Fisica Generale - Modulo Fisica I A.A Ingegneria Meccanica Edile Informatica Esercitazione 7 CENTRO DI MASSA DEL CORPO RIGIDO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fisica Generale - Modulo Fisica I A.A Ingegneria Meccanica Edile Informatica Esercitazione 7 CENTRO DI MASSA DEL CORPO RIGIDO"

Transcript

1 Fs Generle - odulo Fs A.A ngegner en Edle nfort Esertzone 7 CENTO D ASSA DE COPO GDO Cr. Un ln d ss e denstà ostnte l for d un trngolo rettngolo u tet surno e, on >. Dostrre e l poszone del entro d ss è sull rett prllel l teto, d equzone = /. SOUZONE. S selg un sste d rferento on l sse ondente on l teto e l orgne on un verte del trngolo. Dto e s trtt d un ln d spessore trsurble e d denstà ostnte, posso onsderre l A ss unforeente dstrbut sull superfe e l B rpporto / Superfe = ostnte. S suddvde l trngolo n rettngoln d ltezz e d spessore nfnteso d, suno n orrspondenz dell oordnt ; l denstà del trngolo può essere eguglt l rpporto fr l ss del rettngolno e l su superfe, oè: Poé dll sltudne de trngol d s ottene e preedente s ottene:, sosttuendo nell relzone d d Clolo or l sss del entro d ss: C S 0 d Sosttuendo nfne l ss, s ottene l dostrzone rest: C Cr. Un onuento è osttuto d un lndro etllo d denstà reltv rspetto ll qu d 7.68, rggo d 0 e ltezz d 60, ppoggto l suolo, sull u bse superore ppogg esttente l bse d un ono d ro lto etro. Se l entro d ss del onuento s trov.9 dl suolo, lolre l denstà reltv del ro e l ss del ono. SOUZONE. ndo on l l ltezz del lndro e on quell del ono. l proble rede l lolo dell dstnz tr verte e brentro d un ono d ltezz e rggo. Selto un sste d rferento on l orgne nel verte del ono e sse ondente on l sse del ono, un fettn d spessore nfnteso d può essere onsdert un lndro d rggo r = /, ltezz d e ss proporzonle l volue del lndretto: dv r d d l volue oplessvo V e l ordnt del brentro B nel rferento dell fgur sono A d B C C

2 Fs Generle - odulo Fs A.A ngegner en Edle nfort Esertzone 7 dv d 0 V dv d B 0 V Però, se l ono ss ono ed ltezz, l suo brentro s trov d / sopr l lndro, oss d l +/ d terr. l brentro del lndro è nvee d l/. Dll forul del entro d ss oplessvo B s ll / ono ( l / ) ll / ono( l / ) B l ono ll ono / solvendo rspetto ono s ll ( B l / ) (0.9 0.) ono.5; ono l / B ono qu kg O r d Cr. Un lndro d etllo lto e on un ronferenz bse d. un denstà d 700 kg/. Un su bse ppogg l suolo entre sull'ltr bse ppogg un ono dello stesso etllo lto un etro e on un ronferenz d bse d 6.8. l entro d ss del sste lndro+ono s trov un ltezz dl suolo d (A) 0.99 (B) (C).000 (D).05 (E).06 Cr. Qundo un furgonno è vuoto un ss d 000 kg e l brentro 0 d terr. A peno ro port un ss gguntv d 500 kg un ltezz ed d 90 dl suolo. Se l dstnz tr le ruote nteror è d 0 e l derenz l fondo strdle orzzontle è perfett, qul è l ss velotà on u s può ffrontre un urv d 0 d rggo senz ppottre? (A) 8 k/ (B) 5 k/ (C) 66 k/ (D) 76 k/ (E) 85 k/ DNACA DE COPO GDO oent d nerz d lun orp rgd lolt rspetto un sse d setr pssnte per l entro d ss. Anello rspetto ll sse entrle = Anello rspetto un detro Clndro peno rspetto ll sse entrle Ast sottle rspetto un sse perpendolre ll st e pssnte per l entro Sfer pen rspetto un detro 5 Sfer v (guso sottle)

3 Fs Generle - odulo Fs A.A ngegner en Edle nfort Esertzone 7 E. Clolre l oento d nerz d un lndro oogeneo peno, d ss, rggo e ltezz, rspetto l suo sse. Soluzone l oento d nerz del lndro è r dv, dove r rppresent l dstnz dll sse prnple, ρ l denstà del lndro e l eleento d volue del guso lndro d spessore nfnteso dr e ltezz è dv=πrdr. Qund r rdr r dr 0 0, sosttuendo s V E. Clolre l oento d nerz rspetto ll sse, rspetto ll sse, rspetto ll sse z, del sste forto dlle prtelle le u sse e oordnte sono ndte nell tbell. Soluzone Utlzzo l forul per l lolo del oento d nerz r sse dll sse d rotzone. Se l sse d rotzone è l sse, s : dove r rppresent l dstnz delle z Se l sse d rotzone è l sse : : z nfne, se l sse d rotzone è l sse z: z kg kg kg. Poé l denstà del lndro è.0 kg.850 kg E. Un st d ss trsurble e lungezz re gl estre due sse puntfor,, ed è post n rotzone n un pno orzzontle ttorno d un sse vertle pssnte per un punto dstnz d on velotà ngolre ω0. Deternre: ) l oento d nerz n funzone d ; b) l poszone del entro d ss C. ) Dostrre e l oento d nerz e l energ net ssuono l no vlore qundo = C. Soluzone. l oento d nerz d questo sste forto d due sse puntfor è ) (g) () 0 () z() kg b) Selto un sste d rferento on l orgne O ondente on, l entro d ss del sste è: C. d ) l oento d nerz è no qundo 0 0 d

4 Fs Generle - odulo Fs A.A ngegner en Edle nfort Esertzone 7 oè qundo l punto onde on l entro d ss del sste. energ net del sste E O0 0 0 poé è ostnte, è n qundo l oento d nerz è no, qund se l sse d rotzone è nel entro d ss. E. Due sse = 0.50 kg e = 0.6 kg sono legte un fune e sorre senz ttrt e senz slttre nell gol dell rruol dell fgur, l u rggo vle = 5, e sono nzlente fere. sto lbero, l bloo d ss perorre l dstnz = 0.75 n 5 seond. Clolre: ) l odulo dell elerzone d sun bloo; b) le tenson de trtt d fune e sostengono l bloo pù pesnte e l pù leggero; ) l odulo dell elerzone ngolre dell rruol; d) l oento d nerz dell rruol. s Soluzone ss s uove d oto unforeente elerto s t 0.06 t s e due sse ed s uovono on l stess elerzone, qund l tensone esertt dll fune su è T g.87 N entre l tensone su è T g.5n. Un punto P posto sul bordo dell rruol ruot on elerzone tngenzle t ugule t 0.06 ll elerzone delle sse e, e elerzone ngolre rd / s. rd / s velotà ngolre dell rruol è però t. 5 rd/s 6 rd/s Poé gsono solo forze onservtve, l energ totle del sste forto dlle sse e dll rruol rest ostnte, qund: g v v g. D tle relzone s rv l oento d nerz dell rruol: g v Poé v t /s 0. /s, s : kg kg kg E5. Un ord d ss trsurble è vvolt ntorno ll gol d un rruol d rggo = 0., ontt su un sse orzzontle d ttrto trsurble. estreo dell fune è legto d un bloo d ss = kg, trto sopr un pno prvo d ttrto d un forz orzzontle ostnte F = N. Spendo e l oento d nerz dell rruol è = 0.05 kg, lolre l odulo dell elerzone ngolre dell rruol. Soluzone legge fondentle dell dn pplt l orpo d ss è: F T = entre per l rruol, l legge de oent è: T =. F

5 Fs Generle - odulo Fs A.A ngegner en Edle nfort Esertzone 7 Dto e un punto sul bordo dell rruol l stess elerzone dell ss, oè:, sosttuendo s : F d u s rv l elerzone ngolre.: F 0. rd rd s s E6. Un st oogene, d lungezz =. e ss =.0 kg, può ruotre nel pno vertle ntorno d un perno A nfsso orzzontlente n un suo estreo. st è trttenut nell poszone oe n fgur (=0 ) d un fune orzzontle fsst ll ltro estreo B. Clolre: ) l tensone dell fune; b) l velotà ngolre qustt dll st qundo pss per l vertle (se s tgl l fune). A B Soluzone Consdero l equlbro de oent delle forze pplte rspetto ll estreo A dell sbrr, oè l forz peso (pplt nel C) e l tensone, pplt nell estreo B. g sn g sn T os T N 5.66 N os Se s tgl l ord, l sbrr ruot sotto l zone dell forz peso, qund per l legge d onservzone dell energ g os, dove l oento d nerz dell sbrr rspetto l C è g Sosttuendo s : os g os, qund 6 gos rd/s 6.6rd/s. E7. Un dso oogeneo d rggo e ss è posto su un pno nlnto sbro on oeffente d ttrto stto μs. Deternre vlor dell ngolo d nlnzone θ del pno per qul l dso rotol senz strsre. Soluzone Srvo l pr equzone rdnle dell dn per l dso. e forze gent su d esso sono l forz peso, l rezone N del pno, perpendolre l pno stesso, e l forz FS prllel l pno, dovut ll ttrto stto, e pedse l orpo d strsre. ungo l drezone del pno l pr equzone rdnle s srve: C g sn F S, non onosendo FS non è possble lolre C. Clolereo FS srvendo l seond equzone rdnle dell dn rfert l entro d ss C del dso, onsderndo e l oento totle ontrbuse solo l forz FS, dto e l forz peso e l oponente norle dell rezone del pno nno oento nullo rspetto C. dc d S però: FS C. dt dt 5

6 Fs Generle - odulo Fs A.A ngegner en Edle nfort Esertzone 7 d d vndo dll relzone C e rordndo e per l dso, l oento d nerz è dt dt C C C C, s ottene FS. Sosttuendo qunto trovto nell pr equzone rdnle dell dn C g sn FS s trov C g sn e FS g sn. Se l dso deve ruotre e non strsre, l forz FS deve essere nore o ugule ll forz d ttrto stto ss e l pno è n grdo d svluppre, e è dt d F N, qund: g sn S g os tn S E8. Clolre l oento d nerz d un st rgd, d ss 0.5 kg, e lung =, rspetto d un sse perpendolre ll st e pssnte per un punto O dstnte 0 dll estreo lbero. (A).0 kg (B) kg (C) 0.9 kg (D) 0.0 kg (E) S S E9. Un st d ss =. kg, lung =., è lber d ruotre nel pno dell fgur ntorno d un sse perpendolre tle pno e pssnte per l suo estreo O. Due prtelle d ugule ss = 0.85 kg sono poste l un ll dstnz / e l ltr ll dstnz d O. Se l velotà ngolre dell st è = 0. rd/s, lolre l energ net rotzonle del sste rspetto l punto O. O (A) 0. J (B) 7 J (C). J (D).05 J (E) E0. Due prtelle d ugule ss sono sospese lle estretà d un stell rgd e prv d ss, ppoggt l fulro ndto nell fgur e ntenut fer. e dstnze dl fulro delle prtelle sono = 0. e = 0.8. Nell stnte n u l st è lst lber d ruotre ntorno l fulro, lolre le elerzon tngenzl delle due prtelle. (A).7 /s ; 6.9 /s (B) 0.96 /s ; 8.60 /s (C) 0.86 /s ; 7.78 /s (D).0 /s ; 7.78 /s (E) E. Un pendolo oposto è osttuto d un st oogene d ss = 0.67 kg e lungezz = 0, ppes un odo e dst = 0. dl entro d ss dell st. Se l st vene spostt d un polo ngolo rspetto ll poszone d equlbro, lolre l perodo del oto rono rsultnte. (A) 0. s (B).68 s (C) 0.7 s (D) 0.8 s (E) C O E. Un sfer oogene d rggo e ss rotol senz strsre su un pno nlnto sbro d ltezz =. Clolre l velotà del entro d ss dell sfer ll fne dell dses. (A) 7.8 /s (B).7 /s (C) 5.9 /s (D).8 /s (E) 6

7 Fs Generle - odulo Fs A.A ngegner en Edle nfort Esertzone 7 E. Un st oogene, d lungezz =, può ruotre nel pno vertle ntorno d un perno O nfsso orzzontlente n un suo estreo. st, ntenut fer, nzlente for on l orzzontle un ngolo = 0. Se l st è lst lber, lolre l velotà ngolre qustt dll st qundo pss per l orzzontle. (A).07 rd/s (B).05 rd/s (C). rd/s (D).8 rd/s (E) 7

σ = = Poiché dalla similitudine dei triangoli

σ = = Poiché dalla similitudine dei triangoli Fs Generle - odulo Fs A.A. 06-7 ngegner en Edle nfort Esertzone 6 CENTO D AA DE COPO GDO Cr. Un ln d ss e denstà ostnte l for d un trngolo rettngolo u tet surno e, on >. Dostrre e l poszone del entro d

Dettagli

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y Geometr Anlt Dstnz tr due punt nel pno rtesno P ( x x ) + ( y ) P y Punto medo d due punt nel pno rtesno M x + x y + ( x ; y ) ; M M y Are d un trngolo nel pno rtesno prtre dlle oordnte de suo x y punt

Dettagli

Capitolo 4 : Problema 45

Capitolo 4 : Problema 45 Cptolo 4 : Proble 45 Scelgo per convenenz l sse X lungo superfce dell tvol lsc col verso postvo concorde con l forz pplct F=+ ˆ N. S ssue che durnte l oto le tre sse sno sepre ccostte e = = = qund 3 Y

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

Analisi sistematica delle strutture. Rigidezza

Analisi sistematica delle strutture. Rigidezza Anls sstemt elle strutture Rgezz u U x y v Trve nel pno v Vettore forze nol Vettore spostment nol θ u θ u U u V v Tre gr lertà per noo Due no per elemento x U θ u Se gr lertà per elemento V v tre rgezz

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A Eerczo n.1 Un pll vene lnct con veloctà nzle d odulo Fcoltà d nener Prov crtt d Fc NO & VO 1-07-03 - opto rovre: L pozone (coè le coordnte x e y) dell pll dopo 3 econd l odulo dell veloctà dell pll dopo

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli

Progettazione agli Elementi Finiti

Progettazione agli Elementi Finiti Progettzone gl Element Fnt Test Consglt: AA /, doente: Prof. Dro Amodo A. Guglott Element Fnt, Otto Edtore, R.D. Cook, D.S. Mlkus, M.E. Plesh, R.J. Wtt Conepts nd Appltons of Fnte Element Anlyss, th ed.,

Dettagli

Spettroscopia rotazionale

Spettroscopia rotazionale Spettrosop rotzonle n prm pprossmzone l desrzone dello spettro rotzonle d un moleol tom f rfermento ll trttzone QM del rottore rgdo due msse he ruotno ttorno d un sse perpendolre l legme e pssnte per l

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla Eseczo l cento d ss () d un sste d punt tel è un punto geoetco l cu poszone spetto d un sste d feento è ndvdut dl ggo vettoe:, dove ed ppesentno spettvente le sse e vetto poszone de sngol punt tel che

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforthe per l h Dr. Sergo Brutt Anls de dt II -,8 -,7 -,6 -,5 -,4 -,3 -, -,1,,1,,3,4,5,6,7,8 lore sur Frequenz Rptolo generle Consdero un p rolt d sure ottenute per v oputzonle o sperentle,,15,1,5

Dettagli

con B diretto lungo l asse x e v nel piano (x,y). La forza è:

con B diretto lungo l asse x e v nel piano (x,y). La forza è: Proble 8. Un protone ( =.67-7 Kg) entr n un cpo gnetco d ntenstà =.6 T con veloctà v orentt con ngolo d 3 rspetto l cpo gnetco; l protone subsce un forz F = 6.5-7 N. ) Indcre drezone e verso dell forz

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

3. Modellistica dei sistemi dinamici a tempo continuo

3. Modellistica dei sistemi dinamici a tempo continuo Fondenti di Autotic 3. Modellistic dei sistei dinici tepo continuo Esercizio 1 (es. 10 del Te d ese del 18-9-2002) Si consideri il siste dinico elettrico riportto in figur, i cui coponenti ssuono i seguenti

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale pint su un superfiie inlint - Centro di pint Considerimo un superfiie pin inlint di un ngolo rispetto ll orizzontle e prendimo un sistem di riferimento on intersezione sse di intersezione tr l superfiie

Dettagli

Meccanica A.A. 2010/11

Meccanica A.A. 2010/11 Meccnic A.A. 00/ Esercizi 5 5-) Un ss e ttcct due olle identiche, fisste soffitto e pviento distnz L; l lunghezz di riposo delle olle e l 0 e l costnte elstic. Deterinre il oto dell ss qundo e rilscit

Dettagli

7. Cinematica del corpo rigido

7. Cinematica del corpo rigido 7. Cnetc del corpo rgdo r r Coe poo decrvere l ovento rottoro d un corpo rgdo? Condero un qulunque punto pprtenete l corpo rgdo n rotzone, e co l punto n cu l e buc l pno n cu ruot, decvendo qund un crconferenz

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE ) Spegre perhé relone he segue rppresent un trsformone geometr e determnre l trsformt dell rett L relone ndt osttuse un orrsponden unvo de punt del pno n sé stesso e qund è un

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca)

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca) Prov Sritt Elettromgnetismo - 24.7.2017 (.. 2016/17, S. Gigu/F. Lv/S. Petrr) reupero primo esonero: risolvere l eserizio 1: tempo mssimo 1.5 ore. reupero seondo esonero: risolvere l eserizio 2: tempo mssimo

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie) Cinemti rotzionle 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 1 Moto Cirolre Uniforme Un oggetto he si muove su un ironferenz on un veloità ostntev, ompie unmotoirolreuniforme. Il modulo

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2017/18 - Prova n. 4 7 settembre gv 2. L 1 = 5 mh R 2 = 4 R 1 = 10 C 2 = 125 F R 3 = 10

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2017/18 - Prova n. 4 7 settembre gv 2. L 1 = 5 mh R 2 = 4 R 1 = 10 C 2 = 125 F R 3 = 10 Cognome Nome Mtrcol Frm Prt svolte: E E D Eserczo V G A B C 4 I G4 5 6 gv D Supponendo not prmetr de component, llustrre l procedmento d rsoluzone del crcuto rppresentto n fgur con l metodo delle tenson

Dettagli

Capitolo 1. Il principio di equivalenza e la sua verifica. 1.1 Il principio di equivalenza. 1.1.1 Definizione e cenni storici

Capitolo 1. Il principio di equivalenza e la sua verifica. 1.1 Il principio di equivalenza. 1.1.1 Definizione e cenni storici Cptolo 1 Il prncpo d equvlenz e l su verfc 1.1 Il prncpo d equvlenz 1.1.1 Defnzone e cenn storc Il prncpo d equvlenz è un prncpo d fondentle portnz per l fsc odern, poché st ll bse delle teore etrche dell

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito A

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito A Eeczo n. Un blocco, d denon tcubl e d d 4 Fcoltà d ngegne Fc Pov n tnee feb 5 Copto A kg, legto d un flo, vene ftto uote ozzontlente u un pno enz ttto, decvendo un cecho d ggo. 8 ll veloctà d odulo cotnte

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito C

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito C Eeczo n. Un blocco, d denon tcubl e d d Fcoltà d ngegne Fc Pov n tnee feb 5 Copto C kg, legto d un flo, vene ftto uote ozzontlente u un pno enz ttto, decvendo un cecho d ggo ll veloctà d odulo cotnte v.

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

] a; b [, esiste almeno un punto x 0

] a; b [, esiste almeno un punto x 0 Anlisi Limiti notevoli sen lim = ( lim + = e Un funzione si die ontinu in qundo, + lim f( = lim f(. + sintoti vertili: se lim f ( = ± oppure lim f ( = ± sintoti orizzontli: se sintoti oliqui: l'equzione

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H sultt esme scrtto Fsc del //6 orl: //6 lle ore. presso ul H gl student nteresst vsonre lo scrtto sono pregt d presentrs l gorno dell'orle mtrcol voto 98 7 mmesso 8 7 mmesso 7 7 mmesso 6 7 mmesso 9 7 mmesso

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Generalità sulle superfici algebriche. Superficie cilindrica

Generalità sulle superfici algebriche. Superficie cilindrica Generlità sulle superfici lgeriche Definizione: Si definisce superficie lgeric di ordine n il luogo geometrico dei punti P dello spzio le cui coordinte crtesine,, z verificno un equzione lgeric di grdo

Dettagli

Esercizi sul calcolo dei carichi invernali ed estivi di progetto

Esercizi sul calcolo dei carichi invernali ed estivi di progetto Esercz sul clcolo de crch nvernl ed estv d progetto CESARE MARIA JOPPOLO, STEFANO DE ANTONELLIS, LUCA MOLINAROLI DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO C. M. Joppolo, S. De Antonells, L. Molnrol

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Elettrodinamica Un toroide a sezione rettangolare porta due avvolgimenti, uno esterno di N 1. , raggio interno a 1

Elettrodinamica Un toroide a sezione rettangolare porta due avvolgimenti, uno esterno di N 1. , raggio interno a 1 Elettrodinmic Un toroide sezione rettngolre port due vvolgimenti, uno esterno di spire, ltezz h, rggio interno, rggio esterno, ed un vvolgimento interno di spire, ltezz h, rggio interno, rggio esterno

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

Moto circolare uniformemente accelerato

Moto circolare uniformemente accelerato Moto circolre uniforeente ccelerto el M.C.U.A. il vettore velocità non h più il odulo cotnte, è preente invece un ccelerzione dett ccelerzione tngenzile che i ntiene cotnte. Ripenndo ll circonferenz tglit

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH ESEZO.0: egnto l crcuto d fgur.0, relzzto trmte l collegmento d pol lner, determn l equvlente d Thévenn del polo d morett e pendo che con l retenz L 45 W, conne morett, mur 90, mentre con L non conne mur

Dettagli

Resistenza elettrica

Resistenza elettrica esstenz elettrc esstenz: cpctà d un elemento d oppors l flusso delle crche elettrche. S msur n ohm (Ω). Sezone A l ρ A l ( 0) Mterle con ressttà ρ Teor de Crcut Prof. Luc Perregrn Legg fondmentl, pg. Legge

Dettagli

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da A) meccnc Un srr omogene d lunghezz l, lrghezz trscurle e mss M è ppes vertclmente d un estremtà mednte un perno ttorno cu puo` ruotre. Contro l estremt` ler dell srr vene scglto un corpo che nell urto

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli eercizi CPITOLO 2 LUNGHEZZE 0. Qundo l monet f un giro, i pot di un percoro che è ugule ll miur dell u circonferenz, circ 8, cm. 3 UNITÀ DI MISUR DELL RE 6 RE DEL PRLLELOGRMM E DEL TRINGOLO

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015 Leo Sentfo Sttle A. Volt, Torno Anno solsto 0 / 0 Cognome e Nome: LOGARITMI ED ESPONENZIALI Complet on l equone d sun funone: A) B) C) D) 0) Qule funone pss per l punto ( ; ) ed è sempre postv? 0) L funone

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Sviluppo curato da: Francesca Caporale e Lia Di Florio Docente: prof. Quintino d Annibale a.s. 2003/2004

Sviluppo curato da: Francesca Caporale e Lia Di Florio Docente: prof. Quintino d Annibale a.s. 2003/2004 Meccnc Legge d Newton e prncp d conervzone Lceo Scentco Tecnologco ESECZO TATTO DAL COMPTO FNALE DEL ANNO Svluppo curto d: Frncec Cporle e L D Floro cle LST A Docente: pro. Quntno d Annble.. /4 Teto Un

Dettagli

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1 Mtetic Liceo \ Unità Didttic N 7 Le proprietà dell rett Unità Didttic N 7 Le proprietà dell rett ) Rette prllele ) Rett pssnte per un punto dto e prllel d un rett dt 3) Rette perpendicolri 4) Rett pssnte

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014) ELETTROMGNETISMO PPLITO LL'INGEGNERI ELETTRI ED ENERGETI (ultim modific 02/10/2014) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell

Dettagli

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia.

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia. . Dt l'equzione: rppresentt in un sistem di oordinte rtesine ortogonli d prbole on sse prllelo ll'sse, determinre -in funzione del oeffiiente - i oeffiienti b e he individuno l fmigli delle prbole pssnti

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Capitolo 12. Dinamica relativa

Capitolo 12. Dinamica relativa Cpitolo 12 Dinmic reltiv 12.1 Le forze pprenti 1. Sppimo dll cinemtic reltiv che l ccelerzione di un punto P in un riferimento K e l ccelerzione ' di P in un riferimento K ' sono legte l un ll ltr dll

Dettagli

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito)

Cap. 6 Problema 67: potenza per spingere una cassa a velocità costante (con attrito) Cp. 6 Proble 67: potenz per spinere un css velocità costnte (con ttrito DATI velocità dell css costnte, orizzontle, di odulo v =.6 /s ss dell css = 95 coefficiente di ttrito dinico css-pviento =.78 spostento

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

APOTEMA AREA POLIGONO REGOLARE LUNGHEZZA CIRCONFERENZA LUNGHEZZA ARCO CIRCONFERENZA AREA CERCHIO AREA SETTORE CIRCOLARE AREA CORONA CIRCOLARE

APOTEMA AREA POLIGONO REGOLARE LUNGHEZZA CIRCONFERENZA LUNGHEZZA ARCO CIRCONFERENZA AREA CERCHIO AREA SETTORE CIRCOLARE AREA CORONA CIRCOLARE CERCHIO E CIRCONFERENZ CIRCONFERENZ CERCHIO POSIZIONE RETT RISPETTO CIRCONFERENZ POSIZIONE DI DUE CIRCONFERENZE NGOLI L CENTRO NGOLI LL CIRCONFERENZ SETTORE CIRCOLRE PROPRIET CORDE E RCHI POLIGONI INSCRITTI

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Meccanica Dinamica del corpo rigido

Meccanica Dinamica del corpo rigido Meccanca 08-09 Dnamca del corpo rgdo 7 ω L Equaon del moto: Momento angolare: Energa cnetca: Sstem corpo rgdo E F K dp dt L L + L ω M otaone d un corpo rgdo L ω Momento d nera: r dm V dl dt r m L L ω L

Dettagli

Cenni di Dinamica. La dinamica studia le cause del moto:

Cenni di Dinamica. La dinamica studia le cause del moto: enn Dnm nm stu le use el moto: legge Newton o legge nerz: n un sstem nerzle un oro ermne nel suo stto quete o moto unorme. legge Newton: un orz lt un oro mss m orrsone un elerzone t ll relzone: F = m (F

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine G. Di Mri Forulrio i geoetri nliti Forulrio i geoetri nliti G. Di Mri Rette For generle (ipliit) For riott (espliit) For norle 0 q For segentri os sin n 0 p q p,q = lunghezze ei segenti stti ll rett sugli

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

ITIS GALILEO FERRARIS

ITIS GALILEO FERRARIS ITIS GLILEO FERRRIS Sn Giovnni Vldrno rezzo lunno: Giusti ndre Clsse: IV specilizzzione elettronic e telecomuniczioni L dimostrzione è nelle pgine che seguono Il prolem di Dicemre 3 Si consideri un generic

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli