Esercizi di Informatica Teorica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Informatica Teorica"

Transcript

1 Esrcizi di Informtic Toric Aril 2, 23 Esrcizio A rtir dll srssion rgolr (b + ) costruir un ǫnfa uivlnt. i ricord ch s L = L() r un rgx, llor sist un ǫnfae tl ch L(E) = L() con:. sttmnt uno stto ccttnt 2. nssun rco ntrnt in 3. nssun rco uscnt dll stto finl L struttur di bs sui simboli (ǫ = in usto ngli srcizi succssivi) sugli ortori di union, conctnzion chiusur sono: + * Figur : truttur bs di ǫ-nfa r srssioni rgolri. A rtir dll struttur di bs r i simboli = = b si ottin l utom r l conctnzion b:

2 b Figur 2: L ǫ-nfa r b. Qust ultimo vin utilizzto com blocco r frn l union con l srssion = : b Figur 3: L ǫ-nfa r b +. L utom risultnt rrsnt il blocco di un chiusur, il ch rmtt di ottnr l utom corrisondnt ll srssion (b + ) : b Figur 4: L ǫ-nfa r (b + ). i otrbb ossrvr ch è ossibil smlificr ciscun dll orzioni sull rgx singolrmnt, ottnndo un utom corrtto (Figur ). Tuttvi lcun combinzioni di usti formti ossono ortr risultti rrti. Ad smio, si considri il linguggio di un srssion rgolr. L stringh di usto linguggio si ottngono conctnndo un numro rbitrrio 2

3 + * Figur 5: ǫ-nfa ltrntivi r srssioni rgolri di bs. di stringh di fcndol sguir d un numro rbitrrio di stringh di. L utom r vin riortto in Figur. * *!= ** Figur 6: L ǫ-nfa r risult rrto. Qusto utom riconosc nch stringh dl tio vxy dov v, x y. Qust rò sono stringh ch trminno con un string dl linguggio invc ch con un dl linguggio ( in gnrl i du linguggi ossono contnr stringh divrs). Tl string vrrbb riconosciut rtir dllo stto inizil rggiungndo lo stto finl di (v ). Lo stto finl di coincid con lo stto inizil di, uindi lggndo un string x ci ortimo nllo stto finl di. D ui sgundo i du rcorsi tichttti con ǫ ci riortimo nllo stto inizil di. Un string y ci ort nuovmnt nllo stto finl di. D ui si sgu l rco tichttto ǫ si rriv llo stto finl di ch è nch stto finl dll utom. Quindi l string vxy vin ccttt ur vndo un struttur in. 3

4 Esrcizio 2 Dto il DFA di Figur 2, clcolr r , Figur 7: DFA. L formul r clcolr l srssion rgolr è: k ij = k ij + k ik (k kk ) k kj L srssion ch rrsnt tutti i rcorsi ch dllo stto i llo stto j snz ssr r stti con tichtt l iù k è dt d du contributi: i) tutt i rcorsi d i j ch ssno r stti con tichtt l iù k ; ii) rcorsi ch ssno r lo stto k. In ust ultimo cso il rcorso uò ssr szzto in tr rti: dllo stto i vdo llo stto k ssndo r stti con tichtt l iù k ; un volt nllo stto k osso sguir, r un numro rbitrrio di volt, ulsisi rcorso ch mi riorti ui ssndo r stti con tichtt l iù k ; infin, dllo stto k si rriv llo stto j, smr ssndo r stti con tichtt infrior k. r 2 = ; r 22 = ǫ; r = ǫ; r 2 = Esrcizio 3 r 22 = r 22 + r 2(r ) r 2 = ǫ + (ǫ) = ǫ + Dto un NFA con l sgunt tbll di trnsizion: δ N {, } { } {, 2 } 2 { 2 } ottnr un DFA uivlnt. i utilizz l costruzion lzy vlution. i rt dll unico stto rggiungibil si clcol l insim dgli stti d sso rggiungibili nll NFA lggndo, 4

5 risttivmnt, i simboli. L insim dgli stti ottnuti rrsnt un unico stto nl DFA, r il ul ndrà clcolt l funzion di trsfrimnto. Qusto unico stto rrsnt il ftto ch nll NFA ossimo trovrci contmornmnt in ciscuno dgli stti coinvolti. i ricord ch l formul r ottnr lo stto succssivo uno stto {, 2,..., r } dl DFA, lggndo il simbolo, è: δ D (, 2,..., r, ) = r δ N ( i, ) i= δ D ({ }, ) = δ N (, ) = {, } δ D ({ }, ) = δ N (, ) = { } δ D ({, }, ) = δ N (, ) δ N (, ) = {, } {, 2 } = {,, 2 } δ D ({, }, ) = δ N (, ) δ N (, ) = { } = { } δ D ({ }, ) = δ N (, ) = {, 2 } δ D ({ }, ) = δ N (, ) = In modo nlogo si ottngono i vlori r i rimnnti stti (r i uli si omttono i ssggi intrmdi): δ D ({,, 2 }, ) = {,, 2 } δ D ({,, 2 }, ) = {, 2 } δ D ({, 2 }, ) = {, 2 } δ D ({, 2 }, ) = { 2 } δ D ({ 2 }, ) = δ D ({ 2 }, ) = { 2 } L utom ottnuto è rrsntto in Figur 3. Esrcizio 4 Dto l NFA di Figur 4, numrr tutti i rcorsi sguiti vndo in inut l string. Il non dtrminismo dll NFA f sì ch iù strd ossno ssr sguit contmornmnt. All lttur dl rimo, l utom si ortrà si nllo stto ch nllo stto. Il rimo rcorso si svilurà in modo dtrministico ttrvrso gli stti r, s, s, s in succssion. Nll ltro rcorso, ll lttur dl simbolo, si rimn nllo stto. L succssiv lttur di uno cus l gnrzion di du rcorsi com nl cso inizil. Il rimo rcorso rosgu in d ui, ll lttur dllo succssivo si ortrà in r. A usto unto rò l ultimo simbolo d lggr è un m non sistono rchi uscnti d r 5

6 2 2, 2 Figur 8: Il DFA uivlnt ottnuto con Lzy vlution.,, s r, Figur 9: NFA. con tichtt. Il rcorso vin bbndonto. L ultimo rcorso ttivo ci f trovr nllo stto doo vr ltto il rfisso. L lttur dllo succssivo cr nuovmnt du rcorsi. Il rimo rosgu nllo stto ll lttur dll ultimo simbolo,, si sost nllo stto r. Il scondo rcorso rimn in ll lttur dll ultimo rimn in usto stto. issumndo, gli stti rggiunti trminndo l lttur dll inut sono gli stti s, r, (vdi Figur 5). Poiché lo stto s è stto finl l string vin ccttt. Esrcizio 5 Dt l tbll di trnsizion di un ǫ NFA: clcolr l funzion ǫ clos r tutti gli stti. L ǫ clos si clcol in modo induttivo. In rtnz f rt dll ǫ clos di uno stto, lo stto stsso. uccssivmnt si includono gli stti rggiungibili d sso con un ǫ-trnsizion si itr il rocdimnto fino undo non ci 6

7 r s s s r X r Figur : Prcorsi sguiti dll NFA di Figur 4 con inut δ ǫ b c {} {} {r} {} {} {r} r {} {r} {} sono ltri stti d ggiungr. I vri ssggi sono illustrti in Tbll. ECLOE() = {} δ(, ǫ) = non ci solo ltri stti ECLOE() = {} δ(, ǫ) = {} ECLOE() ECLOE() = {, } δ(, ǫ) = non ci solo ltri stti ECLOE(r) = {r} δ(r, ǫ) = {} ECLOE(r) ECLOE(r) = {r, } δ(, ǫ) = {} ECLOE(r) ECLOE(r) = {r,, } δ(, ǫ) = non ci solo ltri stti Tbl : Clcolo dll silon chiusur Esrcizio 6 i A = (Q, Σ, δ,, { f }) un ǫ-nfa tl ch non sist nssun trnsizion ntrnt in nssun uscnt d f. Dscrivr il linguggio ccttto d ognun dll sgunti vrinti di A, in trmini di L = L(A). ) Autom costruito d A ggiungndo un ǫ-trnsizion d f. Il linguggio ottnuto è L +. Inftti r rggiungr f dobbimo vr ltto un string w L. L ggiunt dll ǫ-trnsizion ci riort vntulmnt llo stto inizil ci rmtt di conctnr ltr stringh di L. b) Autom costruito d A ggiungndo un ǫ-trnsizion d vrso ogni stto rggiungibil d (lungo cmmini ch ossono comrndr si simboli di Σ ch ǫ). 7

8 L Figur : Autom dl cso ). Uno stto uò ssr rggiunto in uno o iù ssi. L situzion ottnut è rrsntt in Figur 7. x y i f Figur 2: Illustrzion dl cso b). Prim si vv ch l string w = xy rtnv L, or un ulsisi string y ch rt d un unto ulsisi di w rtin L. L string y è di ftto un ulsisi suffisso di w L. Il linguggio ccttto rtnto è ullo di tutti i suffissi (nch imrori) di stringh di L: {y Σ thr is x Σ : xy L} i fcci ttnzion com l iotsi ch non ci sino rchi ntrnti in è crucil r ottnr solo stringh di L loro suffissi. Inftti suonimo ch ci si un rco ntrnt in. Qusto otrbb rrsntr l ultimo st di un ciclo ch rt d ttrvrso ltri stti dll utom ritorn llo stto inizil. i v l string ssocit usto rcorso. i vd l Figur 8 com rifrimnto. v x y i f Figur 3: Illustrzion dl cso b) s ci fossro rchi ntrnti in. Or suonimo ch l string v xy L nll utom di rtnz, m ch vy / L. uonimo inolst ch y si suffisso solo di xy. Aggiungndo 8

9 un ǫ-trnsizion d i si ottin l ccttzion di vy. M vy non è suffisso di nssun string di L. c) Autom costruito d A ggiungndo un ǫ-trnsizion vrso f d ogni stto ch uò rggiungr f (lungo cmmini ch ossono comrndr si simboli di Σ ch ǫ). L situzion ottnut è rrsntt in Figur 9. x y i f Figur 4: Illustrzion dl cso c). Con un rgionmnto dul l rcdnt si ottin: {x Σ thr is y Σ : xy L} d) Autom costruito con l rgol di unti b) c). Il linguggio ottnuto è costituito d suffissi, rfissi infissi di L. 9

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto Grmmtich Rgol pr spcificr frsi corrtt in itlino Un frs un soggtto sguito d un vrbo sguito d un complmnto oggtto Un soggtto un nom o un rticolo sguito d un nom Uso dll rgol: pr gnrr frsi corrtt Esmpio:

Dettagli

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti Politcnico di ilno Fcoltà di Innri Industril Corso di Lur in Innri roszil Insnmnto di Proulsion roszil nno ccdmico / C. 4 Sz. d Ulli r sorttori ndorttori Esrcizi svolti rv. dicmbr ESERCIZIO 4d. Un ullo

Dettagli

IV. L EQ. DI VAG MEDIANTE EQ. POLARE

IV. L EQ. DI VAG MEDIANTE EQ. POLARE IV. L EQ. DI VAG MEDIANTE EQ. POLARE LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG Euzion Polr C. IV Pg. 1 Essndo nll E. di Vg il vlor OA (dll'origin d un unto, d in gnrl tr unto unto) un vlor ssoluto, non

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Trasduttori a Stati Finiti

Trasduttori a Stati Finiti Trsduttori Stti Finiti Un Trsduttore Stti Finiti Deterministici è definito dll 7-pl - Alfeto di Ingresso (Alfeto terminle) K- Insieme degli stti δ -funzione (przile) di trnsizione

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

Compito sugli integrali definiti e impropri (1)

Compito sugli integrali definiti e impropri (1) Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

Calcolo a fatica di componenti meccanici. Terza parte

Calcolo a fatica di componenti meccanici. Terza parte Clcolo ftic di coponnti ccnici Trz prt Il cofficint di sicurzz nll progttzion ftic Un qulsisi punto ll intrno dll r sotts dl sgnto ch è rpprsntto d un coppi di vlori può giungr l liit trit un incrnto di

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

ELABORAZIONE di DATI SPERIMENTALI

ELABORAZIONE di DATI SPERIMENTALI ELABORAZIONE DATI SPERIMENTALI Prof. Giovnn CATANIA Prof. Rit DONATI Dr. Tibrio T DI CORCIA L stribuzion norml o gusn com modlità borzion dti sprimntli qtittivmnt numro I N T R O D U Z I O N E Un Un dll

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2 www.mtfili.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 27 - PROBLEMA 2 L funzioni g, g 2, g, g 4 sono dfinit nl modo sgunt: g (x) = 2 x2 2 g 2 (x) = x g (x) = 2 π cos (π 2 x) ) g 4 (x) = ln( x ) Vrific

Dettagli

Riferimenti, coordinate, equazioni per rette e piani

Riferimenti, coordinate, equazioni per rette e piani Rifrimnti, coordinat, quaioni pr rtt piani Diamo pr scontato ch il lttor abbia familiarità con l noioni di bas sullo spaio di vttori applicati dl piano dllo spaio. Pr qust si può consultar il paragrafo.

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

LA LOGICA. La scienza che fornisce all uomo gli strumenti per controllare la validità dei suoi ragionamenti.

LA LOGICA. La scienza che fornisce all uomo gli strumenti per controllare la validità dei suoi ragionamenti. LA LOGICA La scinza ch fornisc all uomo gli strumnti r controllar la validità di suoi ragionamnti. ENNCIATI O ROOSIZIONI: indicano affrmazioni dichiarativ di cui è ossibil stabilirn la vrità la falsità

Dettagli

Esercizi di Segnali Aleatori per Telecomunicazioni

Esercizi di Segnali Aleatori per Telecomunicazioni Corso di Lur in Inggnri Inormic corso di Tlcomunicioni (ro. G. Giun) (diing cur dll ing. F. Bndo) srcii di Sgnli Alori r Tlcomunicioni Diniioni di momni sisici (di rimo scondo ordin) di vriili lori: -

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi:

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi: Ciruiti Nl progttr un iruito stinto svolgr un rt funzion normlmnt si hnno isposizion i sgunti lmnti: NODO )Uno o più sorgnti i f..m. not (ttri, gnrtor i tnsion) )Filo mtllio (onuttor) ) intrruttori )sistnz

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Un esempio significativo

Un esempio significativo Un smio significativo 1 Si considri il sistma massa-molla in figura. Si vuol ffttuar un confronto tra l rstazioni dl sistma a ciclo chiuso qull a ciclo arto., r quanto riguarda il controllo dlla osizion

Dettagli

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a Esm di Stto 7 sssion strordinri Prolm Utilizzndo l formul di sdoppimnto, l tngnt ll lliss nl punto ; x y x x y y x y Imponndo il pssggio pr (; ) si ottin: x ch, sostituito nll quzion dll lliss, prmtt di

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 utomi stti finiti utomi stti finiti non deterministici utomi e grmmtiche regolri notzioni sul livello degli esercizi:(*)fcile,

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Esercizi 3 Geometria lineare nello spazio

Esercizi 3 Geometria lineare nello spazio Esrcizi 3 Gomtria linar nllo spazio Ngli srcizi ch sguono si suppon fissato un sistma di rifrimnto (SdR) nllo spazio. S la bas (dllo spazio vttorial di vttori libri) di tal SdR è indicata con (i, j, k),

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Da cartesiano geocentrico a cartesiano locale

Da cartesiano geocentrico a cartesiano locale Trsformzion tr sistmi di rifrimnto D crtsino gocntrico crtsino locl Si considri un punto l cui posizion è not risptto d un llissoid di rifrimnto. Si ssoci tl punto un sistm crtsino locl, ch h: origin nl

Dettagli

stringhe sull alfabeto Σ in cui a a b si alternano, iniziando da a e terminando con b.

stringhe sull alfabeto Σ in cui a a b si alternano, iniziando da a e terminando con b. Corso di Linguggi Formli e Automi Anno Accdemico 2014 2015 Prof. Giovnni Pighizzini Esercizi Vri Esercizio 1 Si Σ = {, }. Costruite un utom che ccetti il linguggio costituito d tutte le stringhe sull lfeto

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

MATEMATICA GENERALE (A-K) -Base 13/2/2004

MATEMATICA GENERALE (A-K) -Base 13/2/2004 MATEMATICA GENERALE (A-K) -Bas //004 PRIMA PARTE ) Individuar la rimitiva dlla funzion f(x) = x log x assant r il unto (4,) ) Calcolar, usando la d nizion, la drivata dlla funzion f(x) = x + nl unto x

Dettagli

Esercizi Analisi Matematica II Anno accademico

Esercizi Analisi Matematica II Anno accademico Esrcizi Analisi Matmatica II Anno accadmico 06-07 Foglio. P Calcolar la matric Jacobiana dlla funzion composta g f dov l funzioni g f sono dat da: (a) f : R R g : R R dov f(x, y) = (xy, x + y, sin(y))

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Automi a stati finiti

Automi a stati finiti Automi stti finiti Diprtimento di Elettronic e Informzione Politecnico di Milno 17 mrzo 2017 Modelli operzionli Un semplice modello di clcolo I modelli operzionli di clcolo sono definiti come mcchine strtte

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse . Condizioni di arbitraggio intrnazional dll rci di titoli L tori d la Parità di otri d acuisto la Parità di tassi d intrss 5_Andic_G.GAROFALO L arbitraggio è un'orazion ch consist nll'acuistar un bn o

Dettagli

Pattern Matching Mediante Automi

Pattern Matching Mediante Automi Pttern Mtching Medinte utomi ho-corsick Espressioni Regolri dde Simonett Cmroto lessio Tni lice dde, Cmroto, Tni Pttern Mtching Medinte utomi 13/11/2007 1 Sommrio Introduzione Nozioni Preliminri utomi

Dettagli

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford.

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford. CORSO DI OOGRAFIA A - A.A. 006-007 ESERCIAZIOI - 09.05.06 ESERCIZI DI GEODESIA ESERCIZIO 1 Clcolr i rggi di curvtur dll szioni normli principli nl olo ord dll' llissoid di Hyford. 1) Szioni ormli rincipli

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

Non Determinismo. Dipartimento di Elettronica e Informazione Politecnico di Milano. 21 marzo 2017

Non Determinismo. Dipartimento di Elettronica e Informazione Politecnico di Milano. 21 marzo 2017 Non Determinismo Diprtimento di Elettronic e Informzione Politecnico di Milno 21 mrzo 2017 Modelli operzionli non deterministici Modelli deterministici vs. modelli non deterministici Solitmente, un lgoritmo

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

AcquaCard. Manuale Ridotto ad Uso dell'utente AcquaMob multiplo

AcquaCard. Manuale Ridotto ad Uso dell'utente AcquaMob multiplo AcquaCard Manual Ridotto ad Uso dll'utnt AcquaMob multiplo 1. Gnralità La tssra lttronica in posssso dll'utnt è carattrizzata da un display sul qual si ffttuano l lttur di du tasti avnti rispttivamnt l

Dettagli

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*)

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*) Fcoltà di nggnri Prov Scritt di Fisic uglio 4 - Compito usito n. n un filo rttilino lungo fluisc un corrnt. Ad un distnz dl filo è post un oin, il cui punto mdio è ll stss quot dl punto mdio O dl filo.

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli