SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6"

Transcript

1 73 Sezioe a T a emplice armatura Le travi i ca co ezioe a T o a L, co oletta i compreioe, oo origiate alla collaorazioe tra la trave rettagolare e ua parte ella oletta egli impalcati egli eiici (Fig 76) SOLETT PIEN EUROODIE EUROODIE o o itaza tra ue puti o + < + < 5 i mometo ullo 5 ( o 70% luce eettiva per travi cotiue) Fig 76 Se la oletta, aziché piea, è alleggerita co pigatte i laterizio o politirolo, i geere o i coiera la collaorazioe tra la acia piea e la trave, veriicao (o progettao) la tea come ezioe rettagolare Per u mometo lettete egativo (<0 oletta tea) la ezioe i comporta come ua ezioe rettagolare i larghezza e altezza utile (Fig 77a) No occorre quii aggiugere ulla a quato già riportato a propoito ei prolemi i progettazioe e veriica i ua ezioe rettagolare h a c Fig 77 Per >0 (oletta comprea) pooo ivece preetari ue cai: - l ae eutro taglia la oletta (Fig 77) - l ae eutro taglia l aima (Fig 77c) E eceario tailire prelimiarmete i quale elle ue ituazioi ci i trova etoo emiproailitico agli tati limite 76

2 73 Progetto ella ezioe Si tratta i eetti i u emiprogetto, i quato i aumoo già ote le imeioi geometriche ella ezioe e retao a etermiare olo la retta i rottura e l area ell armatura I ati el prolema oo pertato:,, h,,,,, S Le icogite oo:, Proceimeto Per eigeze i uttilità i impoe che la rottura ella ezioe avvega el ampo 3, el quale l armatura è ervata (i tracura l icruimeto) Suppoeo che l ae eutro tagli la oletta o che tagli l aima co 5 e poeo R S, l equazioe i equilirio alla rotazioe itoro al aricetro ell armatura i crive: S 08 e a ea i ricava la poizioe ella retta i rottura: 04 ( 04) ( ) S S Determiato il valore i, i cotrolla che eo ricaa ell itervallo relativo al ampo 3 [0049; 064] e che riulti 5 Se tali coizioi oo tutte oiatte, l equazioe i equilirio alla tralazioe permette i valutare l area i armatura occorrete: 08 F 08 I cao egativo, uivia l area ella ezioe i calcetruzzo reagete ei ue rettagoli e (Fig 78), l equazioe i equilirio alla rotazioe ripetto al aricetro ell armatura iveta: S ( 04) + ( ) ( ) z + z 08 cu / 04 h z z F Fig 78 etoo emiproailitico agli tati limite 77

3 Ricavato a tale equazioe il valore i e veriicate ulteriormete le coizioi [ 0049 ; 064] (ampo 3) e > 5, l equazioe i equilirio alla tralazioe orice: + F 08 + ( ) 08 + ( ) 73 Veriica ella ezioe Si ipotizza che l ae eutro ia tale che riulti 5 e quii che la ezioe a T i comporti come ua ezioe rettagolare i larghezza e altezza utile co ezioe reitete cotituita alla zoa i calcetruzzo comprea (i imeioi 08) e all armatura tea Si valuta il rapporto geometrico ell armatura ρ e alla Ta I i cotrolla e la rottura avviee el ampo 3 I tale evetualità l equazioe i equilirio alla tralazioe orice la poizioe ella retta i rottura: F Se 5, la zoa reagete è eettivamete coteuta ella oletta e il mometo reitete vale: R ( 04 ) ( 04 ) z F z 08 Se > 5, le ali riultao reageti per l itero peore e, aalogamete al prolema i progetto, i uivie la zoa i calcetruzzo compreo ei ue rettagoli e (Fig 78) Dall equazioe i equilirio alla tralazioe i ricava il valore i : + F 08 + ( ) 08 ( ) 08 e, opo aver veriicato la coizioe [ 0049 ; 064] (ampo 3), l equazioe i equilirio alla rotazioe ripetto al aricetro ell armatura orice il mometo reitete (Fig 78): R ( 04) + ( ) ( ) z + z 08 I cocluioe la ezioe riulta veriicata e: S R etoo emiproailitico agli tati limite 78

4 74 Sezioe a T co oppia armatura 74 Progetto ella ezioe Soo ati:,, h,,,,, Soo icogite:,, la poizioe ella retta i rottura Proceimeto Nel ripetto ella coizioe i uttilità, i ia il valore i i moo che la rottura avvega el ampo 3 (etrame le armature ervate, l ua i trazioe e l altra i compreioe) elimitato ieriormete a ( 035) " c e uperiormete a 064 (ve 7) Il valore i può eere auto miore o maggiore i 5 Se i aume 5, la ezioe i comporta come ua ezioe rettagolare i larghezza e altezza utile (Fig 79) ' cu ' - 08 F' 04 h - z + F F Fig 79 Occorre iazi tutto tailire e è ecearia l armatura i zoa comprea tale copo i uivie iealmete l area ell armatura tea i ue aliquote: - armatura il cui orzo equilira quello i compreioe el calcetruzzo; - armatura il cui orzo equilira quello ell armatura comprea Il mometo reitete itero ovuto al olo calcetruzzo compreo vale: Rc ( 04) z 08 Se S < Rc o occorre armatura i zoa comprea e pertato i ricae el cao i ezioe a T a emplice armatura aalizzato preceetemete Se S > Rc, occorre armare ache i zoa comprea per aorire lo orzo ovuto al mometo * S - Rc : * ' ( ) etoo emiproailitico agli tati limite 79

5 L equazioe i equilirio alla tralazioe orice l aliquota : F e quii: Se ivece i aume > 5, è opportuo comporre l area i calcetruzzo compreo ei ue rettagoli e (Fig 70) ' - cu ' F' / 04 h z z + F F Fig 70 Per tailire e è ecearia l armatura i zoa comprea i procee i maiera aaloga al cao preceete, compoeo l armatura i ue aliquote e valutao il mometo reitete el olo calcetruzzo compreo: Rc ( 04) + ( ) ( ) z + z 08 Se riulta S > Rc, l armatura i grao i opportare lo orzo ovuto al mometo * S - Rc è ata a: ' * ( ) L equazioe i equilirio alla tralazioe permette i calcolare l aliquota ell armatura: F ( ) [ 08 + ( ) ] e quii: + etoo emiproailitico agli tati limite 80

6 74 Veriica ella ezioe Soo ati:,, h,,,,,,, Soo icogite: la poizioe ella retta i rottura, R Proceimeto alcolati i parametri: ' µ ; δ e, uppoeo che l ae eutro ia tale che riulti 5, il rapporto geometrico ρ, all aalii elle taelle relative al ampo 3 riportate el 7 i cotrolla che la rottura avvega proprio i quel ampo I cao aermativo l equazioe i equilirio alla tralazioe permette i calcolare il valore i : ( ' ) + F' F 08 + ' 08 Se 5 la ezioe a T i comporta eettivamete come ua ezioe rettagolare i larghezza e altezza utile e il mometo reitete vale (Fig 79): R ( ) 08 ( 04 ) + ' ( ) z + F' Se ivece riulta > 5, la retta i rottura taglia l aima ella ezioe e quii, co rierimeto alla Fig 70, l equazioe i equilirio alla tralazioe i crive: ( ) + ' + + F' F 08 + e orice il valore i : ( ' ) ( ) Dopo aver ulteriormete cotrollato che riulti: [ ; ] e > 5, il mometo reitete ha la eguete epreioe (Fig 70): R z + z + F' c" ( ) 08 ( 04) + ( ) ( ) + ' ( ) La veriica è poitiva e riulta: S R etoo emiproailitico agli tati limite 8

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico Laboratorio teologio per l eilizia e eeritazioi i topografia PROGETTZONE COSTRUZON E PNT Prof. Stefao Pierri - o Solatio 01-014 etoo Teioi mmiibili - ETODO TELLRE SEZONE N C.. NFLESS Progetto Noti i materiali

Dettagli

SOLUZIONI PROGETTO E VERIFICA A PRESSOFLESSIONE DI PILASTRI IN C.A.

SOLUZIONI PROGETTO E VERIFICA A PRESSOFLESSIONE DI PILASTRI IN C.A. PROGETTO E VERIFICA A PRESSOFLESSIOE DI PILASTRI I C.A. SOLUZIOI 1 Se i utilizza u aletruzzo o R k=5mpa ed u aiaio o yk=450mpa, qual è lo orzo ormale limite di ompreioe per veriihe allo tato limite ultimo

Dettagli

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi.

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi. Coro di Teia delle Cotruzioi Eerizi Bozza del 7/10/005 Verifihe alle Teioi Ammiibili Determiazioe del ario utile (o ammiibile) a fleioe i ua trave otiua u tre appoggi. a ura di Ezo artielli Coro di Teia

Dettagli

PROVA INTERCORSO N 1 del : ESERCIZIO B

PROVA INTERCORSO N 1 del : ESERCIZIO B PROV INTERORSO N 1 del 4.4.1: ESERIZIO Traia o rierimeto alla truttura i.a. rappreetata i igura, olleitata da u ario uiormemete ripartito il ui valore di alolo (iluo il peo proprio della trave) è pari

Dettagli

SOLUZIONI COSTRUZIONI IN C.A.: CALCOLO ELASTICO DELLE SEZIONI INFLESSE

SOLUZIONI COSTRUZIONI IN C.A.: CALCOLO ELASTICO DELLE SEZIONI INFLESSE COSTRUZON N C.A.: CALCOLO ELASTCO DELLE SEZON NFLESSE SOLUZON 1. . Calolo ella reiteza a trazioe per leioe el aletruzzo: / 3 k 1. 0.7 (0.83 Rk ). 15pa Calolo el mometo i eurazioe k x KNm hom, 8 ( h Y )

Dettagli

Le caratteristiche di questi campi sono:

Le caratteristiche di questi campi sono: CEENTO RTO PPLICZIONI SULL FLESSIONE RETT SEPLICE Le poiili conigurazioni eormate che i hanno nella leione (emplice o compota) ono compree nei campi i rottura, 3, 4, che ono iniviuati alla poizione ell'ae

Dettagli

Sezioni in c. a. dalle tensioni ammissibili agli stati limite

Sezioni in c. a. dalle tensioni ammissibili agli stati limite Sezioi i. a. alle teioi ammiiili agli tati limite Fleioe emplie e fleioe ompota Verifia i ezioi iflee Teramo, ottore 6 Eoaro. ario Verifia teioi ammiiili Verifia teioi ammiiili A σ ma σ / A σ ma σ / σ

Dettagli

COSTRUZIONI IN C.A.: CALCOLO ELASTICO DELLE SEZIONI INFLESSE

COSTRUZIONI IN C.A.: CALCOLO ELASTICO DELLE SEZIONI INFLESSE UNVERSTA DEGL STUD ROA TRE Faolta i eeria Coro i Laurea i eeria Civile Ao Aaemio 0/0 Coro i Teia elle otruzioi Pro. Giamaro e Felie COSTRUZON N C.A.: CALCOLO ELASTCO DELLE SEZON NFLESSE. . Calolo ella

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezioe Teia delle Cotruzioi Il mometo flettete La verifia di ezioi iflee Mometo flettete 1 tadio (Formule di Sieza delle Cotruzioi) Co riferimeto alla ezioe omogeeizzata vale la formula di Sieza delle

Dettagli

α 2 fem BdA dt fem = dt quando la spira è in parte immersa e in parte no (caso 2). = B Elettrodinamica

α 2 fem BdA dt fem = dt quando la spira è in parte immersa e in parte no (caso 2). = B Elettrodinamica Elettroiamica ue spire piae i filo couttore AB, AE, hao forma i settore circolare co agolo al vertice α e soo poste ua opposta all altra rispetto al vertice A (vei figura) Il vertice A giace sulla retta

Dettagli

VERIFICA A PRESSOFLESSIONE ALLO SLU DI SEZIONI IN C.A.

VERIFICA A PRESSOFLESSIONE ALLO SLU DI SEZIONI IN C.A. PROGETTO DI STRUTTURE - Ing. F. Paolacci - A/A 9-1 ESERCITAZIONE N 1 VERIFICA A PRESSOFLESSIONE ALLO SLU DI SEZIONI IN C.A. Si eve realizzare un eiicio con truttura portante cotituita a una erie i telai

Dettagli

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A.

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A. Coro di Teia delle Cotruzioi Eerizi Bozza del 1/11/005 Verifihe alle Teioi Ammiibili Verifia a preo-fleioe di ua Trave i C.A. a ura di Ezo Martielli 1 Ao aademio 004/05 Coro di Teia delle Cotruzioi Eerizi

Dettagli

Momento Massimo in campata M d [kn m] =

Momento Massimo in campata M d [kn m] = PRO INTERORSO N el 15.5. ESERIZIO N 1 Traccia on riferimento alla truttura i c.a. in figura, ollecitata a un carico uniformemente ripartito il cui valore i calcolo (incluo il peo proprio ella trave) è

Dettagli

(per popolazioni finite)

(per popolazioni finite) Se o è oto I geere lo carto quadratico medio della popolazioe, al pari della media μ, o è oto. Pertato, per otteere u itervallo di cofideza per la media della popolazioe, occorre utilizzare la deviazioe

Dettagli

4 Lezione STATI LIMITE ULTIMI : Flesione Semplice e Composta

4 Lezione STATI LIMITE ULTIMI : Flesione Semplice e Composta 4 Lezione SI LIIE ULII : Fleione Semplice e ompota ichelangelo Laterza La valutazione ella icurezza Stati limite ultimi Ipotei i ae a) legami cotitutivi non-lineari con eormazioni maime limitate (ia per

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x CAPITOLO -FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE X DEFINIZIONE DI FUNZIONE CONTINUA DEF Siao: X ua parte o vuota i R, f ua fuzioe reale efiita i X e u elemeto i Si ice che la fuzioe f è cotiua

Dettagli

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità)

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità) Il cemeto armato: metodo alle tesioi ammissibili Uità 5 Flessioe semplice retta e sforzo ormale Il cetro di pressioe risulta estero al occiolo (e > X ) (grade eccetricità) 0L asse eutro taglia la sezioe,

Dettagli

UNIVERSITA DEGLI STUDI DI ROMA TRE Facoltà di Architettura Laboratorio di Costruzione dell Architettura 2 (A B C) Esercizio A

UNIVERSITA DEGLI STUDI DI ROMA TRE Facoltà di Architettura Laboratorio di Costruzione dell Architettura 2 (A B C) Esercizio A UIVERSIT DEGLI STUDI DI ROM TRE Facoltà di rchitettura Laboratorio di otruzione dell rchitettura ( ) Pro. G. de Felice - Pro. R. Giannini - Pro. G. Serino PROV DI REUPERO 3/7/1 Eercizio Si conideri la

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado)

Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado) oeclatura: Vite: Viti oreti Viti prigioiere (prigioieri) Marevite: Barre ilettate Dai Bulloi (vite ao) 1 ipologie elle ilettature: h/8 60 arevite ISO h!riagolari UI Whitworth h/4 vite Gas (ciliriche e

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici per il corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì SOLLECITZIOI COPOSTE GGIORETO 8/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì FLESSIOE DEVIT Si ha flessioe deviata

Dettagli

Esempi numerici Rinforzo di un solaio

Esempi numerici Rinforzo di un solaio CONSIGLIO NAZIONALE DELLE RICERCHE UNIVERSITA DEGLI STUDI DI SALERNO FEDERAZIONE DEGLI ORDINI DEGLI INGEGNERI DELLA REGIONE CAMPANIA UNIVERSITA DI NAPOLI FEDERICO II IL DOCUMENTO CNR-DT 00/004 Istruzioi

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 29/09/2006(ESEMPIO)

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 29/09/2006(ESEMPIO) PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 9/09/00(ESEPIO) Eercizio n 1 Sia data la trave appoggiata in figura, di luce l = 8,00 m, larghezza B = 0 cm e altezza H = 80 cm. Il carico applicato, uniformemente

Dettagli

Teoria dei quadripoli

Teoria dei quadripoli 7 Teoria dei quadripoli Eercitazioi aggiutive Eercizio 7. Si determii l iduttaza dei due iduttori mutuamete accoppiati collegati i erie chematizzati i figura: I V C Si uppoga che il itema lieare e tempo-ivariate

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE

SERVIZIO NAZIONALE DI VALUTAZIONE SERVIZIO NAZIONALE DI VALUTAZIONE 0 2010 11 Le rilevazioi degli appredimeti A.S. 2010 11 La rilevazioe degli appredimeti elle clai II e V primaria, elle clai I e III (Prova azioale) della uola ecodaria

Dettagli

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 16/02/2007

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 16/02/2007 PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 16/02/2007 Eercizio n 1 Sia ata una trave continua i cemento armato a ue campate i luci L 1 = 5,00 m e L 2 = 6.00 m. La trave, alta 60 cm e larga 30, ha ezione

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

Interpolazione polinomiale di dati sperimentali

Interpolazione polinomiale di dati sperimentali Apputi i Calcolo Numerico Lezioi-4 Iterpolazioe poliomiale i ati sperimetali Il problema ell iterpolazioe i ati sperimetali asce all esigeza i rappresetare i maiera cotiua u eomeo reale i cui abbiamo solo

Dettagli

a) Caso di rottura duttile con armatura compressa minore di quella tesa

a) Caso di rottura duttile con armatura compressa minore di quella tesa LEZIONI N 39 E 40 FLESSIONE SEMPLICE: LA DOPPIA ARMATURA E LA SEZIONE A T LA VERIFICA DELLA SEZIONE INFLESSA CON DOPPIA ARMATURA a) Cao di rottura duttile con armatura comprea minore di quella tea Si può

Dettagli

Le strutture in cemento armato. Ipotesi di calcolo

Le strutture in cemento armato. Ipotesi di calcolo Le trutture emeto armato Ipote d alolo Prova d ua trave.a. Feurazoe Servameto ollao 11.118 5 Dagramma Curvatura-ometo Fae III ometo (knm) 15 kn? m 1 5 Fae II Fae I V? 4.56 5.5.5.1.15.? 3.731? 1? 4? Curvatura

Dettagli

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ]

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ] 41 1. Calcolo dell armatura longitudinale delle travi in funzione delle azioni riultanti dall analii; 2. Calcolo dell armatura a taglio delle travi in funzione del taglio dovuto ai momenti reitenti delle

Dettagli

MATERIALE DIDATTICO AGGIUNTIVO - ANALISI MATEMATICA II 1 CAMBIAMENTO DI VARIABILI NEGLI INTEGRALI MULTIPLI

MATERIALE DIDATTICO AGGIUNTIVO - ANALISI MATEMATICA II 1 CAMBIAMENTO DI VARIABILI NEGLI INTEGRALI MULTIPLI MATERIALE IATTICO AGGIUNTIVO - ANALISI MATEMATICA II CAMBIAMENTO I VARIABILI NEGLI INTEGRALI MULTIPLI I uesti apputi stuieremo alcui teoremi che, i aalogia al Teorema i itegrazioe per sostituzioe per fuzioi

Dettagli

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) =

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) = Tutoraggio AM1 17/12/2015 Per la parte teorica sui if e sup vedi le ote su iti iferiori e superiori di fuzioi. A) Date due successioi a },b }, mostrare le segueti proprietà (escludere i casi i cui si abbia

Dettagli

SOLLECITAZIONI SEMPLICI

SOLLECITAZIONI SEMPLICI Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SOLLECITAZIONI SEPLICI AGGIORNAENTO 04/10/2011 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SFORZO NORALE CENTRATO Lo

Dettagli

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 13 del 10/04/2018 PROGETTO E VERIFICA DI UN TRAVETTO

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 13 del 10/04/2018 PROGETTO E VERIFICA DI UN TRAVETTO CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 13 del 10/04/018 PROGETTO E VERIFICA DI UN TRAVETTO 1) MATERIALI IMPIEGATI (par 11,113 e 411 del DM 14/01/008) Calcetruzzo: Clae 5/30 cd ctd bd Acciaio

Dettagli

SOLUZIONI COSTRUZIONI IN C.A.: CALCOLO ELASTICO DELLE SEZIONI INFLESSE

SOLUZIONI COSTRUZIONI IN C.A.: CALCOLO ELASTICO DELLE SEZIONI INFLESSE UNVERSTA DEGL STUD ROA TRE Dipartimeto i eeria Corso i Laurea i eeria Civile Ao Aaemio 06/07 Corso i Teia elle ostruzioi Pro. Giamaro e Felie ESERCTAZONE N 6 COSTRUZON N C.A.: CALCOLO ELASTCO DELLE SEZON

Dettagli

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g Correti a superficie libera 5 F p (8-) La proiezioe su s della forza di ierzia è ivece pari a: d ρ A ds ρ A ds + (8-) dt Sommado le (8-3), (8-4), (8-9), (8-0), (8-), (8-) e uguagliado a zero si ottiee:

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 5

Esercizi di Calcolo delle Probabilità Foglio 5 Esercizi i Calcolo elle Probabilità Foglio 5 Davi Barbato Theorem. Sia (X ) N ua successioe i variabili aleatorie,sia X u ulteriore variabile aleatoria, siao F, F, q e q le risettive fuzioi i riartizioe

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 8.8.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Modelli per l ottica

Modelli per l ottica Modelli per l ottica Ottica quatitica e i tracurao gli effetti quatitici Elettrodiamica di Maxwell e i tracurao le emiioi di radiazioe Ottica odulatoria per piccole lughezze d oda può eere otituita da

Dettagli

(E, H) i n (E, H) (0, 0) 2. Teorema di equivalenza

(E, H) i n (E, H) (0, 0) 2. Teorema di equivalenza 2. Teorema di equivaleza Il teorema di equivaleza coete di otituire, ai fii del calcolo del campo i ua determiata regioe, la ditribuzioe di orgeti vera (, M) co ua ditribuzioe uperficiale equivalete. i

Dettagli

Tutorato di AM210. A.A Docente: Prof. G.Mancini Tutore: Andrea Nardi Soluzioni 3-25 Ottobre Si sta chiedendo di vedere che

Tutorato di AM210. A.A Docente: Prof. G.Mancini Tutore: Andrea Nardi Soluzioni 3-25 Ottobre Si sta chiedendo di vedere che Uiversitá degli Studi Roma Tre - Corso di Laurea i Matematica Tutorato di AM20 AA 203-20 - Docete: Prof GMacii Tutore: Adrea Nardi Soluzioi 3-25 Ottobre 203 Si sta chiededo di vedere che J g f = J gf J

Dettagli

Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Lezione 9. Congruenze lineari. Teorema Cinese del Resto. Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote

Dettagli

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α=

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α= ESERCIZIO 7. U uovo modello di termotato per frigorifero dovrebbe aicurare, tado alle pecifiche teciche, ua miore variabilità ella temperatura del frigo ripetto ai modelli della cocorreza. I particolare

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

PROGETTO E VERIFICA DELLE ARMATURE LONGITUDINALI DELLE TRAVI IN C.A. SOLUZIONI

PROGETTO E VERIFICA DELLE ARMATURE LONGITUDINALI DELLE TRAVI IN C.A. SOLUZIONI Laurea in Ingegneria Civile PROGETTO E VERIFICA DELLE ARMATURE LONGITUDINALI DELLE TRAVI IN C.A. SOLUZIONI 1) Si conideri la truttura in c.a. rappreentata in figura. Ea è oggetta ad un carico uniformemente

Dettagli

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche:

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche: Si riporta di eguito la rioluzione di alni eercizi riguardanti il calcolo del momento reitente e del dominio di preoleione di ezioni in cemento armato. In tutte le applicazioni ucceive i è utilizzato per

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Risposte nel tempo di sistemi LTI del 1 e 2 ordine

Risposte nel tempo di sistemi LTI del 1 e 2 ordine Ripote el tempo di itemi LTI del e ordie Fodameti di Automatica Prof. Silvia Strada Coro di Studi i Igegeria Getioale (Cogomi H PO) Sitemi del ordie E molto comue crivere G () a b µ + a + τ b τ K τ G ()

Dettagli

SEMIPROGETTO E VERIFICA DI UNA SEZIONE RETTANGOLARE SOGGETTA A SFORZO NORMALE ECCENTRICO (PRESSO-TENSOFLESSIONE) CON

SEMIPROGETTO E VERIFICA DI UNA SEZIONE RETTANGOLARE SOGGETTA A SFORZO NORMALE ECCENTRICO (PRESSO-TENSOFLESSIONE) CON SEIPROGETTO E VERIFIC DI UN SEZIONE RETTNGOLRE SOGGETT SFORZO NORLE ECCENTRICO (PRESSO-TENSOFLESSIONE CON L USILIO DELLE CURVE D INTERZIONE - Ce già aticipat all iizi ella trattazie ella llecitazie i rz

Dettagli

Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado)

Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado) omeclatura: Vite: Viti mordeti Viti prigioiere (prigioieri) Madrevite: Barre ilettate Dadi Bulloi (vite + dado) 1 ipologie delle ilettature: h/8 60 madrevite IO h riagolari UI Whitworth h/4 vite Gas (cilidriche

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di PSICOMETRIA Eercizi - 06 ) A u campioe i 96 iegati elle cuole meie, ati opo il 970, viee ommiitrata ua cala i Autoritarimo (SA) il cui puteggio va a 8 (bao autoritarimo) a 07 (alto autoritarimo). Si ottegoo

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ).

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ). 14. Le tesioi soo lo strumeto della meccaica dei cotiui per rappresetare lo stato di sforo i u puto. Defiiioe della tesioe secodo Cauch. f A V f Cosideriamo u geerico puto. uppoiamo di seioare idealmete

Dettagli

L INTERVALLO DI CONFIDENZA

L INTERVALLO DI CONFIDENZA L INTERVALLO DI CONFIDENZA http://www.biostatistica.uich.itit POPOLAZIONE POPOLAZIONE CAMPIONAMENTO CAMPIONE PARAMETRO INFERENZA CAMPIONAMENTO? STIMA CAMPIONE Stimare i Parametri della Popolazioe Itervallo

Dettagli

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuola di Architettura orso di Laurea Magistrale quiqueale c.u. Sommario flessioe deviata M = M cos M = M si s f M m z mi M ( ) s s f m ( + ) z ma Nella precedete lezioe è stata esamiata u asta sollecitata

Dettagli

L INTERVALLO DI CONFIDENZA

L INTERVALLO DI CONFIDENZA L INTERVALLO DI CONFIDENZA http://www.biostatistica.uich.itit POPOLAZIONE POPOLAZIONE CAMPIONAMENTO CAMPIONE PARAMETRO INFERENZA CAMPIONAMENTO? STIMA CAMPIONE 1 Stimare i Parametri della Popolazioe Itervallo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005 ESAME DI STATO DI LICEO SCIENTIFICO 005 CORSO DI ORDINAMENTO Sessioe ordiaria Tema di MATEMATICA - 3 giugo 005 Svolgimeto a cura del prof. Luigi Tomasi (luigi.tomasi@libero.it) RISPOSTE AI QUESITI DEL

Dettagli

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI UNIVERSITA DEGLI STUDI DELLA BASILICATA Coro di TECNICA DELLE COSTRUZIONI LO STATO LIMITE ULTIMO PER TENSIONI NORMALI Docente: Collaboratori: Pro. Ing. Angelo MASI Ing. Giueppe SANTARSIERO Ing. Vincenzo

Dettagli

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI

LO STATO LIMITE ULTIMO PER TENSIONI NORMALI UNIVERSITA DEGLI STUDI DELLA BASILICATA Coro di FONDAMENTI DI TECNICA DELLE COSTRUZIONI LO STATO LIMITE ULTIMO PER TENSIONI NORMALI Docente: Collaboratori: Pro. Ing. Angelo MASI Ing. Giueppe SANTARSIERO

Dettagli

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS)

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS) Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema - soluzioe a cura di E. Castagola e L. Tomasi, co l uso della calcolatrice grafica TI-Nspire CX (o CAS) Soluzioe ) Co riferimeto

Dettagli

D T 1.5d. Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado)

D T 1.5d. Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado) omeclatura: Vite: Viti mordeti D T 1.5d d Viti prigioiere (prigioieri) l Madreite: Barre ilettate Dadi Bulloi (ite + dado) 1 Tipologie delle ilettature: h/8 60 madreite ISO h Triagolari UI h/4 Whitworth

Dettagli

Asse neutro che taglia la soletta. Influenza delle modalità costruttive

Asse neutro che taglia la soletta. Influenza delle modalità costruttive Univerità degli Studi di Roma Tre Coro di Tecnica dll delle Cotruzioni i I Modulo A/A 27-88 LEZIONE N 15 CLS TRAVE COMPOSTE ACCIAIO-CLS CLS SEMPLICEMENTE APPOGGIATA Analii allo tato limite ultimo della

Dettagli

A.8 j Caratteristiche geometriche delle sezioni delle travi

A.8 j Caratteristiche geometriche delle sezioni delle travi Appedice_A_tt_prte_NUNZANTE_00 0/0/ 8:5 Pgi A-7 Appedice A j eometri delle ezioi j A-7 A.8 j Crtteritice geometrice delle ezioi delle trvi Nelle pgie egueti i riporto le ezioi di forme ricorreti co u itei

Dettagli

I diagrammi di Bode. ad esempio la quantità 100 equivale a 40 decibel. Ricordando le altre regole dei logaritmi:

I diagrammi di Bode. ad esempio la quantità 100 equivale a 40 decibel. Ricordando le altre regole dei logaritmi: I diagrai di Bode Sia dato u itea lieare e tepo ivariate i regie iuoidale. Si vuole tudiare l adaeto dell ucita i fuzioe dell igreo al variare della frequeza. Detta quidi U la pria ed I il ecodo el cao

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

Verifica e progetto allo stato limite ultimo di pilastri in c.a. a sezione rettangolare: un metodo semplificato

Verifica e progetto allo stato limite ultimo di pilastri in c.a. a sezione rettangolare: un metodo semplificato Veriica e progetto allo tato limite ultimo di pilatri i c.a. a ezioe rettagolare: u metodo empliicato Aurelio Gheri, arco uratore Sommario L uo del metodo degli tati limite per la veriica ed il progetto

Dettagli

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1 Esame di Stato 8 Problema ; y f x x x L equazioe della curva che descrive il profilo sull itera mattoella si ottiee simmetrizzado tale fuzioe rispetto agli assi e all origie (ovviamete o è l equazioe di

Dettagli

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x CAPITOLO -FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE X DEFINIZIONE DI FUNZIONE CONTINUA DEF Siao: X ua parte o vuota i R, f ua fuzioe reale efiita i X e u elemeto i Si ice che la fuzioe f è cotiua

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

STRUTTURE IN CEMENTO ARMATO - III

STRUTTURE IN CEMENTO ARMATO - III Suidi didattici per il coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STRUTTURE IN CEMENTO ARMATO - III AGGIORNAMENTO 26/09/2012 Coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STATI LIMITE

Dettagli

Esercitazione del 25/11/2011 Calcolo delle probabilità

Esercitazione del 25/11/2011 Calcolo delle probabilità Esercitazioe el 25//20 Calcolo elle robabilità Covergeza i istribuzioe. Sia {X } N ua successioe i variabili aleatorie reali. Sia X u ulteriore variabile aleatoria reale. Defiizioe. Diremo che la successioe

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

Intersezione semaforizzata

Intersezione semaforizzata Intersezione semaforizzata Esercizio 8 Determinare il livello i servizio ell intersezione a T mostrata nella figura 8., noti: C (urata el ciclo semaforico) 00 sec (larghezza elle corsie) 3,50 m S 0 (flusso

Dettagli

Verifica delle ipotesi

Verifica delle ipotesi Verifica delle ipotei U'ipotei tatitica è u'affermazioe o ua cogettura riguardate u parametro q che caratterizza il modello decrittivo della popolazioe, f(x;q), co qq, dove Q è lo pazio parametrico. olitamete,

Dettagli

Successioni di variabili aleatorie

Successioni di variabili aleatorie 0 Caitolo 5 Successioi i variabili aleatorie 5. Covergeza i istribuzioe e teorema cetrale i covergeza Sia {X } = (X,..., X,... ua successioe ifiita i variabili aleatorie e X u ulteriore variabile aleatoria.

Dettagli

FORMULAZIONE ALTERNATIVA DELLE EQUAZIONI DI MAXWELL IN FORMA INTEGRALE

FORMULAZIONE ALTERNATIVA DELLE EQUAZIONI DI MAXWELL IN FORMA INTEGRALE FORMULAZIONE ALTERNATIA DELLE EQUAZIONI DI MAXWELL IN FORMA INTEGRALE i riscrivoo le equazioi di Maxwell i ua forma itegrale alterativa comoda per la determiazioe delle codizioi al cotoro: Ed B d (3.5a)

Dettagli

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioi differeziali Defiizioe 1 Si chiama equazioe differeziale u tipo particolare di equazioe fuzioale, ella quale la fuzioe icogita compare isieme ad alcue sue derivate, ossia u equazioe ella quale,

Dettagli

LEZIONE N 1. Richiami sui metodi di misura della sicurezza Metodo delle tensioni ammissibili Metodo semiprobabilistico agli stati limite

LEZIONE N 1. Richiami sui metodi di misura della sicurezza Metodo delle tensioni ammissibili Metodo semiprobabilistico agli stati limite LEZIONE N 1 Richiami ui metodi di miura della icurezza Metodo delle tenioni ammiibili Metodo emiprobabilitico agli tati limite Stato limite ultimo di ezioni in c.a. oggette a preofleione SLU per ezioni

Dettagli

Def. Se f(x) è una funzione derivabile infinite volte in un intorno di un punto c, ed esiste R > 0 o R = + tale che f(x) = f (n) (c)

Def. Se f(x) è una funzione derivabile infinite volte in un intorno di un punto c, ed esiste R > 0 o R = + tale che f(x) = f (n) (c) Apputi sul corso i Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 5: Riferimeti: R.Aams, Calcolo Differeziale. -Si cosiglia vivamate i fare gli esercizi el testo. Cap. 9.5 - Serie i Taylor,

Dettagli

Metodi statistici per lo studio dei fenomeni biologici

Metodi statistici per lo studio dei fenomeni biologici Metodi statistici per lo studio dei feomei biologici Alla fie di questa lezioe dovreste essere i grado di: spiegare i cocetti di stima putuale e stima itervallare iterpretare gli itervalli di cofideza

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema Soluzioe a cura di L. Tomasi Soluzioe Puto Co riferimeto all esempio semplice del mauale d uso della macchia che colora

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

GLI STATI LIMITE PER SOLLECITAZIONI NORMALI

GLI STATI LIMITE PER SOLLECITAZIONI NORMALI Coro ulle Norme Tecniche per le cotruzioni in zona imica (Oinanza PCM 3274/2003, DGR ailicata 2000/2003) POTENZA, 2004 GLI STATI LIMITE PER SOLLECITAZIONI NORMALI Prof. Ing. Angelo MASI DiSGG, Univerità

Dettagli

Stati limite nel cemento armato Stato limite ultimo per tensioni normali: applicazioni BOZZA

Stati limite nel cemento armato Stato limite ultimo per tensioni normali: applicazioni BOZZA Lezione n. 1 Stati limite nel cemento armato Stato limite ultimo per tenioni normali: applicazioni Nel eguito i riportano alcuni eempi di applicazione delle procedure decritte nel paragrao precedente.

Dettagli

Maturità scientifica Sessione ordinaria 1986/1987

Maturità scientifica Sessione ordinaria 1986/1987 Maturità scietifica Sessioe ordiaria 986/987 I u sistea di assi cartesiai ortogoali è assegata la faiglia di liee di equazioe a a. Si idividuio i tale faiglia la retta r e le due parabole C e C che co

Dettagli

CAP. V Limiti di funzioni reali

CAP. V Limiti di funzioni reali CAP V Limiti di fuzioi reali Data ua fuzioe ƒ( defiita i u itervallo X escluso al più u puto di X, a volte iteressa esamiare il comportameto di ƒ( quado si avvicia ad I alcui casi accade che ƒ( si avvicii

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

RICERCA NUMERICA DELLE RADICI DI UNA EQUAZIONE

RICERCA NUMERICA DELLE RADICI DI UNA EQUAZIONE RICERCA NUMERICA DELLE RADICI DI UNA EQUAZIONE N elle applicazioi pratiche è assolutamete ecessario trovare gli zeri di equazioi ache o risolubili elemetarmete sia di tipo poliomiale che di tipo trascedete.

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli