PROBABILITÀ SCHEDA N. 6 LE VARIABILI ALEATORIE DI BERNOULLI E BINOMIALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROBABILITÀ SCHEDA N. 6 LE VARIABILI ALEATORIE DI BERNOULLI E BINOMIALE"

Transcript

1 Matematica e statistica: dai dati ai modelli alle scelte Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) PROBABILITÀ SCHEDA N. 6 LE VARIABILI ALEATORIE DI BERNOULLI E BINOMIALE I molte situazioi si è iteressati a verificare se ua determiata caratteristica si preseta oppure o (l efficacia di u vaccio, il maifestarsi di ua malattia, la difettosità di u pezzo, ). Ciò corrispode ad u esperimeto co solo due possibili esiti (detto ache dicotomico), che può essere modellato co ua variabile aleatoria Y che assume valore (successo) co probabilità p e valore 0 (isuccesso) co probabilità -p, co 0<p<. co probabilità p Y = 0 co probabilità p Ua variabile aleatoria di questo tipo è chiamata di Beroulli di parametro p. Il valore atteso e la variaza di Y soo E(Y) = 0 x (-p) + x p = p Var(Y)= E(Y 2 ) (E(Y)) 2 = (0 2 x (-p) + 2 x p) - p 2 = p (-p) È modellabile co ua variabile aleatoria di Beroulli, ad esempio, il lacio di ua moeta, o ecessariamete equilibrata (p è la probabilità che esca ad esempio T). Ora cosideriamo la ripetizioe di esperimeti idipedeti ciascuo dei quali è modellabile co ua variabile aleatoria di Beroulli co probabilità di successo p. Per avere il umero di successi i questi esperimeti basta sommare i valori delle variabili aleatorie di Beroulli, cosideriamo quidi la variabile aleatoria X = Y i co Y i v.a. idipedeti di Beroulli di parametro p i = I possibili valori assuti da X soo 0,,...,. Vogliamo cooscere le probabilità co cui tali valori soo assuti, cioè vogliamo costruire la desità di probabilità di X. ESEMPIO. Riprediamo l esempio della moeta; i sigoli laci soo idipedeti fra di loro. Siamo iteressati al umero di uscite di testa i 0 laci; quidi = 0. Qual è la probabilità di otteere 6 uscite di testa? Cosideriamo prima ua prefissata sequeza di teste e croci; ad esempio, qual è la probabilità di otteere la sequeza T T C T T C C T T C Essedo i laci idipedeti, la probabilità cercata è data da p p (-p) p p (-p) (-p) p p (-p) = p 6 (-p) 4. Si capisce subito che la probabilità di avere 6 teste (e quidi 4 croci) ache i posizioi diverse risulta la stessa. Allora la probabilità di avere ua determiata sequeza di k teste e -k croci i laci sarà p k (-p) -k. Se ora volessimo calcolare la probabilità di tutte le possibili sequeze di 0 laci i cui ci siao 6 teste dobbiamo stabilire quate soo le sequeze che presetao 6 teste e 4 croci. Il problema è equivalete a cotare tutti i modi i cui è possibile scegliere di mettere le 6 teste ei 0 laci. 0! Seza etrare ei dettagli del calcolo diciamo che questo umero è che si idica co 6!(0 6)! 0 e si chiama coefficiete biomiale. 6 Allora la probabilità di otteere 6 teste laciado la moeta 0 volte sarà: ( ) 6 p p.

2 I geerale, il coefficiete biomiale vale: U modo più veloce per calcolarlo è:! =. k!( k)! ( ) ( k+ = ) k! Parliamo di esperimeto biomiale quado cosideriamo u esperimeto casuale i cui. iteressa esclusivamete il successo (codificato co ) o l isuccesso (codificato co 0) 2. il successo ha probabilità p 3. si effettuao prove idipedeti. Se X è la variabile che idica il umero di successi i prove di u esperimeto biomiale, avremo che la probabilità che X assuma il valore k è: k k P( X = k) = p ( p) per k=0,,2,,. La variabile casuale X così defiita è detta variabile casuale biomiale di parametri (umero di prove) e p (probabilità di successo i ua prova) e si idica co X B(, p ) Di seguito riportiamo alcui grafici delle fuzioi di desità per = 20 e valori diversi di p.. Figura Si può osservare che il grafico è simmetrico quado p=0.5; il grafico è più cocetrato a siistra quado p assume valori bassi (<0.5); i grafici co p=0.2 e 0.8 soo simmetrici l u l altro rispetto alla retta verticale passate per /2; ogi grafico ha solo u massimo che è vicio al valore atteso della variabile aleatoria.

3 La variabile aleatoria di Beroulli che rappreseta l esito di ua sola prova è quidi ua biomiale di parametri e p. Come abbiamo già detto, siccome X rappreseta la somma dei successi i prove, X può essere iterpretata come somma di variabili aleatorie biomiali B(,p) idipedeti: X = Y i co Y i v.a. idipedeti di Beroulli di parametro p i = Utilizzado le proprietà del valore atteso e della variaza della somma di variabili aleatorie idipedeti, abbiamo: E ( X ) = E Yi = E ( Yi ) = p = p i = i = i = Var ( X ) = Var Yi = Var ( Yi ) = p ( p) = p ( p ) i= i = i= Ricordiamo che il valore atteso della somma è sempre uguale alla somma dei valori attesi, metre la variaza della somma è uguale alla somma delle variaze solo se le variabili soo idipedeti. Più i geerale si può dimostrare che la somma di due biomiali idipedeti X e X 2 co desità B(,p) e B( 2,p) rispettivamete è acora ua desità biomiale B( + 2,p). ESEMPIO 2. Il rapporto dei sessi ella specie umaa alla ascita è di 05 femmie su 00 maschi. Qual è la probabilità che i 6 ascite sigole almeo la metà dei eoati siao di sesso femmiile? Dai dati si desume che la probabilità della ascita di ua femmia è p=05/. Se idichiamo co X il umero di eoati di sesso femmiile elle 6 ascite prese i esame, la variabile aleatoria X avrà ua desità biomiale B(6, 05/). Vogliamo calcolare P( X 3) = P( X = 3) + P( X = 4) + P( X = 5) + P( X = 6) = - P( X = 0)- P( X = )- P( X = 2) = 0 = 2.68 Come varierebbe la probabilità se si cosiderassero 60 ascite sigole? Sarebbe uguale alla precedete? (Rispodi ituitivamete seza fare i calcoli. Vedremo la risposta i ua scheda successiva) ESEMPIO 3. L'icubatrice di u allevameto di polli deve mateere ua temperatura che permetta la schiusa delle uova; per far ciò devoo fuzioare cotemporaeamete almeo 5 e o più di 9 apposite resisteze. Ciascua resisteza ha ua probabilità di essere fuzioate per tutto il periodo ecessario alla schiusa pari a 0.85; le resisteze fuzioao l'ua idipedetemete dall'altra. Suppoiamo ioltre che o itervegao altri fattori che icidao sul fuzioameto dell'icubatrice. Si vuole stabilire qual è il umero miimo di resisteze che occorre attivare per avere ua probabilità maggiore del 95% che almeo 5 resisteze restio sempre fuzioati. X Idichiamo co ua variabile aletoria biomiale di parametri (co = 5, 6, 7, 8, 9) e p=0.85 che rappreseta il umero di resisteze fuzioati co attivate. Bisoga trovare il più piccolo per cui P ( X 5) > Osserviamo azitutto che P ( X 5) = P ( X 4) ; quidi bisoga trovare il più piccolo per cui P X P X 4 < 0.05 ( 4 ) > 0.95 ovvero ( ) Risolviamo il problema calcolado la fuzioe di distribuzioe cumulata di variare di, co u opportuo software statistico, i questo caso Miitab. X el valore 4, al

4 = 5 = 6 = 7 = 8 = 9 F ( 4) X Possiamo quidi cocludere che bisoga attivare almeo 8 resisteze. ESERCIZI ESERCIZIO. Ua caratteristica A è presete el 0% della popolazioe e el 5% della popolazioe 2. Co u esperimeto di tipo biomiale (co ripetizioe) si estraggoo 30 idividui di cui 0 dalla popolazioe e 20 dalla popolazioe 2. a) Qual è la probabilità che u idividuo fra i 30 estratti abbia la caratteristica A? b) Qual è la probabilità che tre o più abbiao la caratteristica A? c) Qual è il umero medio di idividui co la caratteristica A? d) Qual è la variaza del umero di idividui co la caratteristica A? ESERCIZIO 2. A ua lotteria i biglietti i vedita soo 500, metà dei quali assicurao ua vicita di ua bottiglia di vio; l'altra metà o assicura essu premio. Pippo acquista 0 biglietti a 6 euro l'uo, cotado di vedere a Topolio a 20 euro l'ua le bottiglie evetualmete vite. Valutare la probabilità che Pippo ci rimetta almeo 20 euro. ESERCIZIO 3. È stata svolta u'idagie per verificare l'utilizzo di u atiparassitario A, o permesso, ella coltivazioe di arace. I geerale è oto che se viee utilizzato A mediamete marcisce il 5% della produzioe di arace; se viee usato l'atiparassitario B, permesso, marcisce il 0%. È oto che il 20% degli agricoltori utilizzao A ed i restati utilizzao B. Si esamiao 00 arace e si trovao 4 frutti marci. a) Qual è mediamete la percetuale delle arace che marcisce, essedo stato usato uo dei due atiparassitari? b) Qual è la probabilità che marciscao 4 arace su 00 se è stato usato l'atiparassitario A? c) Qual è la probabilità che marciscao 4 arace su 00 se è stato usato l'atiparassitario B? d) Qual è la probabilità totale che marciscao 4 arace su 00, essedo stato usato uo dei due atiparassitari? e) Qual è la probabilità che sia stato utilizzato l'atiparassitario A, avedo trovato 4 arace marce su 00 esamiate? ESERCIZIO 4. Il batterio Cloristridium botulium, resposabile della malattia mortale detta botulismo, è presete, se o si usa u opportuo trattameto, circa ell'% di u prodotto alimetare iscatolato. Il trattameto, se effettuato, garatisce la totale asseza del batterio. U ricercatore igora se su ua partita di cibo iscatolato sia stato effettuato il trattameto. Decide di assumere come equiprobabili i fatti che il trattameto sia stato effettuato oppure o. Mediate u'aalisi i grado di rilevare seza errori la preseza o meo del batterio i ciascua scatola, esamia 00 scatole ed i essua trova il batterio. a) Quato vale la probabilità del risultato sperimetale riscotrato ell'ipotesi che il trattameto o sia stato effettuato? b) Preso atto del risultato sperimetale riscotrato, quato vale la probabilità che il trattameto sia stato effettuato? c) Si ritiee che, alla luce del risultato del puto precedete e della gravità della malattia, si sia perveuti a ua situazioe di sufficiete garazia dell'asseza del batterio? I caso cotrario che cosa si ritiee opportuo fare.

5 Esperieze E. Esercizi co il calcolatore sulle fuzioi di probabilità e di distribuzioe cumulata esatte A Disegare diversi grafici relativi alla desità B(0,p) facedo variare p. Cosa si osserva per p=0.5? (commetare) Cosa si può dire cofrotado i grafici di B(0,0.2) e B(0,0.8)? (commetare) B Si sa che il 70% di ua certa varietà di bulbi di fiori fiorirà. Se si piatao 0 bulbi. ) Qual è la probabilità che: a) esattamete 3 fiorirao b) al più 6 fiorirao c) almeo 2 fiorirao. (risolvere l esercizio usado la fuzioe di distribuzioe cumulata) 2) Quato deve valere k, affiché la probabilità che fioriscao almeo k fiori piatado 00 bulbi sia maggiore dell'80%? C I u paese, il 35% degli elettori è a favore del cadidato A. I u seggio votao 200 persoe. Calcolare la probabilità che i quel seggio voti A o più del 70% degli elettori. Qual è il umero di voti a favore di A più probabile? D Data X ua variabile aleatoria co desità biomiale B(20,0.5). a) Determiare k tale che P(X>k) b) Utilizzado la simmetria del grafico della desità di X, per quali h, P( X-0 X > k) 0.25 Sarebbe altrettato "facile" rispodere ai puti precedeti se X ~ B(20,0.3)? E Data ua variabile aleatoria X co distribuzioe B(20,0.2). determiare media e mediaa di X; 2. come si può scegliere p, i modo che Y ~ B(20,p) abbia media maggiore a quella di X? 3. come si può scegliere p, i modo che Z ~ B(20,p) abbia mediaa maggiore a quella di X? 4. come si possoo scegliere e p, i modo che W ~ B(,p) abbia stessa media di X ma mediaa maggiore a quella di X? (Cofrotare i grafici delle rispettive desità trovate) F Sia X ~ B(0,0.3) e Y=X+4. Dire, se è possibile, i che relazioe stao fra loro: a) le medie e le mediae di X e Y; b) i grafici delle fuzioi cumulate di X e Y; c) i grafici delle desità di X e Y; d) le variaze di X e Y. E2. Esperieza. Simulazioe di ua variabile aleatoria biomiale come somma di variabili aleatorie di Beroulli ) Simulare u esperimeto biomiale, ad esempio il lacio di ua moeta regolare 0 volte (successo: TESTA codificato co, isuccesso: CROCE codificato co 0) Calcolare la somma dei successi (ovvero la somma dei risultati otteuti) 2) Ripetere l esperimeto per N=00 volte e determiare la distribuzioe dei successi i 0 laci otteuta sulle 00 ripetizioi la media dei successi lo scarto quadratico medio dei successi 3) Cofrotare i risultati sperimetali otteuti precedetemete co quelli teorici.

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Il risultato di una prova è un n. aleatorio Funzioni degli esiti: Ω IR X, Y, Z,... funzioni, X(ω), Y (ω), Z(ω)

Il risultato di una prova è un n. aleatorio Funzioni degli esiti: Ω IR X, Y, Z,... funzioni, X(ω), Y (ω), Z(ω) Variabili aleatorie (v.a.) Il risultato di ua prova è u. aleatorio Fuzioi degli esiti: Ω IR X, Y, Z,... fuzioi, X(ω), Y (ω), Z(ω) se B IR, P(X B) = = P({ω Ω : X(ω) B}) = P(X 1 (B)) I geerale iteressa B

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioi a.a. 2006/2007 C.d.L.: Igegeria per l Ambiete ed il Territorio, Igegeria Civile, Igegeria Gestioale, Igegeria dell Iformazioe C.d.L.S.: Igegeria Civile Estrazioi-II

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ (o modulo) - PROVA d esame del 6/06/200 - Laurea Quadrieale i Matematica - (Prof. Nappo) Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo essere giustificate

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Esercitazione n Supponendo che i giorni lavorativi in un anno siano 340, quanti chilometri percorre mediamente un tir in un anno?

Esercitazione n Supponendo che i giorni lavorativi in un anno siano 340, quanti chilometri percorre mediamente un tir in un anno? Esercitazioe.4 1 Applicazioi del TCL 1.1 Ua ditta di trasporti iterazioali possiede 100 tir dello stesso tipo. Ogi tir percorre ua media di 600 km al gioro co ua deviazioe stadard di 50 km. 1. Suppoedo

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Elementi di statistica descrittiva. Tabella dei dati :

Elementi di statistica descrittiva. Tabella dei dati : - - Elemeti di statistica descrittiva I dati riportati sotto si riferiscoo a 20 studeti uiversitari che frequetavao u corso di Statistica e soo stati raccolti facedo compilare ad ogi studete il seguete

Dettagli

Accenni al calcolo combinatorio

Accenni al calcolo combinatorio Accei al calcolo combiatorio Dario Malchiodi e Aa Maria Zaaboi ottobre 2017 Pricipio fodametale del calcolo combiatorio: se ci soo s 1 modi per operare ua scelta e, per ciascuo di essi, ci soo s 2 modi

Dettagli

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni.

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni. Ifereza Statistica L ifereza statistica cerca di risalire al modello del feomeo sulla base delle osservazioi No coosciamo il modello del feomeo cioè la vc X A volte la coosceza può essere parziale (coosciamo

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

(i) si calcoli la probabilità di non perdere soldi; P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

(i) si calcoli la probabilità di non perdere soldi; P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimaa 2 Esercizio 1. Si cosideri la seguete strategia per il gioco della roulette. Si scommette 1 sul rosso. Se esce rosso (si ricordi che la roulette è da 37 umeri, di cui 18 rossi e 18

Dettagli

T ) = q n 1 p n 1. q n = p/(1 q) = 1;

T ) = q n 1 p n 1. q n = p/(1 q) = 1; Distribuzioe geometrica Si lacia ua moeta o regolare P (T ) = p ; P (C) = q = p Ω = isieme ifiite successioi di T e C T = T all -mo lacio C = C all -mo lacio X =. laci fio alla 1 a T P (X = ) = P (CC }{{...

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI Esperimetazioi di Fisica 1 Prova scritta del 1 febbraio 2016 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 7 10/09/2015 1. (12 Puti) Quesito. La variabile casuale cotiua x ha ua distribuzioe

Dettagli

Esercitazione 1 del corso di Statistica (parte 2)

Esercitazione 1 del corso di Statistica (parte 2) Esercitazioe del corso di Statistica (parte ) Dott.ssa Paola Costatii Esercizio 7 Aprile 0 Il tempo di percorreza del treeo che collega la stazioe di Roma Termii co l aeroporto di Fiumicio è di 30 miuti

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono Prima Prova Itermedia testo co soluzioi 5 Aprile 09 Elemeti di Probabilità e Statistica, Laurea Trieale i Matematica, 08-9 M Romito, M Rossi Problema 0 Ua moeta equa viee laciata fio alla prima volta i

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezione del 10/12/2002

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezione del 10/12/2002 Esercitazioi di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dii Lezioe del 10/12/2002 1 Applicazioi del TCL 1.1 Ua ditta di trasporti iterazioali possiede 100 tir dello

Dettagli

Calcolo delle Probabilità Distribuzioni di probabilità

Calcolo delle Probabilità Distribuzioni di probabilità Calcolo delle Probabilità Distribuzioi di probabilità Istituzioi di Matematiche Scieze Naturali Sergio Cosole Tora alla prima pagia Distribuzioi di probabilità Facciamo u istogramma le cui barre rappresetao

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim Y557 - ESAME DI STATO DI LICEO SCIETIFICO PIAO AZIOALE DI IFORMATICA CORSO SPERIMETALE Tema di: MATEMATICA (Sessioe ordiaria 2002) QUESTIOARIO 1 Se a e b soo umeri positivi assegati quale è la loro media

Dettagli

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it Ifereza statistica Dal campioe alla popolazioe Co quale precisioe si possoo descrivere le caratteristiche di ua popolazioe sulla base

Dettagli

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Il Metodo dei Minimi Quadrati: Alcuni Esempi Svolti. Alessandro Zaccagnini

Il Metodo dei Minimi Quadrati: Alcuni Esempi Svolti. Alessandro Zaccagnini Il Metodo dei Miimi Quadrati: Alcui Esempi Svolti Alessadro Zaccagii alessadro.zaccagii@uipr.it 14 ottobre 5 Capitolo 1 Modelli lieari 1.1 Defiizioi Ricordiamo le defiizioi: soo date coppie di umeri reali

Dettagli

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizi di Probabilità e Statistica della 2 a settimaa (Corso di Laurea i Matematica, Uiversità degli Studi di Padova). Esercizio. Sia (Ω, A, P) uo spazio probabilizzato e B A o trascurabile. Dimostrare

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!)

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) Per fortua le cose o cambiao poi di molto visto che la uova variabile x µ s x co s x

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

PROBABILITÀ SCHEDA N. 3 VARIABILI ALEATORIE BINOMIALE E NORMALE. 1. La variabile aleatoria di Bernoulli e la variabile aleatoria binomiale

PROBABILITÀ SCHEDA N. 3 VARIABILI ALEATORIE BINOMIALE E NORMALE. 1. La variabile aleatoria di Bernoulli e la variabile aleatoria binomiale PROBABILITÀ SCHEDA N. 3 VARIABILI ALEATORIE BINOMIALE E NORMALE In questa scheda vedremo due famiglie di variabili aleatorie (una discreta e una continua), che ci serviranno per descrivere uno dei risultati

Dettagli

Probabilità II. Concetto di variabile casuale. Variabile casuale: definizione. Concetto di variabile casuale. Cos'è una variabile casuale?

Probabilità II. Concetto di variabile casuale. Variabile casuale: definizione. Concetto di variabile casuale. Cos'è una variabile casuale? Cocetto di variabile casuale Defiizioi pricipali. Valore atteso e Variaza. Probabilità II Variabili casuali discrete Teorema di Bieaymé - Čebičev. V.C. Notevoli: Beroulli e Biomiale. Cos'è ua variabile

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità C Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità C Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete modo: +1

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Ecoomiche, Aziedali e Statistiche Apputi del corso di Matematica Geerale Calcolo Combiatorio Ao Accademico 2013/201 V. Lacagia - S. Piraio

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Esercizi - Fascicolo VI

Esercizi - Fascicolo VI Esercizi - Fascicolo VI Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi sia compresa tra 0.49 e 0.5 sia

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzione

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzione Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzioe Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica Da u mazzo di carte (3 carte er quattro semi di cui due eri e due rossi, co 3 figure er ogi seme si estragga ua carta. Calcolare la robabilità che a si estragga u re ero b si estragga ua figura rossa,

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. CAPITOLO OTTAVO LE VARIABILI CASUALI Sommario:. Geeralità. -. La variabile casuale biomiale. - 3. La variabile casuale di Poisso. - 4. La variabile casuale ormale. 5. La variabile casuale chi-quadrato.

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità D

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità D Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità D Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete modo: +1

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli Esercitazioi del Corso di Probabilitá e Statistica Lezioe 6: Stime di parametri putuali e per itervalli Stefao Patti 1 19 geaio 005 Defiizioe 1 Ua famiglia di desitá f(, θ) ad u parametro (uidimesioale)

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO

ELEMENTI DI CALCOLO COMBINATORIO ELEMENTI DI CALCOLO COMBINATORIO 1 Elemeti di calcolo combiatorio Si tratta di ua serie di teciche per determiare il umero di elemeti di u isieme seza eumerarli direttamete. Dati elemeti distiti ci chiediamo

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioni

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioni Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioi Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

Lezione 4 Corso di Statistica. Francesco Lagona

Lezione 4 Corso di Statistica. Francesco Lagona Lezioe 4 Corso di Statistica Fracesco Lagoa Uiversità Roma Tre F. Lagoa (fracesco.lagoa@uiroma3.it) 1 / 23 obiettivi della lezioe familiarizzare co il calcolo e le proprietà della media aritmetica familiarizzare

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 3

Traccia delle soluzioni degli esercizi del fascicolo 3 Traccia delle soluzioi degli esercizi del fascicolo 3 Esercizio I ua procedura di cotrollo di produzioe, processori prodotti da u processo idustriale vegoo sottoposti a cotrollo Si assuma che ogi pezzo,

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Entropia ed informazione

Entropia ed informazione Etropia ed iformazioe Primi elemeti sulla teoria della misura dell iformazioe Per trasmettere l iformazioe è ecessaria ua rete di comuicazioe, che, secodo l approccio teorico di Claude E. Shao e Warre

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

PRIMA PROVA INTERMEDIA DI STATISTICA (COD /6045/5047/4038/371/377) 21 ottobre 2015 COMPITO B

PRIMA PROVA INTERMEDIA DI STATISTICA (COD /6045/5047/4038/371/377) 21 ottobre 2015 COMPITO B FIRMA DELLO STUDENTE Cogome PRIMA PROVA INTERMEDIA DI STATISTICA (COD. 30001/6045/5047/4038/371/377) 21 ottobre 2015 Nome Numero di matricola Corso di Laurea Cod. corso COMPITO B Ai fii della valutazioe

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 1 12/03/2015 Soluzioi del primo foglio di esercizi Esercizio 0.1. Ua classe di studeti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vegoo esposti i ua graduatoria

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A Uiversità degli Studi di Padova Corso di Laurea i Medicia e Chirurgia - A.A. 015-16 Corso Itegrato: Statistica e Metodologia Epidemiologica Disciplia: Statistica e Metodologia Epidemiologica Doceti: prof.ssa

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

Disposizioni semplici

Disposizioni semplici Disposizioi semplici Calcolo combiorio D, K ( ) ( )...( K+ ) co 0< K Di elemeti e K (umero urale) si dicoo disposizioi semplici di elemeti di classe K i raggruppameti otteuti scegliedo K elemeti tra gli

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea i Igegeria Iformatica Ao Accademico 26/27 Calcolo delle Probabilità e Statistica Matematica Nome... N. Matricola... Acoa, geaio 27. (8 puti) Si vuole stimare il parametro p di ua legge

Dettagli

1 Quesiti tratti dalla maturità

1 Quesiti tratti dalla maturità 1 Quesiti tratti dalla maturità Sperim PNI 2001 - Q8 Ua classe è composta da 12 ragazzi e 4 ragazze. Tra i sedici allievi se e scelgoo 3 a caso: qual è la probabilità che essi siao tutti maschi? Casi possibili:

Dettagli

Esercizi - Fascicolo III

Esercizi - Fascicolo III Esercizi - Fascicolo III Esercizio I ua procedura di cotrollo di produzioe, processori prodotti da u processo idustriale vegoo sottoposti a cotrollo Si assuma che ogi pezzo, idipedetemete dagli altri,

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6 X c () 0 0 0 0 t dx e x t altrove x e x x f x t x X = =4 =8 E[X] = Var[X] = Teorema Z, Z,, Z N(0 ; ) e idipedeti X= Z + Z + +Z c () Nota Esistoo tavole dei puti percetuali delle distribuzioi chi-quadro

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Daniela Tondini

Daniela Tondini Daiela Todii dtodii@uite.it Facoltà di Bioscieze e Tecologie agro-alimetari e ambietali e Facoltà di Medicia Veteriaria C.L. i Biotecologie Uiversità degli Studi di Teramo 1 La mediaa o valore mediao M

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

Esercitazione sette: soluzioni. H 1 : θ > 0.48 ( =

Esercitazione sette: soluzioni. H 1 : θ > 0.48 ( = Esercitazioe sette: soluzioi. { H0 : θ 0.48 H : θ > 0.48 a) La variabile Y ha ua distribuzioe beroulliaa di parametro θ. La desità appartiee alla famiglia espoeziale e possiamo vedere se è a rapporto di

Dettagli

= ed è: n. 2 2 x. tra ns x

= ed è: n. 2 2 x. tra ns x 0/9/6 Itroduzioe all aalisi di variaza: variaza etro e tra gruppi La procedura dell aalisi della variaza sfrutta il fatto che la variaza della popolazioe da cui, i base all ipotesi H 0, provegoo i campioi

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica La distribuzioe delle statistiche campioarie Matematica co elemeti di Iformatica Tiziao Vargiolu Dipartimeto di Matematica vargiolu@math.uipd.it Corso di Laurea Magistrale i Chimica e Tecologie Farmaceutiche

Dettagli

Programma della parte introduttiva: Lezione 4

Programma della parte introduttiva: Lezione 4 Programma della parte itroduttiva: Lezioe 4 Cap. 3 Presetazioe e cofroto tra misure Cap. 4 Propagazioe delle icertezze Cap 5 Misure ripetute e stimatori 1 Stimatori statistici Suppoiamo di aver sei misure,

Dettagli

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo Abbiamo visto che, data ua v.a. X di cui o si cooscao valore atteso e variaza, tali umeri si possoo stimare putualmete el seguete modo: si prede u casuale X 1,...,X di v.a. aveti la stessa legge di X;

Dettagli

Probabilità e Statistica (cenni)

Probabilità e Statistica (cenni) robabilità e Statistica (cei) remettiamo la distizioe tra i due cocetti: Defiizioe: dato il verificarsi di u eveto si defiisce la probabilità per l eveto cosiderato il rapporto tra il umero dei casi favorevoli

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50 Ua delle applicazioi della teoria delle proporzioi è la divisioe di u umero (o di ua gradezza) i parti direttamete o iversamete proporzioali a più umeri o a più serie di umeri dati. Tale tipo di problema

Dettagli

Tecnica delle misurazioni applicate LM - Esame del 26 febbraio 2013

Tecnica delle misurazioni applicate LM - Esame del 26 febbraio 2013 Tecica delle misurazioi applicate LM - Esame del 6 febbraio 013 Problema 1. La FisioDorica SpA è u impresa che produce prodotti farmaceutici. L Avv. Tizio, AD della società, sta valutado la opportuità

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli