Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni"

Transcript

1 Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia Itroduzioe al corso. Itroduzioe alla statistica, statistica descrittiva. Frequeza assoluta e relativa. Modi di rappresetare graficamete i dati. Aggregazioe di dati i classi. Campioe, media campioaria e sue proprietà. Media pesata. Mediaa e moda. Lezioe 2 (28/9, ore 16:30). Materiale e comuicazioi alla pag. di F. Fladoli: Iizio dello studio del capitolo 3, sui fodameti del calcolo delle probabilità. Vegoo date le defiizioi di uiverso, eveti, eveti elemetari o esiti; essi vegoo esemplificati mediate affermazioi riguardati il possibile risultato del lacio di u dato. Vegoo discusse le operazioi (uioe, itersezioe e complemetare) su eveti, collegadole alle operazioi logiche sulle relative affermazioi. Viee poi defiita la probabilità (iterpretata ituitivamete col cocetto di massa). Vegoo illustrazioe alcue regole che discedoo dagli assiomi, su P (A c ) e P (A B) ache el caso o disgiuto (iterpretate tramite l idea di massa). Viee spiegato che i uo spazio Ω fiito è suffi ciete avere le probabilità degli esiti, dalle quali si calcolao le probabilità di tutti gli eveti. Lezioe 3 (1/10, ore 10:30). Desità di probabilità ed esempio di probabilità associata, desità espoeziali, desità discrete ed esempio di probabilità associata, desità geometriche. Probabilità codizioale, iterpretazioe grafica, osservazioe sul fatto che è ua probabilità (metre P (A B) o ha particolari proprietà rispetto a B). Formula di fattorizzazioe, dimostrazioe, rappresetazioe tramite albero degli eveti. Esercizio sulle vedite di vio, che esemplifica il cocetto di probabilità codizioale e la formula di fattorizzazioe. Defiizioe di idipedeza tra eveti, a partire dalla codizioe P (A B) = P (A). Lezioe 4 (5/10, ore 11:30). Vedere la registrazioe di Barsati. Variaza e deviazioe stadard campioaria co esempi e teciche per abbreviare il calcolo. Percetili campioari e quartili. Box plot. Formula di Chebyshev 1

2 co dimostrazioe ed esempi di applicazioi. Campioi ormali, asimmetrici, bimodali. Campioi bivariati e coeffi ciete di correlazioe campioario. Lezioe 5 (5/10, ore 16:30). Dimostrazioe del fatto che l idipedeza tra due eveti A e B equivale alla proprietà P (A) = P (A B) ( A o dipede da B ), ed equivale a P (B) = P (B A) ( B o dipede da A ); queste ultime quidi equivalgoo, pur o essedo simmetriche. Esercizio. U sistema S è composto da tre sottosistemi S 1, S 2, S 3. La probabilità che S i si rompa è p i. Suppoedo che il fuzioare o meo dei sottosistemi sia idipedete, calcolare la probabilità che si rompa S. Osservazioe: la proprietà che A e B siao idipedeti equivale a: A c e B c soo idipedeti; ed ache a: A e B c soo idipedeti; ed ifie a: A c e B soo idipedeti. Lezioe 6 (8/10, ore 10:30). Formula di Bayes, u esempio, liguaggio cause-effetti, probabilità a priori ed a posteriori delle cause; problema della causa più probabile, ache el caso di cause a priori equiprobabili, iterpretazioe del calcolo sull albero degli eveti. Fuzioe di distribuzioe cumulativa el caso cotiuo e discreto, sue proprietà, grafici, esempio dell espoeziale. Cocetto di variabile aleatoria, coessioe co le desità e la cumulativa. Lezioe 7 (12/10, ore 11:30). Cardialità di u isieme. Spazi di esiti equiprobabili; P (A) = A Ω (rapporto tra il umero dei casi favorevoli e quello dei casi possibili). Elemeti di calcolo combiatorico. Pricipio di eumerazioe. Fattoriale e coeffi cieti biomiali. {permutazioi} =!, {disposizioi} = ( 1) ( k + 1) (verificati col pricipio di eumerazioe). Le fuzioi biuivoche f : {1,..., } {1,..., } soo le permutazioi; le fuzioi iiettive f : {1,..., k} {1,..., } soo le disposizioi. Teorema: {combiazioi} = ( k). Dimostrazioe usado classi di equivaleza di disposizioi. Esercizi sulle combiazioi (icluso esempio del libro, detta distribuzioe ipergeometrica). Lezioe 8 (12/10, ore 16:30). Variabili aleatorie discrete, loro valori, loro desità discreta e suo grafico. Esempi: Beroulli e biomiale (verifica della somma 1 col biomio di Newto). Grafici tipici della biomiale. Euciato del teorema che lega Beroulli e biomiali. Esempio della baca e dei corretisti, i cui si vuole calcolare la probabilità che il umero di corretisti che si preseta superi ua certa soglia. Esercizi per casa su fattorizzazioe e Bayes: es. 10 (H2) del 28/05/2010; 2

3 es. 1 del 20/07/2010; es. 1.i del 29/06/2010. Si cosiglia ache la lettura degli esempi 3.5.3, 3.7.4, Lezioe 9 (15/10, ore 10:30). Descrizioe del foglio Excel da preparare a casa, coteete i valori della biomiale, desità e cumulata, che serve a calcolare probabilità e soglie. Ogi studete deve predisporre u tale foglio persoalizzadolo co la risoluzioe di u problema. Dimostrazioe rigorosa del teorema che lega Beroulli e biomiali. Valor medio aritmetico (empirico) di u campioe e valor medio (valore atteso) teorico di ua v.a. Legame tra i due: detti a k i valori della v.a. X e p (a k ) le loro probabilità, la def. di media è E [X] = a k p (a k ), metre vale x = x x = a k p k dove p k è la frequeza relativa empirica co cui si osserva a k el campioe. Esempi elemetari di calcolo del valor medio. Iterpretazioe grafica, casi simmetrici. Esercizio per casa (probabilità che al massimo uo su sette abbia successo). Lezioe 10 (18/10, ore 11:30). Vedere la registrazioe di Barsati. Esercizi su probabilità discreta. Lezioe 11 (19/10, ore 11:30). Proprietà del valor medio: positività, mootoia, liearità (seza dimostrazioe). Valor medio di ua Beroulli e di ua biomiale. V.a. di Poisso, verifica della somma 1, teorema degli eveti rari. Valor medio di ua Poisso. Schema di Beroulli (schema successo-isuccesso). Numero di successi su prove: v.a. B (, p); oppure approssimativamete P (λ) se è grade e p è piccolo (successi rari); λ = p = umero medio di successi. Primo istate di successo: geometrica (co la covezioe che si parte dal tempo 0). Trasformazioi di v.a. discrete, valor medio di ua trasformazioe, esempi ed esercizi. Variaza e deviazioe stadard. V ar [X] = E [X 2 ] µ 2 X. Esempio della Beroulli. Lezioe 12 (19/10, ore 16:30). Eleco provvisorio di formule geerali (es. liearità del valor medio e E [XY ] = E [X] E [Y ] el caso di v.a. idipedeti che vedremo i seguito) e di valori medi particolari (media e variaza di Beroulli, biomiali, Poisso, dado per buoe le formule delle variaze che vedremo). Esercizi vari simili a quelli dei compiti. 3

4 Lezioe 13 (25/10, ore 10:30). Proprietà della variaza. V.a. idipedeti: proprietà del valor medio del prodotto (seza dimostrazioe), cosegueze sulla variaza della somma. Defiizioe di covariaza e di v.a. scorrelate, legame co l idipedeza, teorema geerale sulla variaza della somma. Media e variaza di Beroulli (dalla defiizioe) e biomiale (usado le proprietà di valor medio e variaza di ua somma). Cocetrazioe delle biomiali, problema dei uteti. Fuzioe geeratrice dei mometi, teorema di legame coi mometi, teorema sulla geeratrice della somma di v.a. idipedeti. Geeratrice di Beroulli, biomiale, Poisso e calcolo della variaza di ua v.a. di Poisso. Idee sul fatto che variaza e geeratrice di ua Poisso si possoo dedurre ituitivamete dal teorema degli eveti rari. Media e variaza di ua v.a. espoeziale, dalla defiizioe. Geeratrice di v.a. co desità, esempio delle espoeziali, per le quali o è fiita per tutti i valori del parametro. Eleco di desità, media, variaza e geeratrice di ua gaussiaa N (µ, σ 2 ), per ora seza tutti i calcoli. Nota: se si escludoo alcue domade basate su quatili e cumulativa gaussiaa e relative tavole, e sul teorema limite cetrale (TLC), si possoo svolgere praticamete tutti gli esercizi teorici delle prove scritte (tali prove soo divise i ua serie di domade teoriche ed ua di domade di statistica, di solito raggruppate i due esercizi separati, quidi facilmete idetificabili). Lezioe 14 (26/10, ore 11:30). Vedere la registrazioe di Barsati. Esercizi su valore atteso, probabilità di eveti e fuzioi caratteristiche per v.a. beroulliae, biomiali, poissoiae e gaussiae. Lezioe 15 (2/11, ore 11:30). Vedere la registrazioe di Barsati. Disuguagliaze di Markov e di Chebishev, covergeza i probabilità, legge debole dei gradi umeri. Esercizi su probabilità discreta, variabili Beroulliae e biomiali. Lezioe 16 (8/11, ore 10:30-12:30). Vedere la registrazioe di Barsati. Stadardizzazioe e riproducibilità della variabile gaussiaa. Uso delle tabelle della fuzioe di ripartizioe della gaussiaa stadard. Quatili gaussiai (stadard e o). Somma di gaussiae idipedeti e ideticamete distribuite. Teorema limite cetrale. Euciato ed esempio di utilizzo. Lezioe 16 (8/11, ore 12:30-13:30). Dimostrazioe del teorema limite cetrale. Esercizi dai compiti. 4

5 Lezioe 17 (9/11, ore 11:30). Iizio della Statistica Matematica. Defiizioe di campioe X 1,..., X e di X, legame e differeze rispetto a x 1,..., x e di x, ache esemplificato i u problema di vedite e dati gioralieri, passati e futuri. Teorema su media e variaza di X, e sulla sua gaussiaità i ipotesi di gaussiaità delle X i. Legami tra X (o x) e µ. Oltre ad uo già visto alla lezioe 9, il teorema precedete idica il legame E [ X ] = µ (stimatore corretto) e E [ X µ 2] = σ 2 che quatifica la viciaza tra X e µ (iterpretazioe grafica). Si poe u problema più strigete di quatificazioe: discutere la validità di ua disuguagliaza del tipo X µ δ. Viee discussa ituitivamete, poi viee calcolata P ( ) X µ δ trovado P ( ( ) ( ) X µ δ δ = Φ Φ δ ). σ σ Esercizio per casa: risolvere u problema iverso, cioè di trovare δ tale che P ( X µ δ ) = Lezioe 18 (15/11, ore 10:30). Itervalli di cofideza. Basadosi sul risultato della lezioe precedete, si risolve il problema iverso, di trovare il umero δ tale che P ( X µ δ ) = 1 α. Si trova δ = σq 1. Di passaggio, viee sottolieato che l equazioe Φ (x) = β equivale a x = q β. Risultato espresso ella forma: µ = X ± σq 1 co probabilità 1 α. Quado dai dati sperimetali si trova x, scriveremo: µ = x ± σq 1 a livello di cofideza 1 α. Aalisi della formula δ = σq 1 al variare di α ed. Esercizio dai compiti, i cui si applica la formula, icotrado il problema della scelta di α, che ecessita di avere capito il sigificato, e del calcolo di σ. Problema dell ipotesi di gaussiaità, aiuto dal TLC per quato riguarda la formula dell itervallo di cofideza. Problema del calcolo della quatità da teere i magazzio, differeze e legami relativamete al problema precedete (calcolo della soglia più cautelativo, usado come media il valore estremo dell itervallo di cofideza). Lezioe 19 (16/11, ore 11:30). Soluzioe molto dettagliata dell esercizio 1 del 17/9/2011, domade i, ii, iii, iv. 5

6 Lezioe 20 (22/11, ore 10:30). Teoria dei test statistici (verifica delle ipotesi). Problema, partedo dall esercizio 1 del 17/9/2011, domada v, della differeza tra u uovo campioe ed uo vecchio, o meglio (ipotizzado che il campioe vecchio avesse determiato i parametri co esattezza), della differeza tra u uovo campioe ed ua vecchia media µ 0. Elemeti di teoria: ipotesi ulla H 0, regioe di rifiuto e di accettazioe, probabilità α che la gradezza statistica su cui si basa il test cada ella regioe di rifiuto quado H 0 è vera, schema del test. Esemplificazioe co caso del test sulla media. La base è il teorema sugli itervalli di cofideza. Riformulazioe caoica del test (dati z, α q 1 α, cofroto tra z e q 1 α ). 2 2 Valore p, defiito come il valore di demarcazioe tra gli α per cui il test rifiuta H 0 (si verifica che soo quelli che verificao α > p) e quelli per cui il test o rifiuta H 0 (quelli che verificao α < p). Calcolo del valore p el test per la media. Test i quest ottica: dati z p, valutazioe della sua piccolezza. Lezioe 21 (23/11, ore 10:30). Valore p defiito come probabilità che i valori teorici siao più estremi di quelli sperimetali: P ( Z > z ) el caso del test per la media. Giustificazioe ituitiva e sigificato egli esempi. Esercizio 1 di Luglio 2011, domade (i) e (iii). Lezioe 22 (29/11, ore 10:30). Errori di prima e secoda specie, loro probabilità, poteza di u test, esempio di cotrollo della qualità. Lezioe 23 (30/11, ore 11:30). Test uilaterali, modalità, coveieza, esercizi, p-value. Lezioe 24 (6/12, ore 10:30). Esercizi su stime della media e itervalli di cofideza, test per la media, soglie. Lezioe 25 (7/12, ore 11:30). Vedere la registrazioe di Barsati. Variabili aleatorie chi quadro, legame co la variaza campioaria, elemeti di statistica legati alle chi quadro. Lezioe 25 (13/12, ore 10:30). Esercizi proposti di statistica. Lezioe 26 (14/12, ore 11:30). Esercizi proposti di statistica. 6

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione Questi esempi vi potrao essere utili come riferimeto ella ricerca di itervalli di cofideza e test di ipotesi statistiche. Per gli aggiorameti potete visitare i siti www.boch.et o www.feaor.com. Per dubbi

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

ANALISI STATISTICA DEI DATI

ANALISI STATISTICA DEI DATI AALISI STATISTICA DEI DATI STATISTICA E PROBABILITA' Misura di ua gradezza fisica Errori dovuti a: Strumeti di misura Parametri o cotrollabili da sperimetatore da valore vero gradezza varia da misura a

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità 1 Elemeti di calcolo delle probabilità 5 1. Itroduzioe La statistica è ua scieza, strumetale ad altre, cocerete la determiazioe dei metodi scietifici da seguire per raccogliere, elaborare e valutare i

Dettagli

Analisi probabilistica di giochi

Analisi probabilistica di giochi Scuola Iteruiversitaria Lombarda di Specializzazioe per l Isegameto Secodario Sezioe di Milao VII Ciclo Idirizzo Fisico-Iformatico-Matematico Classe di abilitazioe 47 Matematica Aalisi probabilistica di

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli Uiversità degli Studi di Bologa Scuola di Ecoomia Maagemet e Statistica Corso di Laurea i Scieze Statistiche Apputi del corso di Aalisi Matematica Ao Accademico 03 04 f b y prof. Daiele Ritelli f a a b

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioi d impresa (Note didattiche) Bruo Chiadotto CALCOLO DELLE PROBABILITA Il calcolo delle probabilità, ato el cotesto dei giochi d azzardo

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Capitolo 6 Teoremi limite classici

Capitolo 6 Teoremi limite classici Capitolo 6 Teoremi limite classici Abstract I Teoremi limite classici, la legge dei gradi umeri e il teorema limite cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA Politecico di Torio Sistemi di Produzioe... CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA... Equazioe di govero Negli ultimi ai il metodo

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Complessità Computazionale

Complessità Computazionale Uiversità degli studi di Messia Facoltà di Igegeria Corso di Laurea i Igegeria Iformatica e delle Telecomuicazioi Fodameti di Iformatica II Prof. D. Brueo Complessità Computazioale La Nozioe di Algoritmo

Dettagli

Capitolo 2 CALCOLO DELLE PROBABILITÀ

Capitolo 2 CALCOLO DELLE PROBABILITÀ CORSO DI LAUREA IN ECONOMIA AZIENDALE (Note didattiche) Bruo Chiadotto Fabrizio Cipollii Capitolo CALCOLO DELLE PROBABILITÀ Il calcolo delle probabilità, ato el cotesto dei giochi d azzardo si è sviluppato

Dettagli

AFFIDABILITÀ. Capitolo 16 - 16.1 -

AFFIDABILITÀ. Capitolo 16 - 16.1 - Capitolo 16 AFFIDABILITÀ - 16.1 - 16.1 Itroduzioe Si defiisce affidabilità l'abilità di u dispositivo (sia esso u compoete o u sistema) di fuzioare correttamete sotto be precise codizioi d'uso per u certo

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche Itroduzioe alla Statistica descrittiva Defiizioi prelimiari È la scieza che studia i feomei collettivi o di massa. U feomeo è detto collettivo o di massa quado è determiato solo attraverso ua molteplicità

Dettagli

Distribuzioni di probabilità Unità 79

Distribuzioni di probabilità Unità 79 Prerequisiti: - Primi elemeti di probabilità e statistica. - Nozioi di calcolo combiatorio. - Rappresetazioe di puti e rette i u piao cartesiao. Questa uità iteressa tutte le scuole ad eccezioe del Liceo

Dettagli

Teoria della probabilità. Stefano Isola

Teoria della probabilità. Stefano Isola Teoria della probabilità Stefao Isola 2 Chapter 1 Itroduzioe La preistoria del cocetto di probabilità si trova ell opiio, ell approvazioe o l accettabilità di u eveto o di u affermazioe da parte di ua

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli

Lezione 2 - Operazioni sugli eventi. Assiomi della probabilità. -Intro ad excel OPERAZIONI SUGLI EVENTI ALETORI ASSIOMI DELLA PROBABILITÀ

Lezione 2 - Operazioni sugli eventi. Assiomi della probabilità. -Intro ad excel OPERAZIONI SUGLI EVENTI ALETORI ASSIOMI DELLA PROBABILITÀ Lezioe 2 - Operazioi sugli eveti. ssiomi della probabilità. -Itro ad excel 1 OERZIONI SUGLI EVENTI LETORI SSIOMI DELL ROILITÀ GRUO MT06 Dip. Matematica, Uiversità di Milao - robabilità e Statistica per

Dettagli

Distribuzione di un carattere

Distribuzione di un carattere Distribuzioe di u carattere Dopo le fasi di acquisizioe e di registrazioe dei dati, si passa al loro cotrollo e quidi alle loro elaborazioe. Si defiisce distribuzioe uitaria semplice di u carattere l elecazioe

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni Problemi di Schedulig Defiizioi I problemi di schedulig soo caratterizzati da tre isiemi: Attività (Task) T {T,T 2, T } macchie (Machies) P {P,P 2, P m } Risorse R {R,R 2, R s } Schedulig: assegare m Macchie

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici Piao Lauree Scietifiche 2010-2011 Laboratorio di Autovalutazioe per il migliorameto della preparazioe per i corsi di laurea scietifici Caserta, 14 febbraio 2011 Prof.ssa Maria Cocozza Quate possibilità

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

INVENTORY CONTROL. Ing. Lorenzo Tiacci

INVENTORY CONTROL. Ing. Lorenzo Tiacci INVENTORY CONTRO Ig. orezo Tiacci Testo di riferimeto: Ivetory Maagemet ad Productio Plaig ad Cotrol - Third Ed. E.A. Silver, D.F. Pyke, R. Peterso Wiley, 998 Idice. POITICA (s, ) (order poit, order quatity)

Dettagli

INFERENZA SU UNA O DUE MEDIE CON IL TEST

INFERENZA SU UNA O DUE MEDIE CON IL TEST CAPITOLO VI INFERENZA SU UNA O DUE MEDIE CON IL TEST t DI STUDENT 6.. Dalla popolazioe ifiita al campioe piccolo: la distribuzioe t di studet 6.. Cofroto tra ua media osservata e ua media attesa co calcolo

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

PARAMETRI DEL MOTO SISMICO

PARAMETRI DEL MOTO SISMICO PARAMETRI DEL MOTO SISMICO Attività microsismica: caratterizzata da vibrazioi di debole ampiezza e periodi molto gradi tali da o essere percepiti dai più comui strumeti di registrazioe (importate soprattutto

Dettagli

Appunti di matematica Percorso

Appunti di matematica Percorso Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA iteret: www.cedamscuola.it e-mail:

Dettagli

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre Uiversità Boccoi. Ao accademico 00 00 Corso di Matematica Geerale Prof. Fabrizio Iozzi email: fabrizio.iozzi@ui-boccoi.it Lezioi / Gli isiemi umerici Gli isiemi umerici co i quali lavoreremo soo:, l'isieme

Dettagli

A = 10 log. senϕ = n n (3)

A = 10 log. senϕ = n n (3) CORSO DI LABORATORIO DI FISICA A Misure co fibre ottiche Scopo dell esperieza è la misura dell atteuazioe e dell apertura umerica di fibre ottiche di tipo F-MLD-500. Teoria dell esperieza La fisica sulla

Dettagli

Un modello di Vasicek multistato con correlazione tra tassi di default e perdita

Un modello di Vasicek multistato con correlazione tra tassi di default e perdita U modello di Vasicek multistato co correlazioe tra tassi di default e perdita La correlazioe fra default e recovery ha u impatto sigificativo sui requisiti di capitale per il rischio di credito. I questo

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Sull'analisi funzionale lineare. nel campo delle funzioni analitiche

Sull'analisi funzionale lineare. nel campo delle funzioni analitiche ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI DELLA CLASSE DI SCIENZE FISICHE, MA TEMA TI CHE E NATURA LI JOSE SEBASTIÀO E SILVA Sull'aalisi fuzioale lieare el campo delle fuzioi aalitiche Estratto dal fase.

Dettagli

Valutazione delle prestazioni di calcolo

Valutazione delle prestazioni di calcolo Architettura degli Elaboratori e delle Reti Valutazioe delle prestazioi di calcolo A. Borghese, F. Pedersii Dipartimeto di Iformatica Uiversità degli Studi di Milao 1 Perché valutare le prestazioi? Perché?!

Dettagli

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA Architetture dei sistemi itegrati digitali Alessadro Bogliolo Esercitazioe 2 Progetto e realizzazioe di u semplice sitetizzatore musicale basato su FPGA (A) Defiizioe della specifica ed esperimeti prelimiari

Dettagli

Complementi di Matematica e Statistica

Complementi di Matematica e Statistica Uiversità di Bologa Sede di Forlì Ao Accademico 009-00 Complemeti di Matematica e Statistica (Alessadro Lubisco) Aalisi delle compoeti pricipali INDICE Idice... i Aalisi delle compoeti pricipali... Premessa...

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK UNIVERSITA DI URBINO FACOLTA DI ECONOMIA TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK Giaa Figà-Talamaca Uiversità della Calabria Vale at Risk 1 Il Vale at Risk (Valore a Rischio

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

GABRIELE AMADIO - GIANCARLO CREMA MODELLI DI RICERCA OPERATIVA APPLICATI ALLA LOGISTICA

GABRIELE AMADIO - GIANCARLO CREMA MODELLI DI RICERCA OPERATIVA APPLICATI ALLA LOGISTICA GABRIELE AMADIO - GIANCARLO CREMA MODELLI DI RICERCA OPERATIVA APPLICATI ALLA LOGISTICA Pubblicazioi dell I.S.U. Uiversità Cattolica GABRIELE AMADIO - GIANCARLO CREMA MODELLI DI RICERCA OPERATIVA APPLICATI

Dettagli

STIMA DEL FONDO RUSTCO

STIMA DEL FONDO RUSTCO STIMA DEL FONDO RUSTCO 1) Quali soo gli aspetti ecoomici che possoo essere presi i cosiderazioe ella stima dei fodi rustici? La stima di u fodo rustico può essere fatta applicado i segueti aspetti ecoomici:

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli