE j y i x j y i x j y i x τ ϑ ρ τ ρ n O P j y i x COOORDINTE LOCLI ( ) µ ϑ ϑ λ ϑ ) ( - µ λ ϑ λ COORDINTE POLRI Elemeni di Cinemic MOTO RETTILINEO j O i COORDINTE CRTESINE

Dettagli

Cinematica del punto. 3D

Cinematica del punto. 3D Cinemic del puno. 3D z O () () P() z() () in fom eoile OP( ) ( ) Veoe posizione oeo eoe sposmeno dll oigine L ppesenzione eoile pemee un descizione sineic del moo. z P() Nei clcoli pici in genee si usno

Dettagli

/ h. Al tempo t = 0 il

/ h. Al tempo t = 0 il SA GENERALE pe NGEGNERA ELETTRNA e TELEUNAZN PRVA SRTTA del 8 gugno GNE NE NTA: queso foglo deve essee esuo NTA: e obblgoo gusfe beveene n odo esuene e opensble le spose. Eseo Un uooble d ss g s vggndo

Dettagli

Cenni sui Metodi di integrazione numerica

Cenni sui Metodi di integrazione numerica DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Cenn su Meod d negzone nume Esezone D l gene equzone deenzle ODE: d on ondzone nzle: l negzone dell ODE onsse nel ove un unzone e osus l soluzone del

Dettagli

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE 11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE Avendo già fo un dimensionmeno preliminre del pino di cod orizzonle, riporimo i di oenui d le sim: S.7m b 3.7m profilo: NACA 0006 AR 5.15 Per effeure il

Dettagli

Esercizi di riepilogo di elettrostatica e magnetostatica

Esercizi di riepilogo di elettrostatica e magnetostatica secii di iepilogo di eleosic e mgneosic SRCIZIO Do il poenile eleosico: V,, ) 3e ) ) ln 5 [V] clcole l fo gene su un eleone poso nel puno 3,,5). Si icod che l cic dell eleone è pi q -.6-9 C.. Soluione

Dettagli

mod β 1 β Rappresentazione dei numeri nel calcolatore NUMERI INTERI Rappresentazione in una base β:

mod β 1 β Rappresentazione dei numeri nel calcolatore NUMERI INTERI Rappresentazione in una base β: Resenzione dei nuei nel clcoloe UMERI ITERI Resenzione in un bse : ( ) ± 0 dove (0,,) sono cife del sise di nuezione in bse. Esei: (345) 0 3 0 + 4 0 + 5 0 0 (345) 6 3 6 + 4 6 + 5 6 0 837 Convesione in

Dettagli

CAPITOLO IX CONDIZIONI DI FUNZIONAMENTO ANORMALI: CORTO CIRCUITO

CAPITOLO IX CONDIZIONI DI FUNZIONAMENTO ANORMALI: CORTO CIRCUITO CAPOLO X CODZO D FZOAMEO AORMAL: CORO CRCO L'impino che si conside (Fig. X.1 è cosiuio d un line in M, un sfomoe M/ che limen un sisem di se in ss ensione d cui si dipe un sol line che limen cichi sici.

Dettagli

d r da informazione r r y x Cinematica seconda parte

d r da informazione r r y x Cinematica seconda parte Cinemic econd pe Moo nello pzio e nel pino L elocià nel pino L ccelezione nel pino Moo cicole Moo cicole nifome Moo cicole nifomemene cceleo ozione eoile del moo cicole Moo pbolico Moo pbolico Moo pbolico

Dettagli

Facoltà di Ingegneria 2 a prova in itinere di Fisica II Compito A

Facoltà di Ingegneria 2 a prova in itinere di Fisica II Compito A Fcolà Ingegne pov n nee Fsc II.6. Compo A Eseczo n. Un cvo cossle nefno è cosuo un flo conuoe clnco ggo n ccono un gun conuce, clnc, cossle l flo, spessoe scule e ggo ex (ve nche l sezone). Il flo neno

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno

Dettagli

1) Una carica puntiforme q si trova al centro di una sfera cava conduttrice di raggio

1) Una carica puntiforme q si trova al centro di una sfera cava conduttrice di raggio 1) Un cic puntifome si tov l cento di un sfe cv conduttice di ggio inteno e spessoe. Clcole nel cso di conduttoe isolto: il cmpo elettico, il potenzile e l enegi elettosttic in tutto lo spzio. Cso ()

Dettagli

Esempi di campi magnetici e calcolo di induttanze.

Esempi di campi magnetici e calcolo di induttanze. 5d_EAEE_APPLCAZON CAMP MAGNETC STATC (ultim modific 7/10/017) Esempi di cmpi mgnetici e clcolo di induttnze. M. Usi 5d_EAEE_APPLCAZON CAMP MAGNETC STATC 1 Conduttoe ettilineo indefinito Si considei un

Dettagli

Esercitazioni Capitolo 3 Irraggiamento

Esercitazioni Capitolo 3 Irraggiamento Esercizioni Cpiolo 3 Irrggimeno Il filmeno di un lmpd d incndescenz si rov ll emperur di 500 K. Ipoizzndo che il filmeno si compori come un corpo nero, vlure rdinz inegrle M (poenz specific emess per irrggimeno

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccnic 7-8 5 Moo nel pino: posizione, elocià, ccelezione O u θ u P u θ Veoe posizione u Veoe elocià d d u + uθ + θ O O u N u Veoe ccelezione d d u + u un + N Componeni cesine dell ccelezione d u d + u

Dettagli

Esame di allineamento di Fisica - 24 novembre Facoltà di Ingegneria - Università di Bologna, sede di Cesena -a-

Esame di allineamento di Fisica - 24 novembre Facoltà di Ingegneria - Università di Bologna, sede di Cesena -a- --. lcole l e del pllelo indiiduo di eueni eoi: i j k ( ) ( ) ( ) i j 9 k 6 i j k i j k ( ) ( ) ( ) 9 lcole il odulo del podoo eoile:. Un copo pendo d feo ccele pe un fino d un elocià di / ucceiene i uoe

Dettagli

Dinamica: Applicazioni delle leggi di Newton

Dinamica: Applicazioni delle leggi di Newton Fisic Fcolà di Scienze MM FF e, Uniesià Snnio Dinmic: Appliczioni delle leggi di ewon Gionni Filell (filell@unisnnio.i) Il poblem genele dell dinmic Quindi se conoscimo ue le foze che giscono su un oggeo

Dettagli

a) Progettare lo strato dielettrico, scegliendo una opportuna constante dielettrica εr2 e minimo spessore dmin (usare le opportune approssimazioni)

a) Progettare lo strato dielettrico, scegliendo una opportuna constante dielettrica εr2 e minimo spessore dmin (usare le opportune approssimazioni) secizio i vuole mssimizze l efficienz di un iveltoe di luce elizzto in silicio depositndo sop l supeficie un sottile stto di mteile dielettico (senz pedite. Lo stto deve gntie mssimo tsfeimento di potenz

Dettagli

Corso di. Fluidodinamica delle Macchine

Corso di. Fluidodinamica delle Macchine Coso di - Dipimeno di Ingegnei Indusile Fienze - Fluidodinmi delle Mhine Pe IV Tubomhine Coso di Fluidodinmi delle Mhine A.A. -3 Pgin - Dipimeno di Ingegnei Indusile Fienze - Agomeni Modelli di sudio delle

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli

A.A Ingegneria Gestionale Soluzioni del 3 appello

A.A Ingegneria Gestionale Soluzioni del 3 appello . und il pun eile ggiunge l euilibi l isulne delle ze geni si nnull. Piend l z eniug, l ezine nle n, l z pes P send gli ssi,n, si iene n) ) n Psinα P sα sα sinα ll send si iene l z eniug d ui g ω d sinα

Dettagli

I PROBLEMI DI MASSIMO E DI MINIMO

I PROBLEMI DI MASSIMO E DI MINIMO I PROBLEMI DI MASSIMO E DI MINIMO Souzioni di pobemi ttti d ibo: Coso Bse Bu di Mtemti, vo. 5 [1] (Pobem n. pg. 1 ) Individu i punto de ett xy5 pe i que è minim distnz d oigine degi ssi oodinti. Consideimo

Dettagli

Ingegneria Elettronica. Compito di Fisica giugno 2010

Ingegneria Elettronica. Compito di Fisica giugno 2010 Ingegnei Elettonic. ompito i Fisic 5 giugno x y Esecizio Un uot, ssimilbile un cilino i mss M e ggio R, sle lungo un pino inclinto (i un ngolo θ ispetto l pino oizzontle) sotto l zione i un momento motoe

Dettagli

Compito di Fisica I. Ingegneria elettronica. A. A luglio 2010

Compito di Fisica I. Ingegneria elettronica. A. A luglio 2010 omito di Fisic I. Ingegnei elettonic... 9- - 7 luglio Esecizio Un unto mteile uo` muovesi in un dimensione soggetto d un foz F kx. ove: ) l enegi otenzile U(x) eltiv tle foz, onendo come zeo dell enegi

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Moti in 2 e 3 dimensioni

Moti in 2 e 3 dimensioni D Moi in e 3 dimensioni < > < > i " " Δ ; ; Sono diei come i 3D Il eoe posizione sà: Si: " " Δ ; ; Non sono sempe concodi, m nel empo muno di diezione (ole che di modulo e eso) i + j + z k ( ) e ( ) con

Dettagli

Classe 4 G dicembre 2010.

Classe 4 G dicembre 2010. Clsse 4 G dicembe 2010. Legge di Newton pe il ffeddmento (iscldmento). Due copi tempetu diffeente se posti in conttto temico si scmbino cloe. L'ossevzione speimentle indic che essi si potno d un tempetu

Dettagli

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario Risolvi i segueni esercizi rispondi quesii scel r quelli proposi nel quesionrio Clcol le segueni primiive. Quindi c ln e. Pongo d cui segue, llor: ( e ) d ( e ) c ( e ) c e e d. sin ( ) Pongo d cui segue,

Dettagli

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

Moto in due e tre dimensioni

Moto in due e tre dimensioni L spin ll uomo poieile è d d un moll o d i compess (il umoe ed il fumo sono effei scenici). Come si f pizze l ee nel puno iuso? Moo in due e e dimensioni L descizione del moo mie i concei di posizione,

Dettagli

GRANDEZZE PERIODICHE

GRANDEZZE PERIODICHE GRNDEZZE PERIODICHE Un grndezz empodipendene (), che supponimo rele, si definisce periodic qundo d u- guli inervlli ssume vlori uguli, cioè qundo vle l relzione (con n inero qulsisi): ( ) ( n) + () - Il

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

Misure dell incremento della popolazione

Misure dell incremento della popolazione Misue dell incemeno dell popolzione. Equzione dell popolzione In un inevllo nnule, l fine dell nno - e l fine dell nno l popolzione modific il suo mmone seuio delle nscie N e delle immizioni I, che si

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

θ 2 º Esercizio 1

θ 2 º Esercizio 1 ecizio ) Si θ l ngolo ipetto ll veticle dell fune di lunghezz pim che m veng lcit lie di muovei velocità v di m l momento dell uto con m i ottiene imponendo l conevzione dell enegi: m v m g ( coθ ) v g

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Angoli e funzioni. goniometriche

Angoli e funzioni. goniometriche UNITÀ 1 ngoli e funzioni goniometihe TEORI 1 Definizioni di ngolo Misu degli ngoli 3 Funzioni goniometihe seno e oseno 4 Funzioni goniometihe tngente e otngente 5 Vloi delle funzioni goniometihe 6 Gfii

Dettagli

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE

Vettori e scalari. Scalari: sono completamente definite quando se ne conosce la sola misura (es. tempo, massa, temperatura, GRANDEZZE FISICHE Vettoi e scli GRNDEZZE FISICHE Scli: sono completmente definite qundo se ne conosce l sol misu (es. tempo, mss, tempetu, volume ) Vettoili: ichiedono un mggio contenuto infomtivo (es. velocità, cceleione,

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Per ogni domanda ci può essere più di una risposta esatta. Puoi confrontarti con i tuoi compagni. Domanda Risposta A Risposta B Risposta C Risposta D

Per ogni domanda ci può essere più di una risposta esatta. Puoi confrontarti con i tuoi compagni. Domanda Risposta A Risposta B Risposta C Risposta D CON UN MICO CON UN MICO Pe ogni domnd ci può eee più di un ipo e. Puoi confoni con i uoi compgni. SRCIZI Domnd Ripo Ripo Ripo C Ripo D 1 Le due ee ono pependicoli pllele incideni pni enmbe pe Z z 2 Le

Dettagli

5. la distanza tra il punto di impatto al suolo del corpo ed il piede della perpendicolare al terreno passante per la fine della rampa.

5. la distanza tra il punto di impatto al suolo del corpo ed il piede della perpendicolare al terreno passante per la fine della rampa. Compo n. Nome Cognome Mol Coso Coso su n enze Bologhe s - Coso -. 9- - I Compno - Ps, genno. Molà spos: s s l omul solu nell pposo quo e s b l lee sso l loe numeo oeo. eeuno enmbe le opezon. T le lene

Dettagli

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1 Demodulazione I & Q Telecomunicazioni pe l Aeospazio P. Lombado DIET, Univ. di oma La Sapienza DEMODULAZIONE I&Q - 1 Fase di aivo e popagazione I Si considei il segnale eale g Il suddeo segnale è asmesso

Dettagli

14. Richiami di analisi vettoriale

14. Richiami di analisi vettoriale 14. Richimi di nlisi vettoile Richimi di nlisi vettoile 341 14.1. Scli, vettoi, tensoi Le gndee che entno in gioco nei enomeni isici possono essee ppesentte tmite unioni del tempo, t e delle coodinte di

Dettagli

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una Cpiolo Le rslzioni. Richimi di eori Definizione. Si do un eore del pino. Si chim rslzione di eore (che si indic con il simolo ) l corrispondenz dl pino in sé che d ogni puno P ssoci il puno (P) = P le

Dettagli

MACCHINE SEMPLICI e COMPOSTE

MACCHINE SEMPLICI e COMPOSTE OBIETTIVI: MCCHINE SEMLICI e COMOSTE (Distillzione veticle) conoscenz del pincipio di funzionmento delle mcchine spee svolgee ppliczioni sulle mcchine Mcchin (def.) Foz esistente (def.) Foz motice (def.)

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato.

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato. MULIIBRAORI i dice muliirore un circuio che può ere solo due possiili si dell usci. li si possono essere di due ipi: so sile, so qusi sile. o sile: il circuio rimne in queso so finché non si ineriene dll

Dettagli

Esercitazione numero 5 8 Novembre Verifica allo slittamento.

Esercitazione numero 5 8 Novembre Verifica allo slittamento. Eseizione nueo 5 8 oebe 000 Veii llo slieno. Veii llo slieno. Un bobin iene sin su un pino edine un onppeso pplio ll une ol, oe oso in iu 1, ono l noiolo dell bobin. Sono noe dll iue le ndezze eoeihe,

Dettagli

Problema: Calcolo dell'area di una superficie piana

Problema: Calcolo dell'area di una superficie piana Corso di Lure in Disegno Industrile Corso di Metodi Numerii per il Design Lezione 7 Novemre 00 Integrle definito F. Cliò Prolem: Clolo dell're di un superfiie pin Metodi Numerii per il Design - Lezione

Dettagli

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x)

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x) Cpiolo 6 Inegrzione 6 Inegrle Indeinio DEFINIZIONE Si ( :(, R ; l unzione F( :(, R si dice primiiv dell unzione ( se F ( è derivile in (, ed F' ( = ( (, OSSERVAZIONE In generle non ue le unzioni sono doe

Dettagli

Fisica Generale A Integrali di Scalari e Vettori ( ) Integrali. Integrale Semplice di una Funzione Scalare (II)

Fisica Generale A Integrali di Scalari e Vettori ( ) Integrali. Integrale Semplice di una Funzione Scalare (II) Itegli Fisi Geele A U itegle è sempe l somm di u umeo ifiito di temii ifiitesimi: Il simolo è u defomioe di u lette (somm). Divesi tipi (dl puto di vist pplitivo) di itegle: Itegle semplie (di u fuioe

Dettagli

5. Doppi bipoli adinamici

5. Doppi bipoli adinamici 5. Dopp pol dnm Dopp pol pop, mpop, pol. Dopp pol dnm lne ne (omoene) e empo nn. ppesenzon, G,,,,. Essenz delle ppesenzon. Fomule d onesone le ppesenzon. Dopp pol n see, n pllelo, n pllelo-see, n see-pllelo,

Dettagli

Cartone, colla, e delle forbici sono essenziali, ma anche strumenti utili come un compasso, un righello, una matita, una calcolatrice e un computer.

Cartone, colla, e delle forbici sono essenziali, ma anche strumenti utili come un compasso, un righello, una matita, una calcolatrice e un computer. telle di Ntle John Andesen 1 Intoduzione Allo sopo di tove tenihe d insegnmento stimolnti, gli insegnnti di mtemti si dedino d un ie in ontinu evoluzione pe tove gomenti e ttività ffsinnti. Pogette e elizze

Dettagli

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1 Esecizi svoli di geomeia delle aee Alibandi U., Fuschi P., Pisano A., Sofi A. ESERCZO n.3 Daa la sezione a doppio T ipoaa in Figua, deeminae: a) gli assi pincipali cenali di inezia; b) l ellisse pincipale

Dettagli

Comunicazioni Elettriche

Comunicazioni Elettriche Pocessi casuali I pocessi casuali anche dei pocessi socasici sono un meodo maemaico pe appesenae delle funzioni del empo che abbiano caaeisiche socasiche. I pocessi casuali sono uili a appesenae fenomeni

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Cinematica del punto

Cinematica del punto Cinemic del puno L meccnic è l pre dell fisic ce sudi il moimeno dei corpi e le cuse ce lo enerno. Ess si diide in re pri: Cinemic: ess sudi il moo dei corpi senz ineressrsi lle cuse ce lo enerno Sic:

Dettagli

Numeri Reali e Numeri Finiti: la propagazione degli errori

Numeri Reali e Numeri Finiti: la propagazione degli errori Auni di Clcolo Numerico Lezione Numeri Reli e Numeri Finii: l rogzione degli errori L imiego di un clcolore ermee di effeure oerzioni elemenri fr numeri in emi molo brevi offrendo l ossibilià di risolvere

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

(in funzione di L, x e M).

(in funzione di L, x e M). SCA GENERAE T-A gennio 03 pof. spighi (Cd ingegnei Enegetic Un stellite tificile di mss m pecoe obite cicoli di ggio R ttono ll lun di mss M. Supponendo che il ggio dell obit R coincid con il ggio dell

Dettagli

1 REGOLE DI INTEGRAZIONE

1 REGOLE DI INTEGRAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x)

Dettagli

Facoltà di Ingegneria Compito scritto di Fisica II Compito B

Facoltà di Ingegneria Compito scritto di Fisica II Compito B ε = 8.85 1 1 C N ; Fcoltà i Ingegnei Copito scitto i Fisic II 17.7.6 Copito B = 1 7 T A Esecizio n.1 α Un filo ettilineo inefinito è pecoso un coente I(t)= t (l coente e iett veso l lto, con α positivo).

Dettagli

22.1. Analisi asintotica: il metodo della fase stazionaria.

22.1. Analisi asintotica: il metodo della fase stazionaria. .. Anlisi sinoic: il meodo dell fse szionri.... Nozioni sndrd dell nlisi sinoic. I simboli O, o e sono definii nel modo seguene. Supponimo che f(z) e g(z) sino funzioni complesse definie in qulche regione

Dettagli

A.A Ingegneria Gestionale 3 appello del 18 Settembre 2017 Soluzioni Esame completo

A.A Ingegneria Gestionale 3 appello del 18 Settembre 2017 Soluzioni Esame completo .Te. Dl ine di un bx di pizin d un lezz.00 m dl ul dn delle e d qu inevlli eli. umend e ue le e eun l e i in veile dl ine l ul, e pend e l quin i i dl ine emene qund l pim i il ul, deemine quell ine ()

Dettagli

Fluidodinamica delle Macchine

Fluidodinamica delle Macchine Lcidi del coso di Flidodinmic delle Mcchine Ciolo II: Clssiiczione delle Ezioni e Invini di iemnn Po. Simone Slvdoi, Po. Fncesco Melli Po. Simone Slvdoi, Po. Fncesco Melli Pin Clssiiczione delle PDEs ()

Dettagli

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è

3) Il campo elettrostatico nella regione di spazio compresa tra il filo ed il cilindro (cioè per 0<r<R 1 ) è Fcoltà i Ingegnei Pov Scitt i Fisic II - 3 Febbio 4 uesito n. Un lungo cilino metllico cvo i ggio inteno e ggio esteno viene cicto con un ensità i cic linee pi. Lungo il suo sse viene inseito un lungo

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II

Facoltà di Ingegneria Prova scritta di Fisica II Fcoltà di ngegnei Pov scitt di Fisic..7 7 Tm Not: ε = 8.85, 4 = π Nm A Esecizio n. Dto il cmpo elettico E = î x y z ( V / m) si detemini l densità di cic ρ nel punto P=(,,) e l cic totle in un cuo vente

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Integrazioni di alcuni argomenti che nel testo di riferimento fossero assenti oppure trattati con un diverso formalismo.

Integrazioni di alcuni argomenti che nel testo di riferimento fossero assenti oppure trattati con un diverso formalismo. File: Inegine cinemic - vesine (sgge evisine) del 5 febbi 013 Inegini di lcuni gmeni che nel es di ifeimen fsse sseni ppue i cn un dives fmlism Agmen 11 Ei di misu e l ppgine Gnde fisic eni misubile esise

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

τ = 0.6 efficacia dell equilibratore

τ = 0.6 efficacia dell equilibratore TABILITA LONGITUDINALE DIMENIONAMENTO PIANO DI CODA ORIZZONTALE Il dienioneno del pino di cod orizzonle conie nel ricercre l coppi di vlori b perur geoerici che oddif le due condizioni criiche : uperficie

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccnic 08-09 Gvitzione Newton mm F -G u egge i gvitzione univesle E un foz centle F ± F() u mm S T 4p G m T T. Il momento ngole si consev. tiettoi si mntiene sullo stesso pino 3. velocità ele è costnte

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

Generalmente, nelle strutture a telaio le masse vengono schematizzate come concentrate in

Generalmente, nelle strutture a telaio le masse vengono schematizzate come concentrate in . SISEI A EAIO Geelee, elle se elo le sse veoo shezze oe oee eo o d. Peo el veoo sd oe se o eo o d d d lbeà. D o ole s s l deozoe ssle delle se. Cosdeo elo soeo d eeo sse d oze: ell oes d ol sose e d ooeo

Dettagli

Zona Frattura critica. Tenacità del materiale

Zona Frattura critica. Tenacità del materiale 1 Perché l frur frgile si verifichi è necessrio il conemporneo verificrsi delle re segueni condizioni: livello di sollecizione elevo (nche se inferiore ll ensione di rour); presenz di un difeo (cricc)

Dettagli

Grandezze derivate e analisi dimensionale

Grandezze derivate e analisi dimensionale Energi Cineic Grndezze derie e nlisi dimensionle m misur in Joule J Energi poenzile gr. mgh misur in Joule J Anlisi dimensionle: kg m m m mgh s kg m s m c λν m Hz s elocià dell luce: [ ] Pressione: Forz

Dettagli

Formulario di ELETTRONICA

Formulario di ELETTRONICA Giorgio Porcu Formulario di ELEONI II Elettronica lasse QUIN Edizione 0/0 Indice evisione: 8/05/0 Formulario di ELEONI FOMULIO DI ELEONI MPLIFIOI OPEZIONLI o ONFIGUZIONE INVEENE E NON INVEENE o PMEI IPII

Dettagli

3. Calcolare l angolo di carico nelle condizioni di cui al punto precedente [ ] m Reattanza di dispersione

3. Calcolare l angolo di carico nelle condizioni di cui al punto precedente [ ] m Reattanza di dispersione .. SAPENZA - UNESÀ D OMA OS D LAUEA MAGSAL in NGEGNEA ELEA ed ENEGEA MAHNE E AZONAMEN ELE MAHNE ELEHE POA SA DEL GENNAO 5. Un genetoe incono tife è collegto d un tubin g. L ettnz incon è i 4 Ω e uò eee

Dettagli

I vettori. Grandezze scalari e grandezze vettoriali

I vettori. Grandezze scalari e grandezze vettoriali I vetto Gndee sl e gndee vettol Vettoe: ente mtemto tteto d te qunttà modulo deone veso I vetto sono pplt n un punto (esste un numeo nfnto d vetto equpollent, oé on modulo, deone e veso ugul, m pplt n

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

Meccanica della Frattura Lineare Elastica (cenni) 2a 2a. raggio di fondo intaglio x w. K t. σ σ p

Meccanica della Frattura Lineare Elastica (cenni) 2a 2a. raggio di fondo intaglio x w. K t. σ σ p olitecnico di Toino Ditimento di Meccnic Mssimo Rossetto Meccnic dell Fttu Linee Elstic (cenni) ist con difetto ssnte ggio di fondo intglio ρ 0 t Cenni di meccnic dell fttu linee elstic mteile elstico

Dettagli

1 c. ( ) T c 2T c. s nt T S f e df

1 c. ( ) T c 2T c. s nt T S f e df Cpiolo VI IL CAMPIONAMENO DEI SEGNALI VI. - Generlià. Il mpionmeno di un segnle empo oninuo onsise nel prelevre un sequenz di mpioni o di vlori lei d isni suessivi di empo. Si sbilise osì un orrispondenz

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla Eseczo l cento d ss () d un sste d punt tel è un punto geoetco l cu poszone spetto d un sste d feento è ndvdut dl ggo vettoe:, dove ed ppesentno spettvente le sse e vetto poszone de sngol punt tel che

Dettagli

Grandezze vettoriali.

Grandezze vettoriali. Gndee vettoili. Desciione mtemtic: l ente l mtemtico vettoe I concetti nuovi e fecondi di somm di vettoi, podotti di vettoi ecc. sono pplicti ll meccnic... Secondo [l utoe] il vntggio mggioe del [metodo]

Dettagli

Il valore temporale del denaro

Il valore temporale del denaro Il valoe empoale del denao onenui della lezione Definizione dei concei di valoe fuuo e valoe auale. Inoduzione alle endie e alle loo eole di uilizzo.. Le eole del asfeimeno del denao nel empo Pe valuae

Dettagli

( ) ( ) ( ) Modulo C Unità 1 Il moto rettilineo. Sistemi di riferimento e moto

( ) ( ) ( ) Modulo C Unità 1 Il moto rettilineo. Sistemi di riferimento e moto Siemi di riferimen e m Un crp è in m qund l u pizine ripe d un lr crp, un cme riferimen, ri nel emp. Il pun merile durne il u m decrie un line de Trieri del m. E può eere reiline curiline ed il m dicei

Dettagli

Sanna-Randaccio Lezioni n 8. Teorema del pareggiamento del prezzo dei fattori

Sanna-Randaccio Lezioni n 8. Teorema del pareggiamento del prezzo dei fattori Snn-Rndccio ezioni n 8 eoem del eggimento del ezzo dei ttoi A un dto oto del ezzo dei beni coisonde un unico oto del ezzo dei ttoi se non vi è invesione dell intensità ttoile e non vi è secilizzzione comlet

Dettagli

Classificazione dei problemi d antenne e separazione tra le regioni di campo. Docente: Filiberto Bilotti. Sommario

Classificazione dei problemi d antenne e separazione tra le regioni di campo. Docente: Filiberto Bilotti. Sommario Classificazione dei poblemi d antenne e sepaazione ta le egioni di campo Docente: Filibeto Bilotti Classificazione dei poblemi d antenne Poblemi di telecomunicazioni Poblemi di compatibilità elettomagnetica

Dettagli