d-d' 2 d-d' 2 Fig. 8.1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "d-d' 2 d-d' 2 Fig. 8.1"

Transcript

1 8. PRESSOFLESSIOE Una zion è oggtta a orzo normal ccntrico quano il itma i orz trn ch ollcita la zion i riuc a una ola orza aial applicata in un punto P, appartnnt all a i immtria lla zion (pro-lion rtta Fig. 8.1), itinto al aricntro gomtrico G c lla zion i calctruzzo. Dtta l ccntricità, è poiil tralar la nl aricntro G c, aggiungno la coppia i traporto =. In tal moo l u componnti lla ollcitazion (, ) ono lgat tra loro al paramtro. In gnral ulla zion poono agir contmporanamnt uno orzo aial aricntrico un momnto lttnt l tutto inipnnti tra loro. Riulta comunqu comoo, anch in quto cao, immaginar ch lo tato i ollcitazion caturica a uno orzo aial ccntrico lla quantità = h ' ' ' Fig ' -' =. P A' G c A u O' u l Capitolo 6 ono tat motrat l moalità pr la cotruzion lla rontira i rottura o curva i intrazion i una zion in calctruzzo armato i agnat carattritich gomtrich mccanich; a è il luogo i punti l cui coorinat ( R, R ) rapprntano tati i ollcitazion limit pr la zion, oia ituazioni i crii. Praltro, i conirano, oltr all ituazioni i rottura vit allora, anch qull ch prvono il raggiungimnto ll allungamnto limit u nll armatura uprior o l accorciamnto limit cu nlla ira i cl inrior (Fig. 8.), è poiil cotruir compltamnt la rontira i rottura la qual racchiu al uo intrno il ominio too miproailitico agli tati limit 8

2 ammiiil lla zion, oia il luogo i punti rapprntativi i tati i ollcitazion ammiiili pr la zion (Fig. 8.3). h ' ' A' A A a c u c O c x cu C B A' a c' ' u c' ' O x ' ' c C' cu B' Fig. 8. C D R S r B A S E B' R E' F (>0 compr.) C' D' Fig. 8.3 La rontira i rottura è una curva chiua conva. Ea ipn all carattritich gomtrich lla zion i calctruzzo, alla poizion al quantitativo i armatura in a prnt, all carattritich mccanich l cl ll acciaio. La ua orma varia in unzion lla cora riptto alla qual i prim l quazion i quilirio alla rotazion. Aiamo già anticipato ch la rottura lla zion pr prolion può avri nzialmnt ni campi, 3, 4 5, mntr pr tnolion ni campi 1,, 3 4. too miproailitico agli tati limit 83

3 S il punto rapprntativo llo tato i ollcitazion S ( ; ) è intrno alla rontira i rottura, la vriica è poitiva, oia ci i trova in conizioni i icurzza (Fig. 8.3). Tal procimnto richi, pr ttuar la vriica lla zion, la conocnza l ominio i rottura. È poiil prò ttuar la vriica nza cotruir l intra rontira i rottura, utilizzano un mtoo mpliicato. Eo i aa ull gunti ipoti: - i carichi crcano proporzionalmnt cono un unico attor α; - l ollcitazioni crcano proporzionalmnt ai carichi (analii linar). Da qut ipoti congu ch il punto rapprntativo llo tato i ollcitazion i muov, al variar l attor i carichi α, lungo la mirtta OS i pnnza ino al raggiungimnto lla rontira i rottura in corriponnza l punto S r ( R, R ). La vriica conit nl controllar ch: oppur: R R. Qualora l utt ipoti i crcita proporzional i carichi ll ollcitazioni non ovro riultar vali, una volta raggiunto il punto S (, ) tato i ollcitazion limit latico, all incrmntari i carichi ll ollcitazioni, il punto tato i ollcitazion guirà prcori non più linari incontrrà la rontira i rottura in un punto S r non iniviuail a priori, ma olo attravro un procimnto incrmntal ino alla crii (Fig. 8.4). S r S Fig. 8.4 Ritnno allora vali l prcnti ipoti, è ncario quini iniviuar la coppia i ollcitazioni R R tali ch = R =. R too miproailitico agli tati limit 84

4 Ciò quival a imporr ch, riptto al cntro i ollcitazion P riulti: P = 0. lla crittura i qut ultima quazion i può aumr inirntmnt com vro poitivo i momnti qullo orario o antiorario. = R R R R R h ' ' -' -' ' P A' G c A u O' u Fig. 8.5 Aumno pr mpio poitivo il vro orario, con ririmnto alla Fig. 8.5, rapprntativa i una gnrica ituazion limit, tnno prnt ch riulta = in quanto R >0 prché i comprion R >0 prché tn l ir inriori, ch h u = > 0, tta quazion ivnta: R R > r 0 O c4 x ' [ + u] F' ( ' + u) F ( + u) 0 P = C (x)x =. Si riportano i guito la vriica il progtto i una zion rttangolar oppiamnt armata, ovno prvr, com prcritto alla ormativa Tcnica, almno una arra armatura pr ogni pigolo lla zion. Praltro è opportuno orvar ch la ollcitazion i prolion riguara nzialmnt i pilatri i una truttura intlaiata in c.a.. E ncario prtanto prvr la oppia armatura in quanto pr tto i carichi orizzontali (vnto o ima), ch poono invrtir il vro lla loro azion, i può avr una invrion anch nl gno i momnti ollcitanti. E comunqu conigliail, in gnral, ch l armatura i pilatri ia immtrica (A =A ) in moo a vitar groolani rrori i poizionamnto ll arr in opra. cu B x (x)x c F F' C (x)x too miproailitico agli tati limit 85

5 8.1. Progtto lla zion (too Analitico) l prolma i progtto lla zion proinla i ati ono: l carattritich mccanich i matriali: ck, yk ; lo tato i ollcitazion agnt: (, ), oppur (, ); il valor l coprirro aimnionalizzato: L incognit invc ono: δ = '. - l imnioni gomtrich lla zion: h (ovvro l altzza util =h- ); - l ar i acciaio to compro: A A ; - la rtta i rottura, ovvro il valor i x ( ) a a rlativo. L quazioni a ipoizion ono u: - quilirio alla tralazion cono la irzion i ll riultanti ll orz intrn: = C - F - F (8.1) - quilirio alla rotazion riptto alla rtta paant pr il punto P i applicazion i ortogonal all a i immtria: [ + u] F' ( ' + u) F ( + u) 0 P = C (x) x = (8.) Di congunza è ncario iar prvntivamnt tr ll cinqu incognit. Si iano: pr ripttar, ov poiil, la conizion i uttilità (rtano coì iati i valori i α ( ), ( ), σ σ ); ' µ= A / A = ρ /ρ; (pr l travi mrgnti) ovvro (pr l travi piatt). In initiva rtano l gunti incognit: (, A ) pr l travi piatt oppur (, A ) pr l travi mrgnti. Si riportano i guito l prioni ll tnioni nll u armatur pr ciacun campo i rottura l prioni i α () ( ) già ricavat nl Cap. 6 in unzion l paramtro. Campo = α = α() - = () = 1 ( ) α = 0 c = c4 u 1 - A ta nrvata = u σ = k (k=1 pr tracurar l incruimnto) too miproailitico agli tati limit 86

6 δ - A ta ' = u 1 σ' σ' = E = ' ( k 1) ' u + 1 ' ' > Campo 3 = α = α() = = ( ) = c 0 = 1 - A ta nrvata = cu - A ta o compra σ = k 1 ( ) u + 1 δ ' = cu σ' σ' = E ' = gn( ' ) ( k 1) ' u + 1 ' ' > Campo 4 =.65 = 1+ δ 0 - α = α() = = ( ) = A ta o compra latica = cu σ = E δ - A compra nrvata ' = cu σ ' = gn( ' ) ( k 1) + 1 ' u Campo 5 = 1+ δ < + - α = α() = 1+ δ pr 1+ δ ( 1+ δ) - α = α() - = () 1+ δ = ( ) α = pr ( + δ) too miproailitico agli tati limit 87

7 - A compra 1 = c 3 ( 1+ δ) 7 σ σ = E = gn ( ) ( k 1) u + 1 > - A compra nrvata ' δ = c ' = gn( ' ) ( k 1) ( 1+ δ) u 7 ' σ. Si amina olo il cao ll travi mrgnti. Ricorano ch: h + ' ' u = = = 1 + = 1 ( + δ) congu: ' + u = ( 1 δ) + u = + ( 1 δ). L quazioni i quilirio (8.1) (8.) i crivono più tamnt nl moo gunt: P = α = α ( ) c µ A σ' A σ () () + ( 1+ δ) µ A σ' ( 1 δ) A σ + ( 1 δ) c = 0. Il procimnto più mplic pr riolvr il prcnt itma conit nl ricavar l prion i A alla prima quazion in unzion ll altra incognita nl otituir tal prion nlla cona quazion. Una ituazion particolar i ricontra, nl cao i µ=1, nl ottocampo 3 in cui ntram l armatur ono nrvat (pr k=1, σ =, σ =- ). La prima quazion inatti ivnta = 0.8 ornic irttamnt l prion ll altzza util. Dalla cona quazion i ricava l ara A ll armatura. c too miproailitico agli tati limit 88

8 8.. Vriica lla zion (too Analitico) l prolma lla vriica a prolion i una zion rttangolar con oppia armatura i ati ono: il momnto lttnt i calcolo lo orzo normal i calcolo ricavati in a alla cominazion i carico ornita alla normativa (oppur lo orzo normal i calcolo l ccntricità l uo punto i applicazion P riptto al aricntro lla zion i calctruzzo G c ); l carattritich gomtrich lla zion:, h,, ; l carattritich mccanich i matriali: ck, yk ; l ar ll armatur mtallich: A, A. L incognit ono: - la rtta i rottura, ovvro il valor i x a a corriponnt; - il valor limit llo orzo normal R (oppur l momnto ritnt R ). La vriica è oiatta : oppur: Si proc com gu: R R. - i valutano c,, ; - i ipotizza ch la rottura avvnga in un trminato campo: riultano prtanto not l lggi i α (x), (x) i particolarizzano l prioni ll tnioni σ ' iano latich o nrvat, in trazion o in comprion; σ a cona ch - i ricava, attravro l quazion i quilirio P =0, il valor i x rlativo alla rtta i rottura; - i controlla ch il valor i x ottnuto rintri nll intrvallo ch inic il campo clto; - i valuta lo orzo normal limit R = C F F (o il momnto ritnt R riptto al aricntro lla zion i cl) i gu il conronto. La clta l campo è guiata alla poizion l punto P; inatti P è intrno alla zion la clta i orinta vro i Campi 4 5; man mano ch P i allontana al aricntro G c lla zion i cl, la rtta i rottura i pota mpr più vro i Campi 3. too miproailitico agli tati limit 89

N (>0 compr.) 6. SOLLECITAZIONI RESISTENTI NEI CAMPI DI ROTTURA

N (>0 compr.) 6. SOLLECITAZIONI RESISTENTI NEI CAMPI DI ROTTURA 6. SLLEITZINI RESISTENTI NEI PI DI RTTUR Dfiniti i campi i rottura è util, prima i affrontar i prolmi i progtto vrifica ll zioni, trminar pr l rtt i rottura in cian campo l riultanti i momnti riultanti

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIOE ORMALE Prma Principali carattritich dlla curva normal La curva normal tandardizzata Prma Un tipo molto important di ditribuzion di frqunza è qulla normal. Quta ditribuzion è particolarmnt

Dettagli

Come deve essere fatto il blocco G affinche il sistema sia di tipo K?

Come deve essere fatto il blocco G affinche il sistema sia di tipo K? # CONDIZIONI SULLE TRASFERENZE ASSOCIATE A PARTI DEL SISTEMA AFFINCHE QUESTO SIA DI TIPO # Fino a ora abbiao ainato la F. i T. W(, print globalnt la rlazion ingro-ucita, nza tnr conto lla truttura fback

Dettagli

Nel primo caso: 0, 025m 2,5cm F2 2. Da cui x x1 x2 0, 025 0, 0125m 0, 0375m 2,5 1. 0,0125m 1, 25cm

Nel primo caso: 0, 025m 2,5cm F2 2. Da cui x x1 x2 0, 025 0, 0125m 0, 0375m 2,5 1. 0,0125m 1, 25cm Nl primo cao: k x 1 1 1,5 k 20 1 x1 0, 075m 7,5cm kx 2 2 0,5 k 20 2 x2 0, 025m 2,5cm Da cui x x1 x2 0, 075 0, 025m 0,10m 10cm k x 1 2 2 x 0,10m 10cm k k 20 1 2,5 k1 x1 x1 0, 025m 2,5cm k 100 1 2,5 k2 x2

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma 1) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma ) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del Soluzion rcizio L quazioni dinamich dl itma ono: art lttrica: di v Ri + L + ω dt dov ω è la forza controlttromotric. art mccanica: dω J ϑ βω + i dt dϑ ω dt dov Jl M è il momnto d inrzia dl itma a du ma.

Dettagli

Corso di Tecnica delle Costruzioni (Canale A) Esercizio 19 Novembre 2015

Corso di Tecnica delle Costruzioni (Canale A) Esercizio 19 Novembre 2015 Corso di Tcnica dll Costruzioni (Canal A) Esrcizio 9 Novmr 0 Progttar l union ullonata trav-trav con corigiunti d ala d anima. Sollcitazioni: VEd 80kN, M 60kNm Ed Dati Matrial: acciaio: tnsion di snrvamnto

Dettagli

SEGNALI E SISTEMI PASSA-BANDA

SEGNALI E SISTEMI PASSA-BANDA SEGNALI E SISTEMI PASSA-ANDA Componnti a runz poitiv ngativ. Si conidri un gnal ) t ral la cui traormata di Fourir è rapprnta in Fig.. S ) S ) S ) Nll analii di gnali è talvolta util introdurr l grandzz

Dettagli

Ricorsione e gettoni di due colori Seconda Parte

Ricorsione e gettoni di due colori Seconda Parte Ricorion gttoni di du colori Sconda Part Gia vito nlla prima part Nlla prima part i vito com ricavar l funzioni gnratrici di probabilita aociat al proco dl lancio riptuto di un gtton bicolor {RN} ino al

Dettagli

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 14 Lezione 15

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 14 Lezione 15 Argomnto 8 ion 4 ion 5 Francca Apollonio Dipartimnto nggnria Elttronica E-mail: in di tramiion Formalimo utiliato pr lo tudio di fnomni di propagaion: toria dll lin di tramiion a toria dll lin di tramiion

Dettagli

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCHINE ELETTRICHE Macchin Sincron Stfano Pator Dipartimnto di Inggnria Architttura Coro di Elttrotcnica (IN 04) a.a. 2012-1 Introduzion I gnratori i motori incroni ono formati da du parti: Induttor (part

Dettagli

VERIFICA A PRESSOFLESSIONE ALLO SLU DI SEZIONI IN C.A.

VERIFICA A PRESSOFLESSIONE ALLO SLU DI SEZIONI IN C.A. PROGETTO DI STRUTTURE - Ing. F. Paolacci - A/A 9-1 ESERCITAZIONE N 1 VERIFICA A PRESSOFLESSIONE ALLO SLU DI SEZIONI IN C.A. Si eve realizzare un eiicio con truttura portante cotituita a una erie i telai

Dettagli

trafer pilastri armati manuale di progettazione

trafer pilastri armati manuale di progettazione trar pilatri armati manual di progttazion RDB SpA Via dll Edilizia, 1 ~ 291 Pontnur PC ~ Tl. 523/518.1 ~ Fa 523/51827 www.rd.it ~ -mail: inord@rd.it Frrir Nord SpA 331 Ooppo UD ~ Tl. 432/981811 ~ Fa 432/9818

Dettagli

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace...

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace... Appunti di Controlli Automatici Capitolo - part I Traformata di aplac Introduzion ai gnali (cauali, rgolari, di ordin ponnzial)... Il gnal di Havyid... 3 Dfinizion di traformata di aplac... 3 PROPRIETÀ

Dettagli

GLI STATI LIMITE PER SOLLECITAZIONI NORMALI

GLI STATI LIMITE PER SOLLECITAZIONI NORMALI Coro ulle Norme Tecniche per le cotruzioni in zona imica (Oinanza PCM 3274/2003, DGR ailicata 2000/2003) POTENZA, 2004 GLI STATI LIMITE PER SOLLECITAZIONI NORMALI Prof. Ing. Angelo MASI DiSGG, Univerità

Dettagli

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI UNIVERSITA DEGLI STUDI DELLA BASILICATA Coro di TECNICA DELLE COSTRUZIONI LO STATO LIMITE ULTIMO PER TENSIONI NORMALI Docente: Collaboratori: Pro. Ing. Angelo MASI Ing. Giueppe SANTARSIERO Ing. Vincenzo

Dettagli

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI UNIVERSITA DEGLI STUDI DELLA BASILICATA Coro di FONDAMENTI DI TECNICA DELLE COSTRUZIONI LO STATO LIMITE ULTIMO PER TENSIONI NORMALI Docente: Collaboratori: Pro. Ing. Angelo MASI Ing. Giueppe SANTARSIERO

Dettagli

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT 2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT Mntr il 1 principio rapprnta la conrazion dll nrgia, il 2 principio riguarda la maima quantità di calor ch può r conrtita in laoro. Alcun dfinizioni: Proco

Dettagli

Prova scritta di elementi di fisica

Prova scritta di elementi di fisica Unirità gli Stui i Macrata Coro i laura magitral in Scinz lla Formazion Primaria LM-85bi 7 ttmbr 015 Nom cognom: Proa critta i lmnti i fiica Con azio i frnata intniamo lo azio ch un auto rcorr all inizio

Dettagli

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura Univerità degli Studi di Roma Tre Coro di Progetto di trutture - A/A 2008-0909 Stato limite ultimo di ezioni in c.a. oggette a preoleione SLU per ezioni rettangolari in c.a. con doppia armatura determinazione

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

LEZIONE N 1. Richiami sui metodi di misura della sicurezza Metodo delle tensioni ammissibili Metodo semiprobabilistico agli stati limite

LEZIONE N 1. Richiami sui metodi di misura della sicurezza Metodo delle tensioni ammissibili Metodo semiprobabilistico agli stati limite LEZIONE N 1 Richiami ui metodi di miura della icurezza Metodo delle tenioni ammiibili Metodo emiprobabilitico agli tati limite Stato limite ultimo di ezioni in c.a. oggette a preofleione SLU per ezioni

Dettagli

Lezione 10. Prestazioni statiche dei sistemi di controllo

Lezione 10. Prestazioni statiche dei sistemi di controllo zion Prtazioni tatich di itmi di controllo Error a tranitorio aurito prtazioni tatich di un itma di controllo fanno rifrimnto al uo comportamnto a tranitorio aurito oia alla ituazion in cui il itma dopo

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trapzoiali L cinghi trapzoiali sono utilizzat frquntmnt pr la trasmission i potnza Vantaggi Basso costo Smplicità i installazion Capacità i assorbir vibrazioni torsionali picchi i coppia

Dettagli

Le caratteristiche di questi campi sono:

Le caratteristiche di questi campi sono: CEENTO RTO PPLICZIONI SULL FLESSIONE RETT SEPLICE Le poiili conigurazioni eormate che i hanno nella leione (emplice o compota) ono compree nei campi i rottura, 3, 4, che ono iniviuati alla poizione ell'ae

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Interazioni Elettrodeboli. Lezione n. 17. Correnti di SU(3) Interazioni di neutrini Difficoltà dell'interazione di Fermi

Interazioni Elettrodeboli. Lezione n. 17. Correnti di SU(3) Interazioni di neutrini Difficoltà dell'interazione di Fermi Intrazioni Elttroboli prof. Francco Ragua Univrità i Milano Lzion n. 7 5..07 Corrnti i SU() Intrazioni i nutrini Difficoltà ll'intrazion i Frmi anno accamico 07-08 Th Eightfol Way La prolifrazion i particll

Dettagli

LA VERIFICA E IL PROGETTO CONDIZIONATO DELLA SEZIONE INFLESSA CON ARMATURA SEMPLICE

LA VERIFICA E IL PROGETTO CONDIZIONATO DELLA SEZIONE INFLESSA CON ARMATURA SEMPLICE LEZIONI N 37 E 38 LA VERIFICA E IL PROGETTO CONDIZIONATO DELLA SEZIONE INFLESSA CON ARMATURA SEMPLICE VERIFICA DELLA SEZIONE INFLESSA DUTTILE Dopo il cao particolare della rottura bilanciata, conideriamo

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Risposte ai quesiti della prova scritta di elementi di fisica

Risposte ai quesiti della prova scritta di elementi di fisica Unirità gli Stui i Macrata Coro i laura magitral in Scinz lla Formazion rimaria LM-85bi 7 ttmbr 2015 Riot ai quiti lla roa critta i lmnti i fiica Con azio i frnata intniamo lo azio ch un auto rcorr all

Dettagli

4 Lezione STATI LIMITE ULTIMI : Flesione Semplice e Composta

4 Lezione STATI LIMITE ULTIMI : Flesione Semplice e Composta 4 Lezione SI LIIE ULII : Fleione Semplice e ompota ichelangelo Laterza La valutazione ella icurezza Stati limite ultimi Ipotei i ae a) legami cotitutivi non-lineari con eormazioni maime limitate (ia per

Dettagli

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI UNIVERSIT DEGLI STUDI DELL BSILICT Coro di TECNIC DELLE COSTRUZIONI LO STTO LIMITE ULTIMO PER TENSIONI NORMLI Docente: Pro. Ing. ngelo MSI Collaboratori: Ing. Giueppe SNTRSIERO Ing. Vincenzo MNFREDI Ing.

Dettagli

Un modello microplane modificato per la risposta del calcestruzzo nel piano

Un modello microplane modificato per la risposta del calcestruzzo nel piano Un modllo croplan modificato pr la ripota dl calctruzzo nl piano Paolo Tortolini, Marco Ptrangli, Enrico Spacon PRICOS Facoltà di Architttura di Pcara, Univrità G. D Annunzio Chiti - Pcara ANIDIS009BOLOGNA

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

Appunti ed esercitazioni di Microonde 3

Appunti ed esercitazioni di Microonde 3 Appunti d rcitazioni di Microond Progttar un adattator a triplo tu in grado di adattar un carico Y.6-. Ω -. impdnza dlla lina, uppota priva di prdit, è Zc5Ω in tutti i tratti, mntr l impdnza dlla lina

Dettagli

ESERCIZIO 1 L/2 C.R. D

ESERCIZIO 1 L/2 C.R. D SRIZIO Il itema di corpi rigidi in figura è oggetto ad uno potamento impreo (cedimento), in direzione verticale e vero il bao, in corripondenza del vincolo in. Si vuole determinare la nuova configurazione

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 29/09/2006(ESEMPIO)

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 29/09/2006(ESEMPIO) PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 9/09/00(ESEPIO) Eercizio n 1 Sia data la trave appoggiata in figura, di luce l = 8,00 m, larghezza B = 0 cm e altezza H = 80 cm. Il carico applicato, uniformemente

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 16/02/2007

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 16/02/2007 PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 16/02/2007 Eercizio n 1 Sia ata una trave continua i cemento armato a ue campate i luci L 1 = 5,00 m e L 2 = 6.00 m. La trave, alta 60 cm e larga 30, ha ezione

Dettagli

SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6

SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6 73 Sezioe a T a emplice armatura Le travi i ca co ezioe a T o a L, co oletta i compreioe, oo origiate alla collaorazioe tra la trave rettagolare e ua parte ella oletta egli impalcati egli eiici (Fig 76)

Dettagli

Le novità della nota del MIUR n

Le novità della nota del MIUR n L novità dlla nota dl MIUR n. 29748.27-06-2018. > 1) Font» d wb_miur_n29748-18_2018-06-30» Minitro dll Itruzion, dll Univrità dlla Ricrca Dipartimnto pr il itma ducativo di itruzion di formazion Dirzion

Dettagli

( D) =,,,,, (11.1) = (11.3)

( D) =,,,,, (11.1) = (11.3) G. Ptrucci Lzioni di Cotruzion di Macchin. CRITERI DI RESISTENZA La vrifica di ritnza ha o copo di tabiir o tato tniona d mnto truttura anaizzato è ta da provocarn i cdimnto into com rottura o nrvamnto.

Dettagli

Soluzioni scritto 29/01/08

Soluzioni scritto 29/01/08 Solzioni scritto 29/1/8 1. Al collir simmtrico + Lp2 vnivano tilizzati i fasci i 13 GV con lo scopo i prorr, tra l altr cos, il boson i Higgs H nlla razion + ZH. Sapno ch la massa l bozon Z è i 91. 2 GV,

Dettagli

Sommario. Premessa... 2 Scelta dei materiali... 2 Definizione dimensioni e carichi Predimensionamento... 3

Sommario. Premessa... 2 Scelta dei materiali... 2 Definizione dimensioni e carichi Predimensionamento... 3 Soario Pra... Slta di atriali... Dinizion dinioni arihi... 3 Prdinionanto... 3 nalii di arihi alolo dll ollitazioni... 5 Progtto dllo orzo di proprion... 5 Slta dipoizion di avi... 7 Fuo di Guyon... 7

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognom Nom: Numro i Mariola: Progazion i Algorimi Anno Aamio 2016/2017 Appllo l 10/7/2017 Spazio rirao alla orrzion 1 2 3 4 Toal /20 /35 /20 /25 /100 1.Grafi a) Fornir lo puooi un algorimo riorio h in

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Commessa N. Foglio 1 di 6 Rev A. Titolo commessa. Redatto da JG/AO Data Febraio Verificato da GZ Data Marzo 2006

Commessa N. Foglio 1 di 6 Rev A. Titolo commessa. Redatto da JG/AO Data Febraio Verificato da GZ Data Marzo 2006 Comma N. Foglio 1 di 6 Rv A Titolo comma Stainl Stl Valoriation Projct mio di rogtto 11 Dimnionamnto dlla lamira grcata r una cortura a du luci Rdatto da JG/AO Data Fraio 006 Vrificato da GZ Data arzo

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

Stati limite nel cemento armato Stato limite ultimo per tensioni normali: applicazioni BOZZA

Stati limite nel cemento armato Stato limite ultimo per tensioni normali: applicazioni BOZZA Lezione n. 1 Stati limite nel cemento armato Stato limite ultimo per tenioni normali: applicazioni Nel eguito i riportano alcuni eempi di applicazione delle procedure decritte nel paragrao precedente.

Dettagli

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6 Lzion 6. Sabilià maric A ni imi LTI F.Prvidi - Fondamni di Auomaica - Lz. 6 Schma dlla lzion A. Sudio dlla maric pr. Tormi ulla abilià di imi LTI. Rgion di ainoica abilià. Criri di abilià baai ulla maric

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Strutture dati per insiemi disgiunti

Strutture dati per insiemi disgiunti Sopo Struttur ati pr insimi isiunti Gstir in moo iint una ollzion S = {S 1, S 2,..., S k } i insimi isiunti qualora l sol oprazioni onsntit siano: 1) rar un nuovo insim ontnnt un solo lmnto (tal lmnto

Dettagli

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ]

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ] 41 1. Calcolo dell armatura longitudinale delle travi in funzione delle azioni riultanti dall analii; 2. Calcolo dell armatura a taglio delle travi in funzione del taglio dovuto ai momenti reitenti delle

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Calettatori per attrito SIT-LOCK

Calettatori per attrito SIT-LOCK 3_Trasmissioni irtt_t_coici_cat:1_giunti i trasm_xp5.qx 04/08/2010 09:55 Pagina ST-OCK Calttatori pr attrito ST-OCK ST-OCK 14 - Pr strni calttatori pr strni lla sri 14 utilizzano un singolo anllo conico

Dettagli

ESPERIMENTO DELLA LENTE E DELLA CANDELA

ESPERIMENTO DELLA LENTE E DELLA CANDELA S.S.I.S. a.a. 003-004 RELAZIONE di Laboratorio di Didattica dlla Fisica (Esprimnto dlla lnt dlla candla) di MARIA LEPORE SARA MARSANO I anno, Classi 47-48-59 Pro.ssa Tuccio SSIS a.a. 003-004 Laboratorio

Dettagli

Esercitazione 05: Collegamenti bullonati e saldature

Esercitazione 05: Collegamenti bullonati e saldature Meccanica e Tecnica delle Cotruzioni Meccaniche Eercitazioni del coro. Periodo II Prof. Leonardo BERTINI Ing. Ciro SNTUS Eercitazione 05: Collegamenti bullonati e aldature Indice 1 Collegamenti bullonati

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

Progettazione di Algoritmi Anno Accademico 2018/2019 Appello del 8/11/2018 (6 CFU)

Progettazione di Algoritmi Anno Accademico 2018/2019 Appello del 8/11/2018 (6 CFU) Cognom Nom: Numro i Mariola: Spazio rirao alla orrzion 1 2 3 4 Toal /25 /30 /20 /25 /100 1.Grafi a) Fornir lo puooi un algorimo riorio h in O(n+m) roa l orinamno opologio i un DAG. Oorr aggiungr allo puooi

Dettagli

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011 sam i Fisica orso ntratno i ng. nformatica Biomica 7 Problma Sia ato un filo conuttor tituito a u lunghi fili rttilini raccorati a un tratto smicircolar i raggio, com rapprsntato in figura. l filo è prcorso

Dettagli

PROGETTO E VERIFICA DELLE ARMATURE LONGITUDINALI DELLE TRAVI IN C.A. SOLUZIONI

PROGETTO E VERIFICA DELLE ARMATURE LONGITUDINALI DELLE TRAVI IN C.A. SOLUZIONI Laurea in Ingegneria Civile PROGETTO E VERIFICA DELLE ARMATURE LONGITUDINALI DELLE TRAVI IN C.A. SOLUZIONI 1) Si conideri la truttura in c.a. rappreentata in figura. Ea è oggetta ad un carico uniformemente

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognom Nom: Numro i Mariola: Spazio rirao alla orrzion 1 2 3 4 Toal /25 /30 /20 /25 /100 1. Grafi a. Si ria lo puooi ll'algorimo BFS h uilizza un array Dior un array L, om illurao nl liro i o i analizzi

Dettagli

6 Lezione. STATI LIMITE: Esempi di progetto/verifica

6 Lezione. STATI LIMITE: Esempi di progetto/verifica 6 Lezione STATI LIMITE: Eempi di progetto/veriica SLU Applicazioni Progetto della ezione in c.a. PROBLEMA N. 1 40 Determinare: 1) Il valore dell armatura bilanciata. ) Il momento ultimo a leione emplice

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

12. Cenni ai metodi numerici di risoluzione

12. Cenni ai metodi numerici di risoluzione nni ai mtodi numrii di rioluzion 77. nni ai mtodi numrii di rioluzion.. Gnralità La ran part di nomni iii è dritta da quazioni dirnziali po non poono r riolt in orma iua. nario quindi viluppar dll tni

Dettagli

Momento torcente trasmissibile da 10 KNm a 1120 KNm. Versioni con corsa standard ed extra allungamento. Versione fissa, giunto doppio e semplice.

Momento torcente trasmissibile da 10 KNm a 1120 KNm. Versioni con corsa standard ed extra allungamento. Versione fissa, giunto doppio e semplice. Allungh Cardanich Ecuzioni Sri TSM Tramiioni con crocira a rullini rulli, flang a norm SAE / DIN, tuo di collgamnto maggiorato. Ecuzioni cora tandard con ghira di frmo. Vrioni alto allungamnto con protzion

Dettagli

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015 L soluzioni dlla prova scritta di Matmatica dl 9 Giugno. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disgnini, quali sono gli intrvalli in cui è positiva

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

Momento Massimo in campata M d [kn m] =

Momento Massimo in campata M d [kn m] = PRO INTERORSO N el 15.5. ESERIZIO N 1 Traccia on riferimento alla truttura i c.a. in figura, ollecitata a un carico uniformemente ripartito il cui valore i calcolo (incluo il peo proprio ella trave) è

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle otruzioni La fleione compota Verifica di ezioni oggette a fleione compota Fleione compota 1 tadio (Formule di Scienza delle otruzioni) on riferimento alla ezione omogeneizzata vale

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 : A R R A ' Funzioni Continu La unzion si dic continua in ( ( s ( solo s A N sguono tr proprità ainché ( sia continua in :. Dvono sistr initi il it dstro sinistro di ( in. Tali iti dvono ssr uguali tra

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare Funioni Linari tra Spai Vttoriali D. Siano V V du spai vttoriali sia : V V. è dtta FUNZIONE LINEARE s: v, v V, k R si ha : v v v additività v kv k omognità v Oppur con l unica proprità: v v v v Nota Com

Dettagli

Soluzioni dei Problemi di controllo

Soluzioni dei Problemi di controllo Soluioni i roblmi i ontrollo Si v raliar un sistma i ontrollo i tipo on transitorio h si annulli in tmpo finito minimo Dato h la ha già un polo in non è nssario introurn altri pr mo l ontrollor G r ottnr

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Misure alla risonanza Z. Studio dei risultati di LEP I per la determinazione di alcuni parametri del Modello Standard

Misure alla risonanza Z. Studio dei risultati di LEP I per la determinazione di alcuni parametri del Modello Standard Miur alla rionanza Studio di riultati di LEP I pr la dtrminazion di alcuni paramtri dl Modllo Standard Sommario Introduzion Slzion di vari tipi di vnti L zioni d urto cluiv Miur dll carattritich dllo maa,

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

a) Caso di rottura duttile con armatura compressa minore di quella tesa

a) Caso di rottura duttile con armatura compressa minore di quella tesa LEZIONI N 39 E 40 FLESSIONE SEMPLICE: LA DOPPIA ARMATURA E LA SEZIONE A T LA VERIFICA DELLA SEZIONE INFLESSA CON DOPPIA ARMATURA a) Cao di rottura duttile con armatura comprea minore di quella tea Si può

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Effect of secondary cracks on the behaviour of an r.c. tie in service Effetto delle fessure secondarie sul comportamento di un tirante in c.a.

Effect of secondary cracks on the behaviour of an r.c. tie in service Effetto delle fessure secondarie sul comportamento di un tirante in c.a. Effct of condary crack on th bhaviour of an r.c. ti in rvic Efftto dll fur condari ul comportamnto di un tirant in c.a. M. Taliano Dpartmnt of Structural, Gotchnical and Building Enginring, Politcnico

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

UNIVERSITA DEGLI STUDI DI ROMA TRE Facoltà di Architettura Laboratorio di Costruzione dell Architettura 2 (A B C) Esercizio A

UNIVERSITA DEGLI STUDI DI ROMA TRE Facoltà di Architettura Laboratorio di Costruzione dell Architettura 2 (A B C) Esercizio A UIVERSIT DEGLI STUDI DI ROM TRE Facoltà di rchitettura Laboratorio di otruzione dell rchitettura ( ) Pro. G. de Felice - Pro. R. Giannini - Pro. G. Serino PROV DI REUPERO 3/7/1 Eercizio Si conideri la

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Anno Aamio 2017/2018 Cognom Nom: Numro i Mariola: Spazio rirao alla orrzion 1 2 3 4 Bonu Toal /25 /25 /25 /25 /100 1.Grafi a) Si ria in moo hmaio in ialiano l algorimo h ompua l orinamno opologio i un

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli