1) Sulla base delle informazioni ricavabili dal grafico in figura 2, mostra, con le opportune

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1) Sulla base delle informazioni ricavabili dal grafico in figura 2, mostra, con le opportune"

Transcript

1 PROBLEMA Si può pdalar agvolmnt su una bicicltta a ruot quadrat? A Nw York, al MoMath-Musum of Mathmatics si può far, in uno di padiglioni ddicati al divrtimnto matmatico (figura ). È prò ncssario ch il profilo dlla pdana su cui il lato dlla ruota può scorrr soddisfi alcuni rquisiti. In figura è riportata una rapprsntazion dlla situazion nl piano cartsiano Oy: il quadrato di lato DE = (in opportun unità di misura) di cntro C rapprsnta la ruota dlla bicicltta, il grafico dlla funzion f() rapprsnta il profilo dlla pdana. ) Sulla bas dll informazioni ricavabili dal grafico in figura, mostra, con l opportun + argomntazioni, ch la funzion: f ( ) =, R rapprsnta adguatamnt il profilo dlla pdana pr [ a ; a]; dtrmina inoltr il valor dgli strmi a a dll intrvallo. Dobbiamo stabilir ch la funzion data, nota com catnaria, ha il comportamnto dlla curva tracciata in figura. Abbiamo ch è dfinita continua in tutti i rali, la sua drivata è ' f =, ch è positiva s <, cioè s < ossia s <, quindi pr = vi è un + punto di massimo ch val f ( ) = = <,5, com ffttivamnt accad alla curva tracciata. Inoltr " + f = <, R, cioè volg la concavità vrso il basso. Dtrminiamo il valor di a. Si ha + = + = + = = ± = ln ± Quindi dovrbb ssr a ln( ), a ln( ) = + =. Proviamo ch in fftti i du numri sono opposti. ln + = ln = ln ln( ) = ln( ).

2 Pr visualizzar il profilo complto dlla pdana sulla qual la bicicltta potrà muovrsi, si affiancano vari copi dl grafico dlla funzion f() rlativo all intrvallo [ a ; a], com mostrato in figura. ) Prché la bicicltta possa procdr agvolmnt sulla pdana è ncssario ch: a sinistra a dstra di punti di non drivabilità i tratti dl grafico siano ortogonali; la lunghzza dl lato dlla ruota quadrata risulti pari alla lunghzza di una gobba, cioè dll arco di curva di quazion y = f() pr [ a; a]. Stabilisci s tali condizioni sono vrificat. I punti di non drivabilità sono ovviamnt i punti di coordinat ((k + ) a; ), con k Z. Pr calcolar l drivat sinistra dstra in ciascuno di qusti punti basta calcolar, pr smpio pr + = a, f '( a) f '( a), dato ch ovviamnt f '( a) f '( a) =. Avrmo quindi i sgunti valori: a a a a a a + f '( a) = f '( a) = = ; f ' a ( a) = =. Adsso, tnuto conto dl valor a di a avrmo: quindi f ( a) f ( a) f ' a = = = = ; f '( a) = =, ' ' =, cioè ffttivamnt l tangnti sono fra loro prpndicolari. Pr rispondr alla sconda domanda dobbiamo calcolar a a a a ( f '( ) ) d = + d = d = d = 4 a a a a a a a a a a a a a a + + = = = = = = + ) Considrando la similitudin di triangoli rttangoli ACL ALM in figura 4, ricordando il significato gomtrico dlla drivata, vrifica ch il valor dll ordinata d dl cntro dlla ruota si mantin costant durant il moto. Prtanto, al ciclista smbra di muovrsi su una suprfici piana.

3 AC CL Pr la similitudin abbiamo: = AC = AL, chiamiamo α = ALM ˆ, da cui AL AM AM AC = sc( α ) = + tan ( α ) = + ( f '( ) ) = +, D altro canto si ha + AC = d, mntr il prcdnt radical lo abbiamo già smplificato quindi ottniamo: + + d + = d =, ffttivamnt d è costant misura quanto mzza diagonal. ( ) ( ) + ln ln Anch il grafico dlla funzion: f ( ) =, ;, s rplicato vari volt, può rapprsntar il profilo di una pdana adatta a ssr prcorsa da una bicicltta con ruot molto particolari, avnti la forma di un poligono rgolar. 4) Individua tal poligono rgolar, motivando la risposta. Ragionando com in prcdnza stavolta avrmo ln( ) f '( ) = = f ' f ' ln = = = = ( ) ln mntr f ' = f ' ln = =. Quindi stavolta l du rtt tangnti formano con l ass angolo rispttivi di 5, prtanto fra di loro formranno un angolo di 8 ( + ) =, prtanto il poligono rgolar ch ha angoli intrni di tal misura è l sagono rgolar.

4 PROBLEMA Considriamo la funzion f: R R, priodica di priodo T = 4 il cui grafico, nll'intrvallo [; 4], è il sgunt: Com si vinc dalla figura, i tratti OB, BD, DE dl grafico sono sgmnti i cui strmi hanno coordinat: O (; ), B (; ), D (; ), E (4; ). ) Stabilisci in quali punti dl suo insim di dfinizion la funzion f è continua in quali è f ( ) drivabil vrifica l sistnza di limiti: lim f ( ) lim ; qualora sistano, dtrminan + + il valor. Rapprsnta inoltr, pr [; 4], i grafici dll funzioni: g() = f (), h = f t dt. Ovviamnt la funzion è continua in tutto l I.d.E. La drivabilità non c è ni punti B D, ch sono angolosi, con tangnti a sinistra dstra gli stssi rami dlla funzion. In O d E invc la funzion è drivabil. Vista la priodicità ovviamnt la non drivabilità si ha ni punti di asciss + k T + 4k, con k Z. Ovviamnt non sist lim f ( ) ( ) +, com accad pr tutt l funzioni priodich. f Mntr lim =, poiché prodotto fra una funzion limitata, dato ch f(), una + infinitsima. Considriamo la rapprsntazion analitica dlla funzion, tnndo conto ch abbiamo succssiv traslazioni dlla prima sconda bisttric: [ ] 4k 4k ;4 k + f =, k Z. Allora + 4k + 4k + ; 4k + 4k ; 4k + avrmo: g ( ) = f '( ) =, k Z, quindi il suo grafico è smplicmnt un 4k + ; 4k + altrnarsi di sgmnti lunghi di ordinata. Rapprsntiamo la funzion non solo in [; 4]:. Pr qul ch riguarda la funzion intgral h() abbiamo invc:

5 t t dt = = t ( t + ) ( + ) + 4 h( ) = f ( t) dt = ; t dt+ t+ dt = = + = ( t 4) ( 4) t dt + ( t 4) dt ;4 = + = + = [ ;] [ ] Il cui grafico è union di archi di parabol: ) Considra la funzion: s() = sin(b), con b costant ral positiva; dtrmina b in modo ch s() abbia lo stsso priodo di f(). Dimostra ch la porzion quadrata di piano OABC in figura vin suddivisa dai grafici di f() s() in parti distint dtrmina l probabilità ch un punto prso a caso all intrno dl quadrato OABC ricada in ciascuna dll parti individuat. Sappiamo ch il priodo di sin(b) è π π π, prtanto dv ssr = 4 b =. Quindi il b b rifrimnto grafico è il sgunt: La probabilità non è altri ch il rapporto dll tr ar risptto all ara dl quadrata, ch siccom è unitaria, è smplicmnt il valor dll ar. Cominciamo dal triangolo BCO ch ha vidntmnt ara / quindi probabilità rlativa,5. Calcoliamo adsso l ara dlla zona racchiusa tra la sinusoid la diagonal OB: π π 4 π sin d cos, 7% = π = =. Infin la trza ara val π π π = 6, %. π π ) Considrando ora l funzioni: f() s() discuti, anch con argomntazioni qualitativ, l variazioni (in aumnto o in diminuzion) di valori di probabilità dtrminati al punto prcdnt.

6 π f = s = sin, il rifrimnto grafico adsso è: l rlativ probabilità sono: Abbiamo: ; ( π ) π sin 4 π π d = = < ; sin d = = = > ; = > π 6 π π 4) Dtrmina infin il volum dl solido gnrato dalla rotazion attorno all ass y dlla porzion di piano comprsa tra il grafico dlla funzion h pr [; ] l'ass dll. Ruotando attorno all ass y ottniamo di cilindri cavi di raggi + d altzza h(), quindi il volum è dv = π ( + d) h( ) = π d + ( d) h( ), possiamo trascurar (d) prché infinitsimo di ordin suprior a d quindi = π = π 8 prtanto si ha: V = π d + + d = π, dv h d V h d QUESTIONARIO. Dfinito il numro E com: E = d dimostrar ch risulta: sprimr d, in trmini di d E. d = E, d Applicando il mtodo di intgrazion pr parti abbiamo: Analogamnt si ha: d = d E =. d = d E 6E = =.. Una torta di forma cilindrica è collocata sotto una cupola di plastica di forma smisfrica. Dimostrar ch la torta occupa mno di /5 dl volum dlla smisfra. La situazion gnral è qulla mostrata in figura:, in cui non è dtto ch il cilindro tocchi la sfra. Considriamo la szion piana prpndicolar al piano di appoggio,

7 ottnndo la figura sgunt. Ovviamnt la torta occupa il massimo spazio quando tocca la smisfra, dobbiamo quindi dtrminar il rapporto di du volumi in qusto caso Vc π rc h rc h strmo mostrar ch è minor di /5. Dobbiamo prciò trovar = =. V s π r rs s Dobbiamo quindi sprimr l tr incognit com una sola di ss. Rifriamoci alla sgunt figura: r h r h rs rs rs. Abbiamo: c c = = cos ( α ) sin( α ), dtrminiamo il massimo nl dominio (; π/). Si ha: f '( α ) = cos ( α ) sin ( α ) cos ( α ) cos ( α ) sin ( α ) =, ch si annulla, com di qusta funzion f ( α ) = sin( α ) sin ( α ) valor accttabil, solo pr sin α = pr tal valor si ha: f "( α ) = sin α sin α cos α + sin α = sin α sin α + sin α + sin α = = 7sin ( α ) 9 sin ( α ) f " sin = + < quindi è un massimo. Prtanto il massimo rapporto fra i volumi è ch f sin = = =,58 < 5. Sapndo ch: Abbiamo: lim caso avrmo: a + b 6 lim = dtrminar i valori di a b. [ ] a + b 6 / b = 8 =, quindi vuol dir ch siamo nl caso b = 8. In tal b 8 a a a a a lim = lim = lim = lim = a + + a + + a Prtanto dv ssr a =. ( 6 6) ( 6 6) 4. Pr sortggiar numri rali nll intrvallo [; ] vin ralizzato un gnrator di numri casuali ch fornisc numri distribuiti, in tal intrvallo, con dnsità di probabilità data dalla funzion:

8 f ( ) =. Qual sarà il valor mdio di numri gnrati? Qual è la probabilità ch il 4 primo numro stratto sia 4/? Qual è la probabilità ch il scondo numro stratto sia minor di? Il valor mdio è dato da f ( ) d = d = d = = La probabilità ch vnga stratto 4/ è stratto sia minor di è 4/ 4/ = 6 = 5 5 d =. la probabilità ch il scondo numro d 4 = = = = Dati i punti A ( ; ; ), B (; ; ), C (; ; ), dtrminar l quazion dlla rtta r passant pr A pr B l'quazion dl piano π prpndicolar ad r passant pr C. L quazion richista è + y z + y z = = = =, i cui numri dirttori sono (5; + 5 ; ), ch sono gli stssi dl piano prpndicolar, la cui quazion è prciò: 5 ( ) (y ) (z + ) = 5 y z =. 6. Dtrminar il numro ral α in modo ch il valor di nullo. Possiamo applicar il Torma di D L Hopital: sin lim α sia un numro ral non α > sin( ) cos ( ) sin( ) cos ( ) lim = lim = lim = lim = α α α α α = α α α α ( α ) ( α ) 6 α < 7. Dtrminar l coordinat di cntri dll sfr di raggio 6 tangnti al piano π di quazion: + y z + = nl suo punto P di coordinat (; ; ). L sfr crcat sono du hanno i cntri appartnnti alla prpndicolar al piano pr il punto P, a = t + distanza da tal punto ugual al raggio. La prpndicolar ha quazion y = t, quindi i cntri z = t + crcati hanno coordinat (t + ; t; t). Imponiamo ch la loro distanza da P sia il raggio:

9 t + + t + t + = 6 6t = 6 t = t = ±, quindi i cntri sono: (; ; ) (; ; ). 8. Un dado ha la forma di un dodcadro rgolar con l facc numrat da a. Il dado è truccato in modo ch la faccia contrassgnata dal numro si prsnti con una probabilità p doppia risptto a ciascun altra faccia. Dtrminar il valor di p in prcntual calcolar la probabilità ch in 5 lanci dl dado la faccia numro sca almno volt. Diciamo p la probabilità ch sca ciascuna dll facc divrsa da. Dato ch la faccia dv avr probabilità doppia risptto all altr dato ch alla fin la somma dll probabilità ch sca una p = p = p ' p = p ' qualunqu dll facc dv valr, abbiamo ch:. p ' + p = p ' + p ' = p ' = In prcntual è circa 5,4%. Lanciar 5 volt uno stsso dado è un vnto brnouilliano con vnti di probabilità rispttiv / /, noi vogliamo ch su 5 lanci ci siano almno succssi, dov ciò significa uscita dl. Quindi avrmo: ,% = Dimostrar ch l'quazion: tan () + + =, ha una una sola soluzion ral. Abbiamo tan () + + = > tan ( ) + ( ) + <, quindi pr il torma di sistnza dgli zri l quazion ha almno una soluzion in ( ; ). D altro canto si ha D(tan () + + ) = + + +, ch è un sprssion positiva pr ogni. Quindi la funzion f() = tan () + +, è smpr crscnt, quindi anch inittiva, prciò ssa può incontrar al massimo una volta l ass.. Data la funzion: f() = 4, vrificar ch ssa non soddisfa tutt l ipotsi dl torma di Roll nll'intrvallo [ ; ] ch comunqu sist almno un punto dll'intrvallo [ ;] in cui la drivata prima di f() si annulla. Qusto smpio contraddic il torma di Roll? Motivar la risposta in manira saurint. Pur ssndo la funzion continua in [ ; ] con f( ) =f() =, ssa non è drivabil in ( ; ); in fftti non è drivabil pr = ±, dato ch f ( ) f ' ( ) ; = ; ; [ ] [ ) ( ] 4 ; = 4 ; ;, da cui + + quindi ( f ') ( f ') ( );( f ') ( f ') = = = =. Ciononostant si ha f () = ; ma ciò non contraddic il torma di Roll prché sso è una condizion ncssaria non sufficint.

10 Commnto. Il primo problma, al di là dlla sua stranzza è obittivamnt complicato da comprndr, più ch da sguir. Gli studnti non sono abituati al linguaggio usato. Il scondo problma è più simil a compiti prcdnti, ma anch qusto è di livllo mdio-alto. I qusiti com al solito sono di varia difficoltà, ch è ingiusto poiché ai fini valutativi un qusito val quanto un altro. In ogni caso sono quasi tutti standard pura applicazion di rgol. Fa cczion solo il numro 8, soprattutto prché si potva falsamnt pnsar ch p foss /. Pr il rsto il qusito 4 riguarda argomnti ch difficilmnt vngono svolti pr mancanza di tmpo. I qusiti di gomtria dllo spazio sono di puro calcolo, l unica difficoltà consist nl fatto ch riguardano argomnti ch di solito si svolgono in quarta difficilmnt vngono riprsi s non pr srcitarsi pr l sam. I qusiti 9 sono intrssanti ma già trattati in prcdnti tornat.

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Lico Scintifico Paritario R Bruni Padova, loc Pont di Brnta, /9/7 II Prova - Matmatica Class V Sz Unica Soluzion Problmi Risolvi uno di du problmi: Problma L azinda pr cui lavori vuol aprir in città una

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero )

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero ) ESERCITAZIONI 7-8- 9- STUDI DI FUNZIONI A) Esrcizi svolti. Studiar il dominio d il comportamnto agli strmi dl dominio dll sgunti funzioni. Calcolarn splicitamnt vntuali asintoti orizzontali o vrticali.

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

ESAME DI STATO 2017 TEMA DI MATEMATICA. Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario.

ESAME DI STATO 2017 TEMA DI MATEMATICA. Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. ESAME DI STATO 217 TEMA DI MATEMATICA Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Problema 1 Si può pedalare agevolmente su una bicicletta a ruote quadrate? A New

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. /5 Sessione ordinaria 27 I43 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI2, EA2 SCIENTIFICO LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Testo valevole anche per la corrispondente

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

MATEMATICA CORSO A III APPELLO 19 Settembre 2011

MATEMATICA CORSO A III APPELLO 19 Settembre 2011 MATEMATICA CORSO A III APPELLO 9 Sttmbr 0 Soluzioni. Calcola (Suggrimnto: x lnx = (/x) lnx ) x lnx dx x lnx dx = /x dx = [ln lnx ] = ln ln ln ln = ln ln = ln lnx. Dtrmina l sprssion analitica di una funzion

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Campi conservativi e potenziali / Esercizi svolti

Campi conservativi e potenziali / Esercizi svolti SRolando, 01 1 Campi consrvativi potnziali / Esrcizi svolti ESERCIZIO Stabilir s il campo vttorial F (x, y) = xy xy + y +, x + xy +1 è consrvativo nl proprio dominio In caso armativo, calcolarn il potnzial

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Liceo scientifico, opzione scienze applicate e indirizzo sportivo

Liceo scientifico, opzione scienze applicate e indirizzo sportivo PROVA D ESAME SESSIONE STRAORDINARIA 8 Lico scintifico, opzion scinz applicat indirizzo sportivo Lo studnt risolva uno di du problmi risponda a qusiti dl qustionario Durata massima dlla prova: 6 or È consntito

Dettagli

ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II

ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II FAUSTO FERRARI Matrial propdutico all lzioni di Analisi Matmatica pr i corsi di Laura in Inggnria Chimica pr l Ambint il Trritorio dll Univrsità di Bologna.

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

p 3. Possiamo passare quindi subito al disegno, 2 sempre ottenuto con Geogebra.

p 3. Possiamo passare quindi subito al disegno, 2 sempre ottenuto con Geogebra. Il candidato risolva uno di du problmi risponda a 5 qusiti dl qustionario. PROBLEMA Siano f g l funzioni dfinit, pr tutti gli x rali, da f (x) = 7x g(x) = sn(/px). Qual è il priodo dlla funzion g? Si studino

Dettagli

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza Soluzioni dll Esrcitazioni XI 0-4//08 A. Funzioni di variabili Insimi di sistnza Si tratta di porr la (o l) condizioni pr cui risulta dfinita la funzion f.. La funzion è f(, ) = ln( +). L unica condizion

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza Analisi Matmatica II Esrcizi sugli intgrali multipli, sugli intgrali suprficiali, sull formul di Gauss-Grn, di toks dlla divrgnza orso di laura in Inggnria Mccanica. A.A. 2008-2009. Esrcizio 1. alcolar

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

ESAMI DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA SCIENTIFICO BROCCA Sessione 2002 seconda prova scritta Tema di MATEMATICA

ESAMI DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA SCIENTIFICO BROCCA Sessione 2002 seconda prova scritta Tema di MATEMATICA ESAMI DI STATO DI LIEO SIENTIFIO PIANO NAZIONALE DI INFORMATIA SIENTIFIO BROA Sssion 00 sconda prova scritta Tma di MATEMATIA Il candidato risolva uno di du problmi 5 di 0 qusiti dl qustionario. PROBLEMA

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2011 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il candidato risolva uno di du problmi 5 di qusiti in cui si articola il qustionario. PROBLEMA Sia f la funzion dfinita sull insim R di numri

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, /6/7 II Prova - Matematica Classe V Sez. Unica Soluzione Problemi. Risolvi uno dei due problemi: Problema. Si può pedalare agevolmente

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

QUESTIONARIO SPERIMENTALE PNI

QUESTIONARIO SPERIMENTALE PNI QUESTIONARIO SPERIMENTALE PNI Qusito Il problma dlla quadratura dl crchio consist nlla ricrca di un quadrato di ara pari a qulla dl crchio dato. È un problma classico ch si è dimostrato irrisolvibil pr

Dettagli

Laboratorio di Calcolo B 79

Laboratorio di Calcolo B 79 Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

1;. Argomenta con adeguate motivazioni. ax b abbia un massimo di.. Argomenta con adeguate motivazioni

1;. Argomenta con adeguate motivazioni. ax b abbia un massimo di.. Argomenta con adeguate motivazioni CALCOLO DIFFERENZIALE APPLICAZIONI E COMPLEMENTI 1 Calcola il valor di a b in modo ch il grafico dlla 3 funzion y a b 4 1 abbia un massimo nl punto di coordinat ;1 Argomnta con adguat motivazioni Calcola

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x Problma Sia P un punto di un arco AB di una smicirconfrnza di cntro O raggio r. Sia T il punto in cui la smirtta OP incontra la tangnt in A all arco. Porr AOT ˆ PT AP P A AT P A AT AOT ˆ Limitazioni gomtrich

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Terza. Codici. Scuola:...

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Terza. Codici. Scuola:... Gruppo di lavoro pr la prdisposizion dgli indirizzi pr l attuazion dll disposizioni concrnnti la valutazion dl srvizio scolastico Progtto Pilota Valutazion dlla scuola italiana Anno Scolastico 2003 2004

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Crchiara Rocco Robrto Matrial Rifrimnti. Capitolo dl tsto Tcnica attuarial dll assicurazioni contro i Danni (Daboni 993) pagg. 5-6 6-65. Lucidi distribuiti in aula La toria

Dettagli

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1 " k " 3) e

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1  k  3) e Elmnti di Analisi Matmatica Ricrca Oprativa prova dl 5 gnnaio 06 ) Discutr il sgunt problma di Programmazion Linar: Trovar il massimo di p,, = 8 + + 8 con i vincoli k 0 ( " k " ) " + + 5 # + + = % 7 +

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli