1. Integrazione di funzioni razionali fratte

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Integrazione di funzioni razionali fratte"

Transcript

1 . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I coeffcent a e b aatengano al cao eale e a n e b sano dves da zeo n odo da non abbassae l gado de olno. S ossono esentae te cas: gp > gq; gp gq; gp < gq... I aso: gp > gq Pe ote calcolae l'ntegale s esege la dvsone ta olno P e Q e s sosttsce l sltato nell ntegale stesso. sstono de etod e esege la dvsone ta olno: - I etodo: s esege l sale dvsone. - II etodo: s tlzza l nco d denttà de olno. seo Sa d S not ce gp gado del olnoo al neatoe e ce gq gado del olnoo a denonatoe. S ò esege la dvsone: e slta: e nd : ozente esto d log actg c d d d d S evene al edeso sltato tlzzano l nco d denttà de olno. Ossevando ce :

2 oleent s etod d ntegazone g g Q g P g Q P g l olnoo ò essee sctto nel odo segente: d c b a ove: a b è l olnoo ozente e c d è l esto della dvsone. gaglando abo eb, s cava: a b c d a c s ò detenae l valoe d a, b, c, e d, onendo l egaglanza ta l olnoo del I ebo e ello del II ebo. S cava: a a b b c d a b a c b d a c: d b c a b a d c b a Sosttendo valo tovat s evene allo stesso sltato ottento a:.. II aso: gp gq In esto caso non s sege na egola ben defnta: le oeazon da esege dendono da olno n goco; è cone ossble esege ancoa la dvsone ta olno. seo: c d d d d d log.. III aso: gp< gq Va codato ce l Teoea Fondaentale dell lgeba affea ce n olnoo d gado n aette esattaente n adc nel cao colesso; tale oetà veà sfttata e decooe l olnoo Q n fatto dcbl. Le adc d Q ossono essee o eal o colesse congate a de a de, con oltelctà aggoe o gale a no. Sonao ce l olnoo Q aetta la segente decooszone: Q α α α

3 oleent s etod d ntegazone dove α,, α sono adc eal e olno cosondono alle coe d adc colesse congate. Gl odn d oltelctà sono:,,, e le adc eal,,,, e le adc colesse congate, e devono soddsfae alla elazone: n gado d Q. Pe selctà consdeeeo n odo dffeente cas elatv a adc eal dstnte, a adc colesse congate e cas con adc eal o colesse congate con oltelctà aggoe d no. Radc eal dstnte S cecano le adc d Q. Il denonatoe della fazone s ò decooe nel segente odo: α α α Q Le adc: α,, α sono e otes eal e dstnte d oltelctà no. S ceca d scvee la fnzone nteganda nel segente odo: P P Q α α α α ove,,, sono costant eal da detenae n base a olno assegnat. Pe detenae l valoe delle costant,,, c s avvale d de etod dstnt e fa d loo evalent: I Metodo: Passaggo al lte. Moltlcando d volta n volta abo eb e α,,,, s ottene: α P α α α α α α α α α α Retendo esta oeazone e ttte le adc s ottengono lt da calcolae seaataente: α l α Q P Tale elazone deve valee e ogn scelta d,,,. S ossev ce d volta n volta al denonatoe anca l tene α. al calcolo de lt così ottent, s cava l valoe delle costant,,,. seo alcolae l segente ntegale: S cecano le adc del olnoo a denonatoe d 6 Q 6 e 6 Qnd s dentfca la fnzone nteganda con la segente: 6

4 Moltlcando abo eb e s ottene: 6 segendo l assaggo al lte, s cava: ossa: 6. l l oleent s etod d ntegazone Moltlcando oa e abo eb s cava: 6 segendo l assaggo al lte, s ottene: l l ossa:. S ò oa ocedee al calcolo dell ntegale: 6 d d d d 6 S ottengono così de ntegal ce aettono coe tve delle fnzon d to logatco. II Metodo: Medante l nco d denttà de olno. Qesto etodo eette d calcolae ttte le costant,,, n blocco, senza coee al calcolo d lt seaataente, a edante la solzone d n sstea lneae d eazon n ncognte. Sonao ce la fnzone nteganda s ossa scvee nel segente odo: P Q α α α S esege la soa de ten a secondo ebo e s cava: P Q [ α α ] [ α α ] α α È ossble elnae denonato n anto gal. S ottene: P [ α α ] [ α α α ] [ α α α ]. Pe l nco d denttà de olno, s ottene n sstea d eazon nelle ncognte,,,. seo : Metodo altenatvo e calcolae l valoe dell ntegale esentato nell eseo. S cecano le adc d Q: gà calcolate nell eseo

5 oleent s etod d ntegazone e 6 Qnd s ceca d soddsfae alla elazone: 6 Svolgendo la soa al secondo ebo, e elnando denonato s ottene: da c, alcando l nco d denttà de olno, s costsce l segente sstea lneae d de eazon nelle de ncognte e : 6 oe ea da asettas, s ottengono gl stess valo e le costant e. Una volta calcolat e, s ò ocedee al calcolo dell ntegale coe nell eseo. Radc colesse congate oe nel caso ecedente s decoone l denonatoe Q n fatto dcbl, andando a cecae le adc del olnoo. Il denonatoe della fazone s ò decooe nel segente odo: Q Il olnoo Q aette, n tal caso, adc colesse e le adc colesse congate del to: β α β α ; ; β α β α La fnzone nteganda dventa s ò scvee nella foa: Q P ove le e sono costant eal da detenae tlzzando l nco d denttà de olno. S ossev ce a neatoe aaono olno d I gado e non ù delle costant coe nel caso ecedente. seo : alcolae l valoe del segente ntegale: d Le adc del olnoo a denonatoe sono: ;, ±; ecao d scvee l aoto nella foa: Utlzzando l nco d denttà de olno, s ottene:

6 oleent s etod d ntegazone 6 da c: e nd la fnzone nteganda s scve: Tonando all ntegale d atenza s ottene: d d d d S ottengono così te ntegal faclente calcolabl. Radc dotate d oltelctà S decoone ancoa n fatto l olnoo Q al denonatoe. S cecano le adc del olnoo: Q α α α dove,,,,,,, aesentano gl odn d oltelctà delle adc tovate eal o colesse congate. La fnzone nteganda s ò scvee nel segente odo: α α α α α α Q P dove le vae costant eal, t, s vanno detenate edante l nco d denttà de olno. seo : alcolae d Le adc del olnoo al denonatoe sono : ; e con oltelctà ecao na foa evalente della fnzone nteganda:

7 oleent s etod d ntegazone 7 Le otenze del denonatoe s etono fno a aggngee l'odne d oltelctà. Qnd: nd l ntegale s ò scvee nel segente odo d d d d seo : alcolae d È gq > gp. Pe decooe tale fazone bsogna detenae le adc del olnoo al denonatoe Le adc sono : ; e ± ognna con odne d oltelctà s anno adc colesse e adce eale. Pe l teoea d decooszone de olno la fnzone nteganda s ò scvee nel odo segente: da c s cava l sstea lneae nelle ncognte,,,, : Qnd la fazone s ò scvee coe soa d fazon, nel odo segente:

8 oleent s etod d ntegazone.. Teoea d decooszone de olno N.. La tecnca d decooszone de olno non è fnalzzata all ntegazone, a ò essee sata ogn volta ce s a a ce fae con l ozente d de olno ce settno le otes esoste. Sano P e Q olno eal con coeffcent eal e tal ce gp< gq. Se l olnoo Q s ò fattozzae nel segente odo: α α α Q slta ce :,,,,,,, sono gl odn d oltelctà delle adc del olnoo Q. gq. α,α,,α sono le adc eal dell eazone Q,, sono olno d secondo gado dcbl nel cao eale, ossa aettono de adc colesse congate. P Il aoto s ò esee coe soa d fazon azal nel segente odo: Q P. Q α α α e ogn adce eale e ogn coa d adc colesse congate ove le costant eal,, s detenano edante l nco d denttà de olno. seo. alcolae la tva del segente ntegale: d. Sccoe g e g[ ] 6, sao nelle condzon d ote alcae l teoea ecedente. I asso. alcolo delle adc d. S cava: con oltelctà, con oltelctà, con oltelctà. II asso. ecao d scvee la fnzone nteganda nella segente foa: ate cosondente alle adc eal F ate cosondente alle adc colesse congate 8

9 oleent s etod d ntegazone 9 F III asso: gaglanza ta neato; F IV asso: e l nco d denttà de olno s ottene l sstea F F nd la fnzone nteganda s ò scvee nella foa: etanto l'ntegale d atenza dvene: d d d d I de ntegal sono faclente calcolabl e cosondono settvaente alle fnzon e actg, ente e l tezo ntegale bsogna daa coee al etodo d sosttzone e o all'ntegazone e at, nfatt osto tg s cava d d cos e c: d cos sen sen cos cos s d d da c s ò tonae alla vecca vaable e avee l'ntegale n fnzone della vaable.

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson Appofondmento 7.4 - Alt tp d test d sgnfcatvtà del coeffcente d coelazone d Peason Una delle cause pncpal della cattva ntepetazone del test d sgnfcatvtà d è che s fonda su un potes nulla pe cu ρ 0. In

Dettagli

Meccanica applicata alle macchine

Meccanica applicata alle macchine Meccanica alicata alle acchine Il sistea eccanico iotato in figa é costitito a n otoe elettico, a n tilizzatoe con l'inteosizione i na tasissione Il otoe eoga na coia costante al vaiae ella velocità ente

Dettagli

Economia del turismo. Prof.ssa Carla Massidda

Economia del turismo. Prof.ssa Carla Massidda Economa del tusmo Pof.ssa Cala Massdda Pate 2 Agoment Defnzone d domanda tustca Detemnant della domanda tustca L elastctà della domanda tustca La stma della domanda tustca Defnzone d domanda tustca Dato

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini.

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini. Lezone Peequs: Lezone. Funzon polnomal. Radc d un polnomo. Teoema d Ruffn. Sa K un campo e sa L un campo d cu K è soocampo (n al caso s dce anche che L è un'esensone d K). Sa f ( X ) K[ X ] e sa α L. Alloa,

Dettagli

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico Il capo agnetco Un capo agnetco può essee ceato da cache elettche n oto, coè da una coente, oppue da un agnete peanente Speentalente s tova che esstono due polatà nel agnetso polo nod e polo sud: pol ugual

Dettagli

LA NORMA UNI ENV 13005:2000 E LE GUIDE ACCREDIA DT-0002 E DT-0002/3 SULLA STIMA DELL INCERTEZZA DEI RISULTATI

LA NORMA UNI ENV 13005:2000 E LE GUIDE ACCREDIA DT-0002 E DT-0002/3 SULLA STIMA DELL INCERTEZZA DEI RISULTATI P.le R. Moand, - 0 MILANO LA NORMA UNI ENV 3005:000 E LE GUIDE ACCREDIA DT-000 E DT-000/3 SULLA STIMA DELL INCERTEZZA DEI RISULTATI RELATORE: N. BOTTAZZINI (UNICHIM) Coso: SISTEMA DI GESTIONE PER LA QUALITA

Dettagli

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine Poltecnco d Torno Laurea a Dstanza n Ingegnera Meccanca Corso d Macchne Esercz svolt Sono d seguto svolt gl Esercz 3 e 4 roost al terne del Catolo 6 ) Un coressore a stantuffo onostado asra ara (k = 4;

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

Analisi delle componenti principali

Analisi delle componenti principali UNIVERSIÀ DEGI SUDI DEA BASIICAA FACOÀ DI INGEGNERIA CORSO DI AUREA IN INGEGNERIA MECCANICA ESINA IN COMPEMENI DI PROBABIIÀ E SAISICA 3 cedt Anas dee comonent nca DOCENE: Pof.: EVIRA DI NARDO SUDENE: D

Dettagli

Quanti centesimi mancano per avere 1 unità se ho 30 centesimi?... E se ne ho 35?... E se ne ho 73?... 0,5 1,4 3,2 7,4 0,7 0,78 1,12 1,06

Quanti centesimi mancano per avere 1 unità se ho 30 centesimi?... E se ne ho 35?... E se ne ho 73?... 0,5 1,4 3,2 7,4 0,7 0,78 1,12 1,06 I NUMERI DECIMALI Calcolo rapido Rispondi alle segenti domande. Qanti decimi occorrono per fare 1 nità?... E mezza nità?... Qanti decimi mancano per avere 1 nità intera se ho 7 decimi?... E se ne ho 6?...

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

Disequazioni. 21.1 Intervalli sulla retta reale

Disequazioni. 21.1 Intervalli sulla retta reale Disequazioni 1 11 Intevalli sulla etta eale Definizione 11 Dati due numei eali a e b, con a < b, si chiamano intevalli, i seguenti sottoinsiemi di R: a, b) = {x R/a < x < b} intevallo limitato apeto, a

Dettagli

Capitolo 6 - Aria umida

Capitolo 6 - Aria umida unt d FISIC TECIC Catolo 6 - ra uda ca sulle scele gassose... Proretà terodnace dell ara uda...5 elazon er l calcolo d alcune roretà nterne...7 Ttolo...7 Eseo nuerco...8 Entala...9 Eseo nuerco...0 olue

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Nota metodologica. 1. Finalità e principali caratteristiche dell indagine

Nota metodologica. 1. Finalità e principali caratteristiche dell indagine INTEGRAZIONE SOCIO-LINGUISTICA DEI CITTADINI STRANIERI. ANNI 2011-2013 1 Nota etodologa 1. Fnaltà e pnpal aatteste dell ndagne Nel 2011-2012 l Istat a ondotto, pe la pa volta, la levazone statsta sulla

Dettagli

14. LA TRASMISSIONE GLOBALE DEL CALORE

14. LA TRASMISSIONE GLOBALE DEL CALORE 4. LA TASMISSIONE GLOBALE DEL CALOE Quando la asmssone del caloe convolge ue e e le modalà fnoa vse s pala d 'asmssone globale' del caloe. S aeà n pacolae nel seguo la asmssone aaveso pù maeal pan e opac

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Il problema didattico dei numeri reali.

Il problema didattico dei numeri reali. C. Machii - Ati di Didattica della Mateatica II/ - Scola di Secializzazioe e l'iseaeto Secodaio Calo Machii Il oblea didattico dei ei eali. Ati delle lezioi di Didattica della Mateatica II e la Scola di

Dettagli

LEZIONI SU MAGNETISMO

LEZIONI SU MAGNETISMO Matematca e sca CHEMA LEZIOI U MAGETIMO ntoduce l vettoe nduzone dalla ossevazone del compotamento de magnet. va da nod a sud fuo dal magnete. od è l polo magnetco attatto dal polo nod teeste (che qund

Dettagli

Il criterio media varianza. Ordinamenti totali e parziali

Il criterio media varianza. Ordinamenti totali e parziali Il citeio media vaianza Il citeio media vaianza è un alto esemio di odinamento aziale ta lotteie definito da a M b se la lotteia b domina la lotteia a se ha media sueioe e vaianza infeioe a b eσ a σ b

Dettagli

Matematica finanziaria avanzata III: la valutazione dei gestori

Matematica finanziaria avanzata III: la valutazione dei gestori Maemaca azaa aazaa III: la aluazoe de geso L dusa del spamo geso La aluazoe della peomace Redme Msue sk-adjused Msue basae su modell ecoomec Le gadezze lea I bechmak e le commsso La lodzzazoe de edme L

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

Marco Centra - Isfol Piero Demetrio Falorsi - Istat Valentina Gualtieri - Isfol Giovanna Linfante - Isfol ISSN 2037-2582

Marco Centra - Isfol Piero Demetrio Falorsi - Istat Valentina Gualtieri - Isfol Giovanna Linfante - Isfol ISSN 2037-2582 Stuent_0 L panto etodologco dell Indagne longtudnale sulle tanszon scuola-lavoo aco Centa - Isfol Peo Deeto alos - Istat Valentna Gualte - Isfol Govanna Lnfante - Isfol ISSN 2037-2582 collana stuent sfol

Dettagli

Controllo vettoriale

Controllo vettoriale Contollo vettoale I tem d contollo tadzonal della macchna ancona, baat u tecnche d contollo calae, egolano l funzonamento della macchna a egme tazonao, ma pemettono d ottenee tanto meccanc oddfacent pe

Dettagli

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza

Dettagli

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione Appofondimento 7.5 - Alti tipi di coefficienti di coelazione Il coefficiente di coelazione tetacoico e policoico Nel 900 Peason si pose anche il poblema di come misuae la coelazione fa caatteistiche non

Dettagli

Un modello di ricerca operativa per le scommesse sportive

Un modello di ricerca operativa per le scommesse sportive Un modello di iceca opeativa pe le commee potive Di Citiano Amellini citianoamellini@aliceit Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle

Dettagli

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata Grafca opterzzata URVE & UPERFII copo: fornre na rappresentazone ateatca per rappresentare 2D e 3D del oett Unversty of Ferrara opter slaton rop http://www.d.nfe.t/~cs Grafca opterzzata Bsona scelere na

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

6. MACCHINE VOLUMETRICHE

6. MACCHINE VOLUMETRICHE 6. MHINE OLUMETRIHE 6. OMPRESSORI DI GS OLUMETRII 6.. INTRODUZIONE I coressor d gas voluetrc sono acchne oeratrc che trasferscono energa eccanca ad un fludo corble edante aret obl; la ressone del gas vene

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

Workshop MatFinTN 2012

Workshop MatFinTN 2012 Wokshop MatFnTN 2012 Dalla Bnson Attbuton al Black&Ltteman model: anals matematche nell'asset management D.ssa Tzana Rgon Lauea n Matematca conseguta pesso l'unvestà d Tento con tes dal ttolo: Metod d

Dettagli

STRATIGRAFIE PARTIZIONI VERTICALI

STRATIGRAFIE PARTIZIONI VERTICALI STRATIGRAFI PARTIZIONI VRTICALI 6. L solamento acustco: tecnche, calcol 2 Trasmssone rumor In edlza s possono dstnguere dfferent tp d rumor: rumor aere (vocare de vcn da altre untà abtatve, rumor provenent

Dettagli

SISTEMI DI CONDOTTE: La verifica idraulica

SISTEMI DI CONDOTTE: La verifica idraulica SISTEMI DI CONDOTTE: L vefc dulc Clo Cpon Unvestà degl Stud d Pv Dptmento d Ingegne Idulc e Ambentle Poszone del del poblem Rete esstente d cu è not l geomet E pefsst l eogzone (ppocco DDA: Demnd Dven

Dettagli

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30).

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30). ODELLO ONOINDICE Il rendmento d un ttolo uò essere scrtto come: R = a + β R (1) dove: R = rendmento dell -mo ttolo; a = comonente aleatora del rendmento, ndendente dall andamento del mercato; R = è varable

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

M A C C H I N E A F L U I D O

M A C C H I N E A F L U I D O 1 M A C C I N E A F L U I D O MACCINA: è n sistea di organi fissi e obili vincolati gli ni agli altri da legai definiti cineaticaente e disposti in odo tale da copiere, ovendosi sotto l azione di forze

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Oggetto: TEMA D ESAME DÌ STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA LIBERA PROFESSIONE DÌ GEOMETRA SESSIONE 2008

Oggetto: TEMA D ESAME DÌ STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA LIBERA PROFESSIONE DÌ GEOMETRA SESSIONE 2008 Toino, novembe 2008 Gentile ofessionista Oggetto: TEMA D ESAME DÌ STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA LIBERA PROFESSIONE DÌ GEOMETRA SESSIONE 2008 E con molto iacee che aendiamo il testo del Tema

Dettagli

Lezione 3 Controllo delle scorte. Simulazione della dinamica di un magazzino

Lezione 3 Controllo delle scorte. Simulazione della dinamica di un magazzino Lezione 3 Conollo delle scoe Simulazione della dinamica di un magazzino Conollo delle scoe ovveo gesione magazzini significa conollo degli aovvigionameni (aivi), a fone di acquisi; conollo della oduzione

Dettagli

Teoria del consumo basata sulle aspettative

Teoria del consumo basata sulle aspettative Lezione 7 (Blanchad ca. 5) Aseaive, consumo e invesimeno Coso di Macoeconomia Pof. Guido Ascai, Univesià di Pavia Teoia del consumo basaa sulle aseaive Teoia del eddio emanene (Milon Fiedman) > gli ageni

Dettagli

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

INTERFACCIA UOMO-MACCHINA PER ROBOT ANTROPOMORFI IN APPLICAZIONI DI CORREZIONI PROFILI

INTERFACCIA UOMO-MACCHINA PER ROBOT ANTROPOMORFI IN APPLICAZIONI DI CORREZIONI PROFILI UNIVERSITÀ DI PISA Facoltà d Ingegnera Larea Secalstca n Ingegnera dell Atomazone Tes d larea INTERFACCIA UOMO-MACCHINA PER ROBOT ANTROPOMORFI IN APPLICAZIONI DI CORREZIONI PROFILI Canddato: Federco Agostnell

Dettagli

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Un mosaico di Mosaici

Un mosaico di Mosaici Conos iamo ins ieme c Un mosaico di Mosaici di Luca e Robeto Il Mosaico nasce nel 1988, quindi quest anno compie vent anni: augui! Abbiamo voluto scopie i etoscena e la stoia di questo peiodico che da

Dettagli

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven Modellazone e calbrazone del traffco autostradale per la rete d Endhoen Freeway traffc odelng and calbraton for the Endhoen networ Relatore: Prof. Alessandro Gua Supersor: Prof. Bart De Schutter DCSC TUDelft

Dettagli

Quadro riassuntivo delle principali formule di matematica finanziaria

Quadro riassuntivo delle principali formule di matematica finanziaria uado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale o divea fuifeo. epo d ipiego del capiale co ao (u ao)

Dettagli

I. Generalità, definizioni, classificazioni. MACCHINA A FLUIDO

I. Generalità, definizioni, classificazioni. MACCHINA A FLUIDO I. eneralità, definizioni, classificazioni. I.1 Definizioni rigardanti: macchine motrici ed operatrici e loro classificazione. Una macchina è n insieme di organi fissi e mobili, vincolati tra loro cinematicamente,

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

3. Componenti adinamici

3. Componenti adinamici 3. Comonen dnmc Ssem rsolene d un crcuo. elzone cosu d un comonene. Clssfczon: comonene lnere/non lnere, dnmco/dnmco, con memor/senz memor, emo nrne/emo rne, omogeneo/non omogeneo, mresso/non mresso, sso,

Dettagli

Misure di RAP risk-adjusted performance

Misure di RAP risk-adjusted performance Misue di RAP isk-adjusted eomance Indice di Shae e M-quado Indice di Teyno Tacking Eo e Inomation Ratio Indice di Sotino 28 Indice di Shae Pemio e unità di ischio totale, o ewad to vaiability S µ z µ P

Dettagli

AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso

AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Modello del motoe ancono tfae ed oeato d fluo S conde la macchna chematzzata con aolgment tatoc pot a π/ ta loo e f nello pazo e aolgment otoc,

Dettagli

(formula dello sconto composto convertibile)

(formula dello sconto composto convertibile) uado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale iiziale o divea fuifeo. epo d ipiego del capiale ( ao!)

Dettagli

Generalità sulle macchine rotanti

Generalità sulle macchine rotanti Macchie elettiche ate Geealità ulle macchie otati Foza di Loetz U filo coduttoe immeo i u camo magetico B (i figua B ha diezioe ucete dal foglio) e ecoo da ua coete i iega i ua o ell alta diezioe a ecodo

Dettagli

Proporzionamento del pistone oleodinamico

Proporzionamento del pistone oleodinamico 0 Schede di Imianti Navali Poozionamento del istone oleodinamico ve 1. cua di Tommaso Coola e anco Quaanta 1 Poozionamento del istone oleodinamico vesione: 1. file oiginale: Poozionamento del istone oleodinamico

Dettagli

Gates CMOS in cascata

Gates CMOS in cascata Gaes MOS n cascaa Obevo Sudo del mnmo rardo d roagazone: Numero d sage fssao Numero d sage omo Esemo 1 due nveror n cascaa Inv1 Inv2 S=W/L αs uαs V V Vo us L L/=ρ I: = n(inv2) = u Dmensonameno del Transsor

Dettagli

Potenza in alternata

Potenza in alternata otenza in altenata sin t 0 ( ) ω +φ i [ ( )] sin ω t + φ ( ω + φ) 0 0 sin t E significativo consideae la potenza media dissipata sulla esistenza andando a calcolae l integale su un peiodo 1 T T 0 sin sin

Dettagli

www.ipospadia.it Dott:Giacinto Marrocco

www.ipospadia.it Dott:Giacinto Marrocco www.ipospadia.it Dott:Giacinto Marrocco Le Malformazioni dei Genitali nell'infanzia Un sito dedicato ai pediatri ed ai genitori di bambini con patologie acquisite o congenite degli organi genitali EPISPADIA

Dettagli

Errori a regime per controlli in retroazione unitaria

Errori a regime per controlli in retroazione unitaria Appunt d ontoll Autoatc Eo a g n sst n toazon Eo a g p contoll n toazon untaa... Eo a g nlla sposta al gadno (o d poszon)... Eo a g nlla sposta alla apa (o d vloctà)...3 Eo a g nlla sposta alla paabola

Dettagli

Investimento. 1 Scelte individuali. Micoreconomia classica

Investimento. 1 Scelte individuali. Micoreconomia classica Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

Controlli automatici

Controlli automatici Controlli atomatici Sistemi a tempo discreto Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informaione e Bioingegneria Introdione Un sistema dinamico a tempo

Dettagli

Appunti a cura di Roberto Bringheli e Carmelo Zucco Pagina 16 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE SOTTRAZIONE DEL COSENO

Appunti a cura di Roberto Bringheli e Carmelo Zucco Pagina 16 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE SOTTRAZIONE DEL COSENO Pagina 6 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE Esistono metodi er determinare le formule di addizione e sottrazione: il metodo vettoriale e quello algebrico, er semlicità ci limiteremo a determinare

Dettagli

21. COLLEGAMENTI SALDATI

21. COLLEGAMENTI SALDATI . COLLEET SLDT. Petucc Leon d Costuone d acchne La saldatua è un pocesso che consente d collegae element costuttv ta loo o con l esteno. È un collegamento fsso ed namovble. Da un punto d vsta meccanco,

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

RESISTENZE DI ATTRITO (Distillazione verticale)

RESISTENZE DI ATTRITO (Distillazione verticale) 1 ESISTEZE DI ATTITO (Distillazione veticale) OBIETTIVI: Saee calcolae le esistenze d attito nelle iù comuni alicazioni meccaniche. Saee calcolae lavoo dissiato e otenza dissiata dalle foze d attito. esistenza

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Stdi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli XI-XIII del testo Cladio Pacati a.a. 998 99 c Cladio Pacati ttti i diritti riservati. Il presente

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

Sono tutti nati negli anni Ottanta, decennio di diffuso ritorno alla pittura nell'arte, di grande

Sono tutti nati negli anni Ottanta, decennio di diffuso ritorno alla pittura nell'arte, di grande KU LT 20 TALE NTS La a a aaa 20 a 91 S a a Oaa, aa a 'a, a a aa a a,. A aa, a a a aa a, a a aa, a a -, a aa aa a aa a aa a a. È a a a a a a, I, a TV a, a ò aa aa. A a a a aa a, a a a aa a, a aa aa aa.

Dettagli

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua:

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua: I NUMERI NATURALI Per cominciare impariamo a leggere alcni nmeri natrali e dopo prova a scriverli nella ta linga: NUMERI ITALIANO LA TUA LINGUA 1 UNO 2 DUE 3 TRE 4 QUATTRO 5 CINQUE 6 SEI 7 SETTE 8 OTTO

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap.6. Le macchine termiche semplici e l analisi di disponibilità

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap.6. Le macchine termiche semplici e l analisi di disponibilità Appnt ed Esercz d Fsca ecnca e Macchne ermche Cap.6. Le macchne termche semplc e l anals d dsponbltà Paolo D Marco Versone 26.1 19.12.6. La presente dspensa è redatta ad esclsvo so ddattco per gl allev

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

Elemento Finito (FE) per travi 2D

Elemento Finito (FE) per travi 2D Eemento Fnto (FE) per trav D Govann Formca corso d Cacoo Automatco dee Strutture AA. 9/1 Premesse a modeo modeo fsco prncp d banco e dsspazone { Pest P nt = { q u S u = P nt φ modeo smuato (dscretzzazone)

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

COMPARATORI. Comparatore invertente

COMPARATORI. Comparatore invertente COMPAATOI Un cmpaate è un ccut ce a due pssbl val d uscta, medante qual gnala l sultat del cnfnt delle tensn su due ngess amplfcate peaznale ad anell apet csttusce un cmpaate mplce, ce cnfnta un gnale

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini A.A. 015 016 Mauizio Piccinini Fisica Geneale A Gavitazione univesale Scuola di Ineneia e Achitettua UNIBO Cesena Anno Accademico 015 016 A.A. 015 016 Mauizio Piccinini Gavitazione Univesale 1500 10 0

Dettagli

CAPITOLO 10 La domanda aggregata I: il modello IS-LM

CAPITOLO 10 La domanda aggregata I: il modello IS-LM CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,

Dettagli

5.1 Determinazione delle distanze dei corpi del Sistema Solare

5.1 Determinazione delle distanze dei corpi del Sistema Solare 5.1 Deteminazione delle distanze dei copi del istema olae 5.1.1 Distanza ea-pianeti aallassi equatoiali Questo è il metodo più peciso ma anche quello più delicato da eseguie. Esso si basa sul fatto che

Dettagli

LaborCare. Care. protection plan

LaborCare. Care. protection plan Cae potection plan ocae Il Potection Plan è stato studiato pe gaantie la massima efficienza di oview e pe questo i clienti che non vogliono avee poblemi nel futuo, si affidano al nosto pogamma di potezione

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli