Approssimazione di dati e funzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Approssimazione di dati e funzioni"

Transcript

1 Arossmzoe d dt e uzo

2 Arossmzoe d dt e uzo: geerltà Problem: rossmzoe d u uzoe : ot gl { } vlor che l uzoe ssume e ut { } s vuole otteere u rresetzoe ltc dell uzoe u tervllo b geere coteete gl { }; l esressoe ltc dell è ot m comlct er le oerzo che s tedoo eetture d es. tegrzoe se e rchede u rresetzoe ù semlce. I geerle ot l tbell de dt { } s vuol trovre u uzoe ltc che rossm dt. Per l uzoe terolte è ecessro: selezore l clsse d uzo F ll qule deve rteere; sceglere u crtero er l selezoe d u uzoe tr quelle dell clsse F metodo d rossmzoe.

3 Arossmzoe d dt e uzo: clss P seme de olom lgebrc d grdo coecet rel: Π seme de olom trgoometrc t d orde coe. rel: R m seme delle uzo rzol: 4 E seme delle uzo esoezl: 5 S b seme delle uzo sle d grdo ovvero delle uzo d C - che s rducoo olom lgebrc d grdo og sottotervllo d msur d b. { } R ; L P { } b b t t R ; s cos Π { } m m m m m m r r P P R ; / { } b b g g R ; e E

4 Arossmzoe d dt e uzo: metod Iterolzoe l uzoe rossmte è tle che: K ormlmete megt se dt zl soo ccurt; b Arossmzoe mm qudrt dscret: l uzoe rossmte m è quell che red mm l quttà: m ovvero trodott es w : w m Scrto qudrtco Codzo d terolzoe Scrto qudrtco esto metodo usulmete megto se dt dsoszoe soo umero elevto l secod s reersce se è oto ror l esstez d vlor qul s vuol dre u eso mggore. 4

5 5 A. d dt: terolzoe olomle Iterolzoe olomle: ort l tbell d dt { } s cerc u uzoe d rossmzoe rteete ll clsse de olom lgebrc che terol dt; s cerc l olomo d grdo mmo che sodds le codzo d terolzoe: dt > olomo d grdo ; svludo: dove le cogte soo coecet del olomo. K M M L L L L L L L L K F VA

6 Iterolzoe olomle: Vdermode L mtrce V de coecet del sstem lgebrco è dett mtrce d Vdermode; er l mtrce d Vdermode d od dstt { } s dmostr che: det V j> j Pertto V è regolre qud esste u uc soluzoe del sstem e qud l olomo teroltore è uco. Teorem: esste uo ed u solo olomo P che verc le codzo d terolzoe er. Problem: l mtrce d Vdermode geerlmete è mlcodzot. 6

7 Iterolzoe olomle: bs Il olomo teroltore è uco m uò ssumere esresso dverse bst cmbre l bse del olomo teroltore: olomo lgebrco. bse de moom: { } K ormul d Lgrge olom d bse d Lgrge: L { l l l l } bl K Dt l uctà del olomo teroltore è ovvo che: L 7

8 Bse d Lgrge: ormul d Lgrge Dt gl od { } gl olom d bse d Lgrge soo det come olom d grdo tl che: l δ Dll qule e segue che L : e ertto er l olomo teroltore ell bse {l } ssume l esressoe d Lgrge: L l eslct comrs de vlor odl dell uzoe; bse dedete d vlor odl dell uzoe; ormul estt er olom d grdo more o ugule d ; osto > l R. l j j j j 8

9 9 Bse d Lgrge: esressoe ltertv Dt l tbell { } e deedo l olomo odle come: l cu dervt rm ssume l orm: w w l s ottee che olom dell bse d Lgrge ossoo essere esress come:

10 Iterolzoe olomle: error Nell rocedur d t. ol. soo reset seguet error: Errore d trocmeto dovuto ll sosttuzoe dell uzoe ltc co u olomo terolte: dove co * s è dcto l olomo teroltore dele coè l olomo terolre ssez dell Errore d rogzoe dovuto gl error d msur o d rossmzoe su dt ε : * E * * E Per cu l errore totle è esrmble come: * * * E E E t

11 It. olomle: errore d trocmeto Per l errore d trocmeto ell t. ol. s dmostr che: b E! ξ ξ dove b è l tervllo chuso mmo coteete od ed l uto d terolzoe. Il uto ξ o è oto ror e dede d ; el cso so ot o stmt vlor estrem dell dervt -esm d :!!!!! < Λ > Λ Λ M E b M E E b λ λ λ

12 Errore d trocmeto: esemo Nod equszt: h ; dett s u vrble cotu tle che: sh er s cocd co h er s h: L s s L s h P s h P 7 s P s Eserczo cosglto GL.

13 It. olomle: errore d rogzoe Per l errore d rogzoe s h: l l l l E * * ε Se ε ι ε s h:!!!! * Λ Λ l l E ε ε Dove Λ è l uzoe d Lebesgue e rreset l coecete d mlczoe degl error su dt; s desce costte d Lebesgue l quttà: m b Λ Λ

14 Fuzoe d Lebesgue: roretà Per l uzoe d Lebesgue s h che: dede solo d olom odmetl d Lgrge e qud solo dll dstrbuzoe de od; è mggore o ugule d uo; el cso d od equszt: o h K el cso de od Chebyshev b: Λ elog b b cos Λ log K 4

15 5 Iterolzoe olomle: relogo Il olomo teroltore è uco m uò ssumere esresso dverse bst cmbre l bse del olomo teroltore: bse de moom olomo lgebrco: olom d bse d Lgrge ormul d Lgrge: olom d bse d Lgrge: { } K { } l L l l l l K j j j j l l δ

16 6 Iterolzoe olomle: error relogo Errore d trocmeto: Errore d rogzoe:! * E ξ * * l E Λ ε ε K ε ε ε

17 Iterolzoe olomle: esemo Esemo 6..: Dt l tbell d vlor er /: dre u vlore rossmto d /.78 medte l olomo teroltore d secodo grdo dre u stm dell errore e doo ver vlutto qul cre s ossoo cosderre estte clcolre l logrtmo turle del umero così otteuto corotdolo co log/e. S eseguo clcol rrotoddo sull sest cr decmle. 7

18 Iterolzoe olomle: eserczo Eserczo GL.: scrvere l esressoe del olomo teroltore d Lgrge reltvo ll seguete tvol d vlor dell uzoe: e t dt E stmre l errore d trocmeto e ut d scss t. teedo coto che rsult: < <.. Esercz cosglt GL

19 Iterolzoe olomle: dereze dvse L esressoe d Lgrge er l olomo teroltore sore d u roblem d o-dmctà ; olom odmetl dedoo d tutt od dell tbell ertto se ggugessmo u dto dovremmo clcolre tutto l olomo teroltore. L esressoe term delle dereze dvse ermette quest dmctà el seso che l ggut d ulteror ormzo comort u umero lmtto d oerzo rtcolre: dto l olomo teroltore esresso lle dereze dvse d orde l ol. t. d orde che s ottee ggugedo ulteror ormzo comort l clcolo d uov term. 9

20 Dereze dvse: dezo Le dereze dvse dell uzoe reltve ll seme { } soo dete modo rcorsvo sotto l codzoe che od so rbtrrmete dsost m tutt dstt deedo: dereze dvse rme j j j j j ; K dereze dvse d orde zero

21 Dereze dvse: dezo dereze dvse secode j j j j j dereze dvse d orde K K K

22 Dereze dvse: tbell Tbell lle dereze dvse dell uzoe reltve ll seme { } : K N L O M M M M M M

23 Tbell: ggut d u elemeto K N L O M M M M M M Aggut d u elemeto ell tbell K N K

24 Dereze dvse: roretà Le dereze dvse verco le seguet roretà: le dereze dvse d orde mggore d zero d u costte soo ulle; due uzo e g tl che g ho le stesse dereze dvse; og derez dvs è uzoe vrte o smmetrc de su rgomet ovvero u ermutzoe degl dc de od lsc vrt l derez dvs cosdert; 4 er u olomo d grdo s h: P K > 4

25 Dereze dvse: rogzoe dell errore Le dereze dvse soo estremmete sesbl gl error su dt; cus dell lertà delle oerzo ell costruzoe delle dereze dvse s h: η K K η K dove ed η soo le dereze dvse reltve dt estt ed quell ett d errore su dt e η l uzoe che descrve l errore su dt; qud er vere u de uò essere sucete lzzre l tvol delle dereze dvse dell uzoe η. 5

26 6 Progzoe dell errore: esemo Per u tbell lle dereze dvse su 5 od equszt ed u errore sul solo dto cetrle s h: / / / / / / / / h h h h h h h h ε ε ε ε ε ε ε ε ε L errore cresce l dmure del sso; l errore cresce co l orde dell derez dvs; er dereze dvse d orde elevto s h l eomeo dell ccellzoe umerc; lt sesbltà che er gl error d rrotodmeto. L rogzoe dell errore dede dll su oszoe ell tbell lle dereze dvse eserczo: errore sull ultmo dto.

27 7 Iterolzoe olomle: Newto vt Le dereze dvse reltve d u tbell d dt { } osso essere uste er orre u esressoe del olomo teroltore: Teorem: l olomo: detto olomo d Newto lle dereze dvse vt è l olomo teroltore dell uzoe e od coè è l olomo teroltore reltvo ll tbell d dt { }. K L L

28 8 Iterolzoe olomle: Newto vt

29 9 Dereze dvse: errore d trocmeto Errore d trocmeto ell terolzoe olomle: b E! ξ ξ Nel cso cu s costrusc u olomo teroltore d grdo e s bb dsoszoe u derez dvs d grdo -esmo u stm dell errore d trocmeto è dt dll relzoe: E K

30 Dereze dvse: esemo Esemo 6.5.: dt l tbell: reltv ll uzoe s scrvere l tvol delle dereze dvse e vlutre s.5 medte l olomo teroltore d Newto lle dereze dvse vt d orde due; vlutre oltre l errore d trocmeto.

31 Dereze dvse: eserczo Eserczo GL.5: dte due tvole lle dereze dvse reltve d u uzoe. sceglere quell delle due er l qule: Il olomo teroltore d terzo grdo reltvo rm quttro od orsce u rossmzoe d.8 co u errore d trocmeto E -4 ; seccre se e qul od d terolzoe soo gl stess e due cs; sedo che sh corotre vlor degl error d trocmeto E ed E reltv due olom teroltor del uto e corotre tl vlor co l rmo terme omesso seccdo se l rossmzoe otteut è er eccesso o detto mmesso d trscurre gl error su dt.

32 Dereze dvse: eserczo Tvol Tvol. t t t t t Eserczo cosglto GL.4

33 Iterolzoe olomle: covergez Cos ccde se s umeto l umero de od e qud l grdo del olomo teroltore? L errore d rogzoe coè quello ssocto gl error su dt e d rossmzoe cresce. Cos ccde ll errore d trocmeto? Ovvero l crescere del umero de od l olomo teroltore tede ll uzoe? I u uc rol l olomo teroltore è u rossmzoe covergete dell uzoe ltc ovvero u ormul: lm lm E

34 Covergez: uzoe d Ruge I geerle l covergez o è grtt d esemo: b b

35 Covergez: codzo sucet Teorem: se C b e osto M b d es. uzoe co dervte equlmtte rsult: lm b lm M! llor: uormemete e er quluque scelt dell dstrbuzoe de od b. Teorem: se è lschtz b l successoe de olom teroltor su od d Chebyshev coverge uormemete b. 5

36 6 Nod d Chebyshev: dezoe e roretà I od d Chebyshev b soo det come: cos ˆ b b Ioltre l olomo odle costruto sull bse de od d Chebyshev verc le seguet roretà: ˆ m b b m ˆ m b b dove è u quluque ltro olomo odle costruto su u bse d od dvers d quell d Chebyshev.

37 Nod d Chebyshev: esemo b b C

Approssimazione di dati e funzioni: generalità

Approssimazione di dati e funzioni: generalità Arossmzoe d dt e uzo: geertà Probem: rossmzoe d u uzoe : ot g { } vor che uzoe ssume e ut { } s vuoe otteere u rresetzoe tc de uzoe u tervo [b] geere coteete g { }; esressoe tc de è ot m comct er e oerzo

Dettagli

Approssimazione di dati e funzioni: generalità

Approssimazione di dati e funzioni: generalità Arossmzoe d dt e uzo: geertà Proem: rossmzoe d u uzoe : ot g { } vor che uzoe ssume e ut { } s vuoe otteere u rresetzoe tc de uzoe u tervo [] geere coteete g { }; esressoe tc de è ot m comct er e oerzo

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

Zeri e radici di equazioni non lineari e sistemi di equazioni non lineari

Zeri e radici di equazioni non lineari e sistemi di equazioni non lineari Zer e rdc d equzo o ler e sstem d equzo o ler Equzo o ler: geerltà Prolem: rcvre le rdc o zer d u uzoe evetulmete o lere e/o trscedete coè trovre quel o que vlor tle che: Se l soluzoe o è esprmle orm chus

Dettagli

Sistemi lineari: generalità

Sistemi lineari: generalità Sstem ler: geerltà Prolem: rsolvere u sstem lere d grd dmeso N, I form comptt: A B M M M M A [ ] R vettore de coeffcet B [ ] R vettore de term ot [ ] R vettore delle cogte Sstem ler: soluzoe Teorem Rouché-pell):

Dettagli

( ) ( ) ( ) Equazioni non lineari: generalità

( ) ( ) ( ) Equazioni non lineari: generalità Equzo o ler: geerltà Prolem: rcvre le rdc o zer d u uzoe evetulmete o lere e/o trscedete coè trovre quel o que vlor tle che: Se l soluzoe o è esprmle orm chus l prolem può essere rsolto umercmete Molteplctà

Dettagli

Integrazione di funzioni

Integrazione di funzioni tegrzoe d uzo l prolem dell tegrzoe umerc d u uzoe cosste el clcolre l vlore dell tegrle deto d prtre d umeros vlor dell uzoe tegrd l clcolo umerco d u tegrle semplce v sotto l ome d qudrtur meccc quello

Dettagli

Sistemi lineari: generalità

Sistemi lineari: generalità Sstem ler: geerltà Problem: rsolvere u sstem lere d grd dmeso N b b L L b, b b L M M M M I form comptt: b I form comptt: A [ ] R vettore de coeffcet B AX B [ b ] R vettore de term ot X [ ] R vettore delle

Dettagli

Integrazione numerica

Integrazione numerica Cludo Esttco cludo.esttco@usur.t Itegrzoe umerc Itegrzoe Numerc Itegrzoe umerc Formule d qudrtur. Grdo d esttezz. 3 Metodo de coecet determt. 4 Formule d Newto-Cotes semplc. Formule d Newto-Cotes composte.

Dettagli

Raccolta Formule e Dimostrazioni

Raccolta Formule e Dimostrazioni Rccolt Formule e Dmostrzo B. o uò essere usto durte l rov scrtt Med rtmetc K er dstruzo d frequez s h K K Med rmoc Mr er dstruzo d frequez s h: Mr Med geometrc g M K er dstruzo d frequez: g M K. Med qudrtc

Dettagli

Integrazione numerica

Integrazione numerica Itegrzoe uerc (/5 Prole: Clcolre l seguete tegrle Itegrzoe uerc ( d co e costt rel e ( uzoe cotu. (cotu Itegrzoe uerc (/5 Itegrzoe uerc (/5 No sepre è possle trovre or esplct l prtv. Ache el cso cu l s

Dettagli

Integrazione numerica

Integrazione numerica tegrzoe umer Formule d Newto-Cotes Trpez Smpso Puto medo Composte Formule d Guss Sere Morg Dprtmeto Mtemt Uverstà d Bolog tegrzoe umer PROBLEMA: S u uzoe det sull tervllo [,], d u soo ot vlor u seme to

Dettagli

Corso di Matematica - Algebra. Algebra

Corso di Matematica - Algebra. Algebra Corso d Mtemtc - Alger Alger Oerzo Algerche Tell de Seg Proretà Algerche delle Oerzo Somm e d Prodotto tr Numer Assoctvtà dell dvsoe Uguglze Pssgg lgerc Regole memoche Prodotto croce Rduzoe Fttor Rduzoe

Dettagli

Il calcolo integrale. L idea di partenza è semplice. Consideriamo il seguente grafico. Figura 1

Il calcolo integrale. L idea di partenza è semplice. Consideriamo il seguente grafico. Figura 1 Il clcolo tegrle Le dee d Rem sull cocezoe d geometr ho vuto u prood luez scetc, egl h trodotto l ozoe d tegrle deedo quello che o chmmo tegrle d Rem. Il puto d prtez per trodurre l rgometo è estremmete

Dettagli

VARIABILI ALEATORIE (v.a.) DISCRETE

VARIABILI ALEATORIE (v.a.) DISCRETE Corso d Sttstc, Lure Ecoom Azedle, Uverstà C. Ctteo, Cstellz, 7 Ottobre 008. 008 R. D Agò VARIABILI ALEATORIE: SIMBOLOGIA, DEFINIIONI, PROPRIETA VARIABILI ALEATORIE (v.. DISCRETE pgg. -3 VARIABILI ALEATORIE

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù crtter qutttv o vrl. L rcerc de legm etet r pù vrl poe come rcerc delle relzo uzol che pogoo come grdezz dpedete d u ere d

Dettagli

Derivazione numerica. Derivazione numerica (II) Derivazione numerica (III) Introduzione al calcolo numerico

Derivazione numerica. Derivazione numerica (II) Derivazione numerica (III) Introduzione al calcolo numerico F. Amroso/E. Vrc Corso d ormtc A.A. -5 troduzoe l clcolo umerco Dervzoe terzoe Soluzoe d equzo F. Amroso/E. Vrc Corso d ormtc A.A. -5 Dervzoe umerc l clcolo dell dervt d u uzoe u puto mplc u processo l

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

INFORMATICA 3 LEZIONE 10 FONDAMENTI DI MATEMATICA

INFORMATICA 3 LEZIONE 10 FONDAMENTI DI MATEMATICA INFORMATICA 3 LEZIONE FONDAMENTI DI MATEMATICA Isem e relzo Iseme: collezo d membr o elemet dstt d u tpo d bse. U membro può essere u elemeto prmtvo d u tpo d bse oppure u seme. U seme o cotee elemet duplct.

Dettagli

Lezione 8. Risultanti e discriminanti.

Lezione 8. Risultanti e discriminanti. Lezoe 8 Prerequst: Rdc d polo Cp d spezzeto Lezoe 5 Rsultt e dscrt I quest sezoe studo crter eettv per stlre qudo due polo coecet u cpo ho rdc cou S F u cpo Proposzoe 8 I polo o ull, ] ho u rdce coue u

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

E definito prodotto di due cracoviani W V un cracoviano A il cui generico elemento vale

E definito prodotto di due cracoviani W V un cracoviano A il cui generico elemento vale Rsoluzoe de sstem ler co l metodo d Bchewcz U semplce e effcete metodo per rsolvere sstem d equzo ler è quello recetemete proposto d Bchewcz che cosete d rsolvere sstem geerc smmetrc e o smmetrc che sez

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

Laboratorio di Sperimentazione di Fisica CdL Matematica PARTE II. Dr. Riccardo Cerulli

Laboratorio di Sperimentazione di Fisica CdL Matematica PARTE II. Dr. Riccardo Cerulli Lortoro d Speretzoe d Fsc CdL Mtetc ART II Dr. Rccrdo Cerull http://users.lgs.f.t/~cerull/ddttc.htl Msur d u grdezz fsc: V-M 0 Icertezze ell sur Als sttstc de dt L sur è soggett feoe csul. L sgol sur è

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù rtter qutttv o vrl. L rer de legm etet r pù vrl poe ome rer delle relzo uzol he pogoo Y ome grdezz dpedete d u ere d vrl dpedet

Dettagli

Variabili Aleatorie vettoriali

Variabili Aleatorie vettoriali Vrbl letore vettorl Vrbl letore vettorl Vrbl letore vettorl: Itroduzoe Vrbl letore dpedet Idc d poszoe per V vettorl rsorzo d V vettorl Idc d dspersoe: Moet Mtrce d Covrz Propzoe dell Covrz V.. VORILI

Dettagli

Università della Calabria

Università della Calabria Uverstà dell Clbr FACOLTA DI INGEGNERIA Corso d Lure Igeger Cvle CORSO DI IDROLOGIA N.O. Prof. Psqule Versce SCHEDA DIDATTICA N 0 ISOIETE E TOPOIETI A.A. 200- ISOIETE Il metodo delle soete, o lee d ugule

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

Definizioni. la Trasformata Zeta è definita come la seguente serie di potenze (o serie di Laurent)

Definizioni. la Trasformata Zeta è definita come la seguente serie di potenze (o serie di Laurent) Deo L trsort et rreset l cotrorte dscret dell trsort d Llce el cso coto, che cosete d rsolvere eqo lle deree ler tldo selc olo lerche. Dl to d vst strettete tetco dt seqe d er {(} detcete ll er vlor etv

Dettagli

Calcolo di autovalori

Calcolo di autovalori lcolo d utolor Dt l trce deterre l uero e ettore o ullo tl che l l utolore utoettore Esepo 9 9 b 8 b 8 b geerle o è ultplo d. Se però oero c soo due dreo lugo le qul fuo coe se fosse oltplcto per uo sclre.

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO PPUNTI DI CLCOLO NUMERICO Rchm d lger lere Sstem ler Cosdermo mtrc qudrte U mtrce s dce dgole se se j U mtrce s dce trgolre superore se se > j U mtrce s dce trgolre ferore se se < j U mtrce D s dce dgole

Dettagli

Diagrammi di Bode. (versione del ) Funzioni di trasferimento

Diagrammi di Bode.  (versione del ) Funzioni di trasferimento Dgr d Bode www.de.g.uo.t/er/tr/ddtt.ht veroe del 5-- Fuo d trfereto Le fuo d trfereto f.d.t de rut ler teo vrt oo fuo rol oè rort tr due olo oeffet rel dell vrle Per evtre d trttre eltete quttà gre, trodue

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

LE SUCCESSIONI RICORSIVE

LE SUCCESSIONI RICORSIVE . U prolem d prolà LE SUCCESSIONI RICORSIVE U sgore h due cppell, uo co ed uo gllo. Og goro doss l pù uo solo de cppell. Per decdere se e qule dossre segue quese regole: Se l goro prm h dosso l cppello

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA ITEGRAZIOE UMERICA Itroduzoe Le procedure umerce per pprossmre tegre deto: dte d: I [, ] R soo ote come ormue d udrtur umerc. G put dstt ed coecet soo dett, rspettvmete, od e pes de udrtur. I proem cosste

Dettagli

CAPITOLO 2 APPROSSIMAZIONE DELLE FUNZIONI

CAPITOLO 2 APPROSSIMAZIONE DELLE FUNZIONI REVISIONATO 0 mrzo 04 CAPITOLO APPROSSIMAZIONE DELLE FUNZIONI. INTRODUZIONE Approssmzoe co polom lgebrc. Sebbee o smo cpc d operre comuemete co fuzo del tpo se(x), cos(x), e x, th(x), x ecc, quto e cooscmo

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Analisi di una distribuzione. Analisi di una distribuzione

Analisi di una distribuzione. Analisi di una distribuzione Als d u dstrbuzoe Idc d cetrltà Als d u dstrbuzoe Prof. Cludo Cplupp - Fcoltà d Sceze dell Formzoe - A.A. 7/8 Al crescere del umero d osservzo, e rducedo l mpezz degl tervll, l stogrmm d frequeze tede

Dettagli

Sistemi lineari di m equazioni in n incognite

Sistemi lineari di m equazioni in n incognite Sste ler d equo ogte U sste lere d equo ogte è u srttur del geere seguete: ove s tede he l-pl X* * * * è u soluoe del sste se sosttuedo l posto d rspettvete * * * s ottegoo ugugle. tre è dett tre oplet

Dettagli

Analisi Matematica A

Analisi Matematica A http://www.g.o.too.t Als Mtemtc A Dto u umero turle o ullo, ssumerà seguet vlor ordt {,,,,...}. S desce ttorle o ttorle d :! ( )! quest ormul è corrett solo se >, poché! Quest dezoe è dett per rcorrez,

Dettagli

RELAZIONI TRA 2 FENOMENI QUANTITATIVI

RELAZIONI TRA 2 FENOMENI QUANTITATIVI RELAZIONI TRA FENOMENI QUANTITATIVI Mrco R RELAZIONI TRA FENOMENI QUANTITATIVI V è u relzoe tr le vrbl oggetto d studo? D quto vro vlor d u vrble qudo cmbo vlor dell ltr? CORRELAZIONE REGRESSIONE LA REGRESSIONE

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

CAPITOLO 4 FORMULE DI QUADRATURA

CAPITOLO 4 FORMULE DI QUADRATURA REVISIONATO 7 prle 4 CAPITOLO 4 FORMULE DI QUADRATURA I questo cptolo verro presette delle forule, dette forule d qudrtur, per l'pprosszoe uerc degl tegrl deft. Esse soo del tpo: f()d Af() dove le costt

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Introduzione ai metodi kernel. Giorgio Valentini DSI Università degli Studi di Milano. Sommario

Introduzione ai metodi kernel. Giorgio Valentini DSI Università degli Studi di Milano. Sommario Itroduzoe a metod erel Gorgo Valet DSI Uverstà degl Stud d Mlao Sommaro Raresetazoe de dat tramte erel Caratterstche de erel Kerel come msure d smlartà Kerel e regolarzzazoe Metod d aredmeto automatco

Dettagli

{ } { } Successioni numeriche. Scheda n 2 pag1. n 2. Pag. 3. Rappresentazione di una successione sul piano cartesiano. Esempio n 1 a) a n

{ } { } Successioni numeriche. Scheda n 2 pag1. n 2. Pag. 3. Rappresentazione di una successione sul piano cartesiano. Esempio n 1 a) a n Successioi umeriche Sched pg Rppresetzioe di u successioe sul pio crtesio Esempio ) { } { } Esempio ) ( ) b) ( ) Esempio ) 5 b) Esercizio L successioi degli esempi,,, soo covergeti, divergeti o idetermite?

Dettagli

Principio di Massima Verosimiglianza. Media pesata. Stima di parametri per la distribuzione di Bernoulli e di Poisson.

Principio di Massima Verosimiglianza. Media pesata. Stima di parametri per la distribuzione di Bernoulli e di Poisson. LABORATORIO meccc e Termodmc.. 7/8 F.Blestr. Per cortes segltem ut o chr o refus. Grze e buo studo etodo de m Qudrt. Prco d ssm Verosmglz. Test del χ.. dest fucto d dstrbuto fucto.3 c.95h4l.7 d c.5h4l

Dettagli

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale:

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale: Co u rppresetzoe prmetrc, u curv c è dt come u fuzoe vlor vettorl d u sgolo prmetro rele: c : D R E t.c. c( u o ( x ( u... x ( u I cu o è l orge del rfermeto, D geere cocde co l tervllo [,] e x soo le

Dettagli

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale.

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale. Esercz 2/0/2007 Dsequazo Sego d u prodotto. Voglamo studare l sego d u prodotto d due umer real. I altr term vedere qual soo le codzo affché due umer real A e B soddsfo AB 0. Ragoamo come segue: rcoducamo

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

Appunti di statistica

Appunti di statistica @th_corer d Ezo Zghì pg. Apput d sttstc L sttstc,t coe strueto d'dge sull popolzoe d uo Stto, è ogg u scez che stud qulss eoeo d tpo collettvo. Le dg su eoe collettv vegoo tte ll'tero delle popolzo sttstche

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

Algebra di Boole Forme normali P ed S

Algebra di Boole Forme normali P ed S Corso d Cloltor Elettro I A.A. 0-03 Alger d Boole Forme orml ed rof. Roerto Coo Uverstà degl tud d Npol Federo II Dprtmeto d Igeger Elettr e delle Teologe dell Iformzoe Corso d Lure Igeger Iformt (llev

Dettagli

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane 3/03/0 Corso d Cloltor Elettro I A.A. 0-0 Alger d Boole Forme orml ed Lezoe 6 rof. Roerto Coo Uverstà degl tud d Npol Federo II Foltà d Igeger Corso d Lure Igeger Iformt (llev A-DA) Corso d Lure Igeger

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Itegrli i seso geerlizzto Pol Rubbioi Itegrzioe di fuzioi o itte Deizioe.. Dt f : [; b[! R cotiu ed ilitt i prossimit di b, ovvero tle che!b f () = + oppure!b f () =, ess si dice itegrbile i seso geerlizzto

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

ESERCIZI DI STATISTICA

ESERCIZI DI STATISTICA ESERCIZI DI STATISTICA Soluzo degl esercz sugl stmator putual. A cura d Nazareo Maro Soluzoe dell'eserczo. Trovamo, come prmo passo, la fuzoe d verosmglaza che è: L( f(x, {

Dettagli

VETTORI. Prodotto di un vettore per un numero reale. Dati il numero reale λ e il vettore x ), il prodotto λ x è definito ponendo:

VETTORI. Prodotto di un vettore per un numero reale. Dati il numero reale λ e il vettore x ), il prodotto λ x è definito ponendo: VETTORI S dce vettore u eupl ordt d uer rel U vettore s rppreset coe colo o coe rg:, ( ) L see d tutt vettor co copoet rel s dc co R Nell'see R s possoo defre le seguet operzo Prodotto d u vettore per

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Integrazione numerica

Integrazione numerica Docee: Cludo Esco esco@usur. Iegrzoe umerc Lezoe s su ppu del pro. Mrco Gvo Iegrzoe umerc Iegrzoe umerc Formule d qudrur. Grdo d esezz. 3 Meodo de coece deerm. 4 Formule d qudrur erpolore. 5 Formule d

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Successioni in R. n>a n+1

Successioni in R. n>a n+1 Successioi i R U successioe è u fuzioe f : N R. Si preferisce deotre f() co e quidi u successioe co ( ). Il codomiio di u successioe ( ) è l'isieme dei vlori che ssume l successioe, cioè { } successioe

Dettagli

L equazione del reticolo cristallino

L equazione del reticolo cristallino Chmc sc supror Modulo L quzo dl rtcolo crstllo Srgo Brutt Rchmo d mtmtc: l sr d ourr U quluqu uzo () può ssr rpprstt spso d Tylor purchè l uzo () s drzbl - volt : ( )!... Nl cso cu ()=g() s u uzo prodc

Dettagli

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale Successioi umeriche / Def. Si chim successioe umeric ogi fuzioe f d N i R defiit i u isieme del tipo I= { N 0 }, co 0 umero turle e che ssoci d u itero di I u umero rele f(). I geerle però porremo f: N

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

Confronto di varie tecniche di integrazione Numerica

Confronto di varie tecniche di integrazione Numerica Uverstà degl stud d Caglar Darteto d gegera Elettrca ed Elettroca Corso d Calcolo Nuerco Ao /5 Coroto d vare tecce d tegrazoe Nuerca Realzzata da: Alessadro Pa troduzoe Questa tesa è dvsa due art La ra

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Approssimazione di funzioni mediante Interpolazione polinomiale

Approssimazione di funzioni mediante Interpolazione polinomiale Docete: Cludio Esttico esttico@uisubri.it Approssimzioe di fuzioi medite Lezioe bst su pputi del prof. Mrco Gvio Approssimzioe di fuzioi L pprossimzioe di fuzioi. Iterpolzioe e migliore pprossimzioe..

Dettagli

CAPITOLO VI FORMULE DI QUADRATURA

CAPITOLO VI FORMULE DI QUADRATURA CAPIT-6 versoe ggort l 3/5/95 CAPITOLO VI FORMULE DI QUADRATURA I questo cptolo verro presette delle forule, dette forule d qudrtur, per l'pprosszoe uerc degl tegrl deft del tpo w(x)f(x)dx dove l fuzoe

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

Allocation (PRA) Tecniche e Modelli di Rete - Prof. Marco Listanti - A.A. 2014/2015. DIET Dept

Allocation (PRA) Tecniche e Modelli di Rete - Prof. Marco Listanti - A.A. 2014/2015. DIET Dept Pek Rte Determstc Allocto PRA Pek Rte Allocto PRA Pek Rte bdwdth d Rssgmet PRA Ad u flusso vee ssegt u bd c mggore o ugule l suo bt rte d pcco p, ovvero c p Nel cso cu c =p, l regol d lloczoe PRA è dt

Dettagli

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A. 207-208, Elettrotecnc. Lezone 9 Pgn Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

La media aritmetica. La sua individuazione si basa sulla logica della trasferibilità di un carattere. Se la funzione f( ) corrisponde alla somma:

La media aritmetica. La sua individuazione si basa sulla logica della trasferibilità di un carattere. Se la funzione f( ) corrisponde alla somma: La meda artmetca La sua dvduazoe s basa sulla logca della trasferbltà d u carattere. ( ) = ( µ µ ) f,, f,, volte Se la fuzoe f( ) corrspode alla somma: + + + = µ + µ + + µ volte + + + = µ µ X= = La meda

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

L R = n = 4, = 4, [cm 3 ]

L R = n = 4, = 4, [cm 3 ] ESERCIZIO 1: U strsc coduttrce, ost sul c d u crcuto tegrto, è lug L,8 mm e reset u sezoe trsversle d re S (1 x 4 (µm. U correte I 5 m roduce u dfferez d otezle gl estrem dell strsc r V 0 mv. I tl crcostze

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei istillzioe istillzioe Oerzioe che cosete di serre i comoeti di u miscel liquid, sfruttdo l differez di tesioe di vore degli stessi comoeti. Obiettivi Arricchire l miscel dei comoeti iù voltili. Imoverire

Dettagli

ESERCITAZIONE PER LA QUARTA PROVA DELL' ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE CIVILE E AMBIENTALE Autore: Marina Roma

ESERCITAZIONE PER LA QUARTA PROVA DELL' ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE CIVILE E AMBIENTALE Autore: Marina Roma hp://svolgmeorcceesme.lervs.org/ ESECITAZIONE PE LA UATA POVA ELL' ESAME I STATO PE L'ABILITAZIONE ALLA POFESSIONE I INGEGNEE CIVILE E AMBIENTALE Auore: Mr om Il presee documeo rpor lo svolgmeo, pssggo

Dettagli

La regressione Lineare

La regressione Lineare L regressoe Lere Als dell Dpedez L Regressoe Lere Prof. Cludo Cplupp - Fcoltà d Sceze dell Formzoe - A.A. 7/8 Qudo tr due vrl c è u relzoe d dpedez, s può cercre d prevedere l vlore d u vrle fuzoe del

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

ELLISSE STANDARD. 1. Il concetto

ELLISSE STANDARD. 1. Il concetto ELLIE TANDARD. Il cocetto L icertezz dell posizioe plimetric di u puto i u rete si deiisce ttrverso lo studio dell ellisse stdrd. Prim di pssre lle relzioi mtemtiche che govero questo rgometo è preeribile

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

Alcuni metodi per la risoluzione di sistemi lineari con matrici strutturate.

Alcuni metodi per la risoluzione di sistemi lineari con matrici strutturate. Alcu meto per la rsoluzoe sstem lear co matrc strutturate. A. url - Calcolo Scetco Problema Rsolvere l sstema leare: A A. url - Calcolo Scetco Problema q A Co A matrce el tpo: p O A è ua matrce tragoale!

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Variabilità = Informazione

Variabilità = Informazione Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

exp("# (al posto di n) var Ca Coefficiente di asimmetria, indipendente dal valore dei parametri. f X DISTRIBUZIONE EV1 o DI GUMBEL.

exp(# (al posto di n) var Ca Coefficiente di asimmetria, indipendente dal valore dei parametri. f X DISTRIBUZIONE EV1 o DI GUMBEL. DISTRIBUZIONE EV o DI GUMBEL. x x [ $ e ] exp[ e ] F x exp co: Sgfcato de parametr: f exp al posto d : Numero medo d evet dpedet [ 0,t], ad esempo u ao. / :Valore medo della gradezza dell eveto, esempo

Dettagli