materiale didattico disponibile su tozzini/didattica.html

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "materiale didattico disponibile su tozzini/didattica.html"

Transcript

1 materiale didattico disponibile su tozzini/didattica.html Sommario Proteine Funzioni principali Legame peptidico Struttura primaria Struttura secondaria Struttura terziaria Struttura quaternaria

2 Proteins = finely structured biomolecules highly specialized for functional roles Size: 1-10 nm, atoms Functions: Catalysis (enzymes) Regulatory Structural Protection GFP HIV protease Energetics Structure Hetero-polymers whose monomers are amino-acids (polypeptides) Hierarchic organization: Primary, secondary, tertiary and quaternary structures

3 Traduzione sintesi proteica Il ribosoma usa l informazione contenuta in mrna per polimerizzare gli amminoacidi nella giusta sequenza 1. Attivazione: trna lega allo specifico amminoacido, formando l amminoacil-trna 2. Iniziazione: mrna lega alla subunità piccola al codone di start Viene legato il primo trna nel sito P e la subunità grande 3. Elongazione: viene legato il secondo trna nel sito A e inizia il ciclo formazione legame peptidico scorrimento dell mrna rilascio del trna usato legame del trna successivo il ciclo finisce al codone di stop, che lega un trna vuoto Energia necessaria ATP + 2GTP legame peptidico AMP+2GDP(+4Pi) attivazione + elongazione = diverse decine di kcal/aa

4 Legame peptidico kcal/mole L ammino acido è uno zwitterione Il legame peptidico è metastabile Il polipepdide è direzionale!! ω=180 ω ω=0 Il legame peptidico ha due forme di risonanza ed è planare e rigido Ø trans ~99.9%, cis ~0.1% X-Pro Ø cis fino a 40%

5 Str primaria: La sequenza amminoacidica R = residuo amminoacidico (cantena laterale)

6 Proprietà chimico-fisiche

7 Scale di drofobicità Kyte-Doo Hopp- Cornette Eisenberg Rose Janin Engelman (GES) Woods Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr Lys Asp Glu Gln Ser Pro Arg Ala Trp Met Leu Gly His Thr Tyr Val Phe Ile Cys Rose: percentuale dell area dell aminoacido mediamente nascosta al solvente in proteine globulari ~ Misura di accessibilità dell amminoacido nella proteina Altre scale si basano sulla probabilità della presenza all AA in eliche transmembrana

8 Diagramma di Venn e strutture 3D degli AA Chiralità dovuta al Cα Gli amminoacidi compaiono solo con chiralità L!

9 Struttura e funzione degli Proteine Il legame peptidico è planare e rigido Gli unici gradi di libertà conformazionali per lo scheletro della proteina sono gli angoli diedri φ and ψ Mappa di Ramachandran Struttura della catena polipeptidica

10 La mappa di Ramachandran generico è uno strumento per descrivere la conformazione dello scheletro proteico struttura secondaria eliche destrorse eliche sinistrorse strutture estese dipende dal tipo di amminoacido la catena laterale influisce sulla propensità dell amminoacido a formare diverse strutture secondarie la struttura primaria determina la struttura secondaria glicina prolina pre-prolina

11 Struttura secondaria In generale, le eliche destrorse sono piú probabili di quelle sinistrorse la chiralità dei singoli amminoacidi influisce sulla chiralità della struttura secondaria Gly: R=H Eccezione: l unico aminoacido achirale, la glicina, ha la mappa di Ramachandran simmetrica!

12 Strutture secondarie Secondary structure ω (deg) φ (deg) ψ (deg) Cα-Cα (Å) Cα-Cα-Cα θ (deg) Cα-Cα-Cα-Cα α (deg) extended anti-parallel sheet β-strand parallel sheet flat ribbon helix helix helix α-helix α-helix π-helix π-helix π-helix membered ring membered ring turn ω deg φ deg I ψ deg Cα-Cα (Å) θ deg , 88 α deg 48 5-membered ring left handed α-helix collagen triple helix Polyproline II II III V Polyproline II Polyproline II Polyproline II VIa VIb , 81 81,

13 Eliche Stabilizzate da legami C=O H-N (i)-(i+n) Sono polarizzate! (dip del leg pep ~3.5D) Almost flat (ribbon) similar to a strand Weakly stable 2.2,7 helix 3,10 helix α-helix (3.6,13) π-helix (4.4,16) Pro I Pro II Gly II Collagen helicity, pep bond right, trans right (left), trans right (left), trans left, cis left (right), trans Triple left, H-bonds (i)-(i+n) n=2 n=3 n=4 n=5 - - trans inter-helices φ+ψ ~ (deg) (+105) -125 (+125) (-70) +100 rise (Å) (1.5) res/giro Pitch (passo) (Å)

14 Strutture estese β-nastro (strand, φ,ψ ~180), stabilizzato da legami C=O H-N inter-nastro β-foglietti (sheets) La struttura del foglietto è ondulata

15 Loops and turns catene laterali Regioni poco strutturate in cui lo scheletro della proteina cambia direzione Solitamente collegano tra loro regioni strutturate Possono avere diverse lunghezze e sono di molti tipi diversi (ϒ,α,β,π differiscono per la lontananza lungo la catena di donatore e accettore dei legami a idrogeno; tipi I e II differiscono per l orientazione del residuo al vertice ) Rotameri delle catene laterali La struttura dello scheletro non esaurisce tutte le possibili conformazioni strutturali Gli amminoacidi con legami rotabili (quasi tutti tranne Ala, Gly, Pro e pochi altri) hanno diversi rotameri, corrispondenti ai diversi angoli diedri di rotazione intorno a questi legami I rotameri sono selezionati dall ingombro sterico che trovano nella struttura proteica globale

16 Propensione α-β La propensione a formare strutture estese o elicoidali (chiamata propensione αβ) dipende dal tipo di amminoacido: residui grandi e/o aromatici e/o ramificati preferiscono strutture estese amminoacidi piccoli o carichi preferiscono strutture elicali prolina e glicina sono terminatori di eliche o foglietti ma formano le eliche di collagene Entro certi limiti questo consente di predire la struttura secondaria a partire dalla sequenza Esistono diversi algoritmi, tutti evoluti a partire da quello di Chou-Fasman basato su una tabella di probabilità di formazione continuazione di strutture secondarie Name P(a) P(b) P(turn) f(i) f(i+1) f(i+2) f(i+3) Ala Arg Asp Asn Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val Assign all of the residues in the peptide the appropriate set of parameters. 2. Scan through the peptide and identify regions where 4 out of 6 contiguous residues have P(a-helix) > 100. That region is declared an alpha-helix. Extend the helix in both directions until a set of four contiguous residues that have an average P(a-helix) < 100 is reached. That is declared the end of the helix. If the segment defined by this procedure is longer than 5 residues and the average P (a-helix) > P(b-sheet) for that segment, the segment can be assigned as a helix. 3. Repeat this procedure to locate all of the helical regions in the sequence. 4. Scan through the peptide and identify a region where 3 out of 5 of the residues have a value of P(b-sheet) > 100. That region is declared as a betasheet. Extend the sheet in both directions until a set of four contiguous residues that have an average P(b-sheet) < 100 is reached. That is declared the end of the beta-sheet. Any segment of the region located by this procedure is assigned as a beta-sheet if the average P(b-sheet) > 105 and the average P(bsheet) > P(a-helix) for that region. 5. Any region containing overlapping alpha-helical and beta-sheet assignments are taken to be helical if the average P(a-helix) > P(b-sheet) for that region. It is a beta sheet if the average P(b-sheet) > P(a-helix) for that region. 6. To identify a bend at residue number j, calculate the following value p(t) = f(j)f(j+1)f(j+2)f(j+3) where the f(j+1) value for the j+1 residue is used, the f(j+2) value for the j+2 residue is used and the f(j+3) value for the j+3 residue is used. If: (1) p(t) > ; (2) the average value for P(turn) > 1.00 in the tetrapeptide; and (3) the averages for the tetrapeptide obey the inequality P(a-helix) < P(turn) > P(bsheet), then a beta-turn is predicted at that location.

17 Strutture supersecondarie Stabilizzate principalmente da Legami a idrogeno Interazioni idrofobiche

18 Strutture terziarie Combinazione di strutture (super) secondarie nella struttura finale della proteina Stabilizzate da: Legami a idrogeno (anche con le catene laterali, anche mediati da molecole di acqua) Interazioni idrofobiche Ponti disolfuro Ponti salini e interazioni elettrostatiche

19 Struttura e funzione degli Proteine Strutture terziarie panini -beta Eliche-beta Fasci di eliche Barilotti-beta Strutture miste alfa-beta

20 Struttura e funzione degli Proteine Strutture quaternarie Singole catene proteiche ripiegate in strutture terziare si assemblano per formare elementi funzionali piú grandi HIV-1pr dimero Nucleosoma (proteine+dna) emoglobina tetramero Ribosoma (prot+rna) Cerniera di leucina Virus

21 Riassunto La struttura delle proteine è organizzata gerarchicamente come quella degli acidi nucleici Gli amminoacidi sono in numero maggiore, chimicamente e strutturalmente piú vari dei nucleotidi le strutture delle proteine sono piú versatili e complesse di quelle degli acidi nucleici Le potenzialità funzionali delle proteine sono maggiori di quelle degli acidi nucleici Se un mondo RNA-only è mai esistito, sicuramente aveva minori potenzialità evolutive di quello attuale

La struttura delle proteine e e descritta da quattro livelli di organizzazione

La struttura delle proteine e e descritta da quattro livelli di organizzazione La struttura delle proteine e e descritta da quattro livelli di organizzazione Struttura Primaria- - la sequenza di aminoacidi Struttura Secondaria - strutture locali stabilizzate da legami H che coinvolgono

Dettagli

Struttura secondaria

Struttura secondaria Struttura secondaria Struttura localmente ordinata Polimeri lineari ad unità monomeriche asimmetriche elica j = 0,1,2,..., N N = numero di residui z j = h z j + z 0 x j = r cos (j2p h z /P + d 0 ) y j

Dettagli

Diagramma di Ramachandran

Diagramma di Ramachandran Chimica Biologica A.A. 2010-2011 Diagramma di Ramachandran Diagramma di Ramachandran Catena polipeptidica La formazione in successione di legami peptidici genera la cosiddetta catena principale o scheletro

Dettagli

Chimica Biologica A.A α-elica foglietto β reverse turn

Chimica Biologica A.A α-elica foglietto β reverse turn Chimica Biologica A.A. 2010-2011 α-elica foglietto β reverse turn Str. Secondaria sperimentalmente osservata: Si distinguono fondamentalmente tre tipi di strutture secondarie: α elica foglietto β reverse

Dettagli

Il legame peptidico è un ibrido di risonanza: scaricato da

Il legame peptidico è un ibrido di risonanza: scaricato da Il legame peptidico è un ibrido di risonanza: - O ha una parziale carica negativa - - la coppia di e - del legame C=O è parzialmente spostata verso O - N ha una parziale carica positiva + - la coppia di

Dettagli

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE 1 CARATTERISTICHE DEL LEGAME PEPTIDICO lunghezza intermedia tra un legame singolo e uno doppio ibrido di risonanza per il parziale carattere di doppio

Dettagli

Macromolecole Biologiche. La struttura secondaria (I)

Macromolecole Biologiche. La struttura secondaria (I) La struttura secondaria (I) La struttura secondaria Struttura primaria PRPLVALLDGRDETVEMPILKDVATVAFCDAQSTQEIHE Struttura secondaria La struttura secondaria Le strutture secondarie sono disposizioni regolari

Dettagli

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO LE PROTEINE SONO Polimeri formati dall unione di ATOMI DI C, H, N, O CHE SONO AMMINOACIDI (AA) Uniti tra loro dal Legame peptidico 20 TIPI DIVERSI MA HANNO STESSA STRUTTURA GENERALE CON Catene peptidiche

Dettagli

Formazione del legame peptidico:

Formazione del legame peptidico: Formazione del legame peptidico: Planare, ha una forza intermedia tra il legame semplice ed il legame doppio. 2^ lezione N R C C O O O + R N R C O C O O N R C C N C C O Ogni piano delle unità peptidiche

Dettagli

AMMINO ACIDI. L equilibrio è regolato dal ph

AMMINO ACIDI. L equilibrio è regolato dal ph AMMINO ACIDI AMMINO ACIDI Amminoacido: un composto difunzionale che contiene nell ambito della stessa molecola una funzione amminica -NH 2 e una funzione carbossilica -COOH α-ammino acido: I due gruppi

Dettagli

La struttura delle proteine

La struttura delle proteine La struttura delle proteine Funzioni delle proteine Strutturali Contrattili Trasporto Riserva Ormonali Enzimatiche Protezione Struttura della proteina Struttura secondaria: ripiegamento locale della catena

Dettagli

moli OH - /mole amminoacido

moli OH - /mole amminoacido ) ) Di seguito è riportata la curva di titolazione di un amminoacido. Osservando il grafico: a) stabilire il valore dei pka dell aminoacido b) calcolare il valore del pi e individuarlo sul grafico. c)

Dettagli

Proteine strutturali Sostegno meccanico Cheratina: costituisce i capelli Collagene: costituisce le cartilagini Proteine di immagazzinamento

Proteine strutturali Sostegno meccanico Cheratina: costituisce i capelli Collagene: costituisce le cartilagini Proteine di immagazzinamento Tipo Funzione Esempi Enzimi Accelerano le reazioni chimiche Saccarasi: posiziona il saccarosio in modo che possa essere scisso nelle due unità di glucosio e fruttosio che lo formano Ormoni Messaggeri chimici

Dettagli

Struttura delle Proteine

Struttura delle Proteine Chimica Biologica A.A. 2010-2011 Struttura delle Proteine Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Macromolecole Biologiche Struttura Proteine Proteine:

Dettagli

Amminoacidi. Struttura base di un a-amminoacido

Amminoacidi. Struttura base di un a-amminoacido Amminoacidi Struttura base di un a-amminoacido Forma non ionizzata Forma ionizzata, sale interno (zwitterione) Il carbonio α di tutti gli α-amminoacidi (tranne la glicina) è asimmetrico (=chirale) D-alanina

Dettagli

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici Gli aminoacidi Proprietà comuni Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici paragonabili Il gruppo α-aminico è un acido più forte (o una base più debole

Dettagli

amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente

amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente Gli amminoacidi naturali sono α-amminoacidi : il gruppo amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente formula generale: gruppo funzionale carbossilico

Dettagli

Formazione. di un peptide.

Formazione. di un peptide. Formazione. di un peptide. Quando due aminoacidi si uniscono si forma un legame peptidico. In questo caso il dipeptide glicilalanina (Gly-Ala) viene mostrato come se si stesse formando in seguito a eliminazione

Dettagli

Il legame peptidico. Il legame che ne risulta è il legame peptidico. Nelle cellule il legame viene creato nei ribosomi, catalizzato da enzimi.

Il legame peptidico. Il legame che ne risulta è il legame peptidico. Nelle cellule il legame viene creato nei ribosomi, catalizzato da enzimi. Il legame peptidico Il legame peptidico La polimerizzazione di AA viene raggiunta per eliminazione di una molecola d acqua tra il gruppo carbossilico di un AA e il gruppo amminico del successivo. Il legame

Dettagli

LE PROTEINE: POLIMERI COSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOACIDI

LE PROTEINE: POLIMERI COSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOACIDI LE PROTEINE: POLIMERI OSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOAIDI OGNI PROTEINA PUO ESSERE FORMATA DA MOLTE DEINE O ENTINAIA DI AMINOAIDI E SI LEGANO A FORMARE UNA ATENA NON RAMIFIATA La catena di

Dettagli

Chimotripsina Una proteina globulare. Glicina Un amminoacido

Chimotripsina Una proteina globulare. Glicina Un amminoacido Chimotripsina Una proteina globulare Glicina Un amminoacido - In teoria un numero enorme di differenti catene polipeptidiche potrebbe essere sintetizzato con i 20 amminoacidi standard. 20 4 = 160.000 differenti

Dettagli

Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi. Possono assumere forme diverse a seconda della funzione

Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi. Possono assumere forme diverse a seconda della funzione Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi Hanno elevato PM Possono assumere forme diverse a seconda della funzione svolgono molteplici funzioni Tra le proteine

Dettagli

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α Aminoacidi Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α 1 Isomeria ottica Tutti gli AA, esclusa la glicina, presentano almeno un atomo di carbonio asimmetrico, il

Dettagli

Macromolecole Biologiche. La struttura secondaria (III)

Macromolecole Biologiche. La struttura secondaria (III) La struttura secondaria (III) Reverse turn Le proteine globulari hanno una forma compatta, dovuta a numerose inversioni della direzione della catena polipeptidica che le compone. Molte di queste inversioni

Dettagli

2011 - G. Licini, Università di Padova. La riproduzione a fini commerciali è vietata

2011 - G. Licini, Università di Padova. La riproduzione a fini commerciali è vietata Ammino acidi Composto che contiene una funziome acida e amminica. Usualmente però con amminoacidi si intendono gli alfa- amminoacidi. Tra questi composti ve ne sono 20 che vengono definiti geneticamente

Dettagli

Le proteine. Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico.

Le proteine. Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico. Le proteine Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico. Cur$s et al. Invito alla biologia.blu Zanichelli editore 2011 1 Struttura e

Dettagli

Caratteristiche generali

Caratteristiche generali AMMINOACIDI Gli amminoacidi sono le unità costruttive (building blocks) delle proteine. Come dice il termine, gli amminoacidi naturali sono costituiti da un gruppo amminico (-NH 2 ) e da un gruppo carbossilico

Dettagli

La struttura delle proteine e. organizzazione. ramificati di aminoacidi

La struttura delle proteine e. organizzazione. ramificati di aminoacidi La struttura delle proteine e descritta da quattro livelli di organizzazione Struttura Primaria- la sequenza di aminoacidi Struttura Secondaria - strutture locali stabilizzate da legami H che coinvolgono

Dettagli

Parametri dell α-elica. residui/giro 3.6. passo dell elica

Parametri dell α-elica. residui/giro 3.6. passo dell elica GRAFICO DI RAMACHANDRAN Parametri dell α-elica residui/giro 3.6 spazio/residuo passo dell elica 1.5 Å 5.4 Å 1 L α-elica può essere destabilizzata da interazioni tra i gruppi R: repulsione/attrazione elettrostatica

Dettagli

Peptidi-1 Peptidi-2 1

Peptidi-1 Peptidi-2 1 Peptidi-1 Peptidi-2 1 Peptidi-3 Peptidi-3 2 Peptidi-4 Peptidi-4 3 Peptidi-5 Peptidi-5 4 Peptidi-6 Peptidi-6 5 6 7 8 Spettrometria di massa di biomolecole: esempi ed esercizi Margherita Ruoppolo Dipartimento

Dettagli

COMPOSTI AZOTATI. derivanti dall ammoniaca AMMINE. desinenza -INA AMMIDE

COMPOSTI AZOTATI. derivanti dall ammoniaca AMMINE. desinenza -INA AMMIDE COMPOSTI AZOTATI derivanti dall ammoniaca AMMINE desinenza -INA AMMIDE ANCORA AMMIDI RISONANZA A M M I D I Il legame ammidico ha parziale carattere di doppio legame per la seguente risonanza: Ammidi H

Dettagli

LE PROTEINE -struttura tridimensionale-

LE PROTEINE -struttura tridimensionale- LE PROTEINE -struttura tridimensionale- Struttura generale di una proteina Ceruloplasmina Cosa sono??? Sono biopolimeri con forme ben definite. composti da molteplici amminoacidi, legati con legami peptidici

Dettagli

- Φ e ψ Presenta 3,6 residui per spira -HB between C=O n residue n and NH n+4. - α-helix

- Φ e ψ Presenta 3,6 residui per spira -HB between C=O n residue n and NH n+4. - α-helix Structure Basic elements - Φ e ψ -60-50. -Presenta 3,6 residui per spira -HB between C=O n residue n and NH n+4. - α-helix Β-sheet Red oxygen Blu nitrogen white hydrogen black Cα Violet lateral chain -at

Dettagli

PROTEINE DEFINIZIONE:

PROTEINE DEFINIZIONE: Cap.4 Le PROTEINE DEFINIZIONE: Macromolecole formate di AA della serie L uniti tra loro da un legame peptidico. FUNZIONI DELLE PROTEINE Enzimi Proteine di riconoscimento Proteine di trasporto Proteine

Dettagli

CENNI SUL TIPO DI FORZE

CENNI SUL TIPO DI FORZE CENNI SUL TIPO DI FORZE Forze deboli che influenzano la struttura delle proteine: le interazioni di van der Waals repulsione attrazione Forze attrattive dovute a interazioni istantanee che si generano

Dettagli

MFN0366-A1 (I. Perroteau) -traduzione e indirizzamento delle proteine. Solo per uso didattico, vietata la riproduzione, la diffusione o la vendita

MFN0366-A1 (I. Perroteau) -traduzione e indirizzamento delle proteine. Solo per uso didattico, vietata la riproduzione, la diffusione o la vendita MFN0366-A1 (I. Perroteau) -traduzione e indirizzamento delle proteine MFN0366-A1 (I. Perroteau) -traduzione delle proteine trna Traduzione: mrna -------> proteine mrna MFN0366-A1 (I. Perroteau) -traduzione

Dettagli

Corso di Laurea in Farmacia Insegnamento di BIOCHIMICA. Angela Chambery Lezione 6

Corso di Laurea in Farmacia Insegnamento di BIOCHIMICA. Angela Chambery Lezione 6 Corso di Laurea in Farmacia Insegnamento di BIOCHIMICA Angela Chambery Lezione 6 La struttura secondaria delle proteine Concetti chiave: Il carattere planare di un gruppo peptidico limita la flessibilitàconformazionale

Dettagli

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune AMINO ACIDI sono le unità monomeriche che costituiscono le proteine sono 20 hanno tutti una struttura comune sono asimmetrici La carica di un amino acido dipende dal ph Classificazione amino acidi Glicina

Dettagli

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5 Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA Angela Chambery Lezione 5 Il legame peptidico Concetti chiave: In un polipeptide gli amminoacidi sono uniti dai legami peptidici. Il legame

Dettagli

Le macromolecole dei tessuti - 1

Le macromolecole dei tessuti - 1 Le macromolecole dei tessuti - 1 Che cosa sono le proteine? Sono macromolecole complesse ad alta informazione Sono costituite da una o più catene polipeptidiche Ogni catena peptidica è composta da centinaia

Dettagli

gruppo amminico Gli aminoacidi polimerizzano durante la sintesi delle proteine mediante la formazione di legami peptidici. gruppo carbossilico

gruppo amminico Gli aminoacidi polimerizzano durante la sintesi delle proteine mediante la formazione di legami peptidici. gruppo carbossilico gruppo amminico Gli aminoacidi polimerizzano durante la sintesi delle proteine mediante la formazione di legami peptidici. gruppo carbossilico Il legame peptidico si ha quando il gruppo carbossilico (-

Dettagli

scaricato da www.sunhope.it Proteine semplici costituite dai soli amminoacidi

scaricato da www.sunhope.it Proteine semplici costituite dai soli amminoacidi Proteine semplici costituite dai soli amminoacidi Proteine coniugate costituite dagli amminoacidi + porzioni di natura non amminoacidica dette GRUPPI PROSTETICI Le Proteine coniugate prive del gruppo prostetico

Dettagli

20/12/ tipi di amino acidi: parecchie combinazioni

20/12/ tipi di amino acidi: parecchie combinazioni 20 tipi di amino acidi: parecchie combinazioni Le proteine sono polimeri di amino acidi 1 SEMPLICI : costituite solo da amino acidi PROTEINE CONIUGATE Apoproteina = parte proteica Gruppo prostetico = parte

Dettagli

Gliceraldeide - lo zucchero più piccolo. Aldeide (CH 2 0) 3

Gliceraldeide - lo zucchero più piccolo. Aldeide (CH 2 0) 3 1 Acqua (H 2 O) 2 Gliceraldeide - lo zucchero più piccolo H C O Aldeide H COH H 2 C OH (CH 2 0) 3 = Carbo - idrato (CH 2 0) n n compreso tra 3 e 8 3 4 monomeri polimeri 5 6 7 8 9 10 11 12 What is a protein?

Dettagli

FUNZIONI DELLE PROTEINE

FUNZIONI DELLE PROTEINE FUNZIONI DELLE PROTEINE 1 CATALISI ENZIMATICA 2 TRASPORTO E DEPOSITO 3 MOVIMENTO COORDINATO 4 SUPPORTO MECCANICO 5 PROTEZIONE IMMUNITARIA 6 GENERAZIONE E TRASMISSIONE DELL IMPULSO NERVOSO 7 CONTROLLO DELLA

Dettagli

scaricato da I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE

scaricato da  I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE Legame peptidico I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE tra il gruppo amminico di un aminoacido ed il gruppo carbossilico di un altro. 1 Catene contenenti

Dettagli

CORSO DI BIOCHIMICA PER INGEGNERIA BIOMEDICA I ESERCITAZIONE

CORSO DI BIOCHIMICA PER INGEGNERIA BIOMEDICA I ESERCITAZIONE CORSO DI BIOCHIMICA PER INGEGNERIA BIOMEDICA I ESERCITAZIONE 1) Che tipo di ibridazione ha il carbonio coinvolto nel doppio legame degli alcheni? Descrivi brevemente. Alcheni Ibridazione sp 2 2s p x p

Dettagli

Analisi della struttura primaria delle proteine

Analisi della struttura primaria delle proteine Analisi della struttura primaria delle proteine Strumenti on-line La maggior parte degli strumenti per l analisi della struttura primaria si trovano on-line all indirizzo www.expasy.org Ottenere la sequenza

Dettagli

a) un movimento contro gradiente di concentrazione che utilizza fonti primarie di energia

a) un movimento contro gradiente di concentrazione che utilizza fonti primarie di energia 1. Quale considerazione sulla struttura primaria di una proteina è vera? a) è caratteristica delle proteine insolubili b) i ponti S-S la stabilizzano c) i ponti H la stabilizzano d) la proteina assume

Dettagli

all codons are used in protein synthesis 20 amino acids 3 termination (stop) codons: UAA, UAG, UGA

all codons are used in protein synthesis 20 amino acids 3 termination (stop) codons: UAA, UAG, UGA Il Codice Genetico The genetic code consists of 64 triplet codons (A, G, C, U) 4 3 = 64 all codons are used in protein synthesis 20 amino acids 3 termination (stop) codons: UAA, UAG, UGA AUG (methionine)

Dettagli

Struttura degli amminoacidi

Struttura degli amminoacidi AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE Le proteine sono macromolecole costituite dall unione di un grande numero di unità elementari: gli amminoacidi

Dettagli

I gruppi R differenziano i 20 amminoacidi standard. Tratto da D. Voet, G. Voet e C.W. Pratt Fondamenti di biochimica

I gruppi R differenziano i 20 amminoacidi standard. Tratto da D. Voet, G. Voet e C.W. Pratt Fondamenti di biochimica Gli aminoacidi NOMENCLATURA Aminoacido Abbr. tre lettere Abbr. una lettera Aminoacido Abbr. tre lettere Abbr. una lettera Alanina ALA A Lisina LYS K Arginina ARG R Metionina MET M Asparagina ASN N Fenilalanina

Dettagli

Amminoacidi. Struttura base di un a-amminoacido

Amminoacidi. Struttura base di un a-amminoacido Amminoacidi Struttura base di un a-amminoacido Forma non ionizzata Forma ionizzata, sale interno (zwitterione) Il carbonio α di tutti gli α-amminoacidi (tranne la glicina) è asimmetrico (=chirale) D-alanina

Dettagli

AMMINOACIDI E PROTEINE

AMMINOACIDI E PROTEINE AMMINOACIDI E PROTEINE 1 AMMINOACIDI Gli amminoacidi sono composti organici composti da atomi di carbonio, idrogeno, ossigeno e azoto e in alcuni casi anche da altri elementi come lo zolfo. Gli amminoacidi

Dettagli

BIOMOLECOLE (PROTEINE)

BIOMOLECOLE (PROTEINE) BIOMOLECOLE (PROTEINE) Proteine: funzioni Strutturale (muscoli, scheletro, legamenti ) Contrattile (actina e miosina) Di riserva (ovoalbumina) Di difesa (anticorpi) Di trasporto (emoglobina, di membrana)

Dettagli

LA STRUTTURA DELLE PROTEINE È GERARCHICA

LA STRUTTURA DELLE PROTEINE È GERARCHICA LA STRUTTURA DELLE PROTEINE È GERARCHICA LA STRUTTURA DETERMINA LA FUNZIONE The Protein Folding Problem Cosa determina la struttura? Energia Cinetica Come si determina la struttura? Metodi Sperimentali

Dettagli

all codons are used in protein synthesis 20 amino acids 3 termination (stop) codons: UAA, UAG, UGA

all codons are used in protein synthesis 20 amino acids 3 termination (stop) codons: UAA, UAG, UGA The genetic code consists of 64 triplet codons (A, G, C, U) 4 3 = 64 all codons are used in protein synthesis 20 amino acids 3 termination (stop) codons: UAA, UAG, UGA AUG (methionine) is the start codon

Dettagli

DNA Proteine Cellule. Il DNA contiene l informazione per sintetizzare le proteine. proteine cellule. Essere vivente. geni

DNA Proteine Cellule. Il DNA contiene l informazione per sintetizzare le proteine. proteine cellule. Essere vivente. geni Sintesi Proteica DNA Proteine Cellule Il DNA contiene l informazione per sintetizzare le proteine geni Essere vivente proteine cellule Essere vivente Il DNA si tiene tutta la gloria, Le proteine fanno

Dettagli

Amminoacidi Peptidi Proteine

Amminoacidi Peptidi Proteine Amminoacidi Peptidi Proteine Amminoacidi-Peptidi-Proteine Amminoacidi: Struttura generale COOH H NH 2 Centro chiralico Stereoisomeri: composti con la stessa connessione tra gli atomi, ma con una differente

Dettagli

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA STRUTTURA TERZIARIA le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. Le proteine globulari dopo aver organizzato il proprio scheletro polipeptidico con

Dettagli

Macromolecole Biologiche. La struttura secondaria (II)

Macromolecole Biologiche. La struttura secondaria (II) La struttura secondaria (II) Nello stesso anno (1951) in cui proposero l α elica, Pauling e Corey postularono anche l esistenza di un altra struttura secondaria: il foglietto β (β-sheet). Dopo l α elica,

Dettagli

MACROMOLECOLE. Polimeri (lipidi a parte)

MACROMOLECOLE. Polimeri (lipidi a parte) MACROMOLECOLE Monomeri Polimeri (lipidi a parte) Le caratteristiche strutturali e funzionali di una cellula o di un organismo sono determinate principalmente dalle sue proteine. Ad esempio: Le proteine

Dettagli

Il gruppo peptidico ha una struttura rigida e planare, dovuta al parziale. legame peptidico. O O - N N + H H

Il gruppo peptidico ha una struttura rigida e planare, dovuta al parziale. legame peptidico. O O - N N + H H Il legame peptidico Il gruppo peptidico ha una struttura rigida e planare, dovuta al parziale (~40 %) carattere di doppio legame del legame peptidico. O O - C C N N + H H Il legame peptidico pp Il legame

Dettagli

STRUTTURAZIONE DELLE PROTEINE

STRUTTURAZIONE DELLE PROTEINE STRUTTURAZIONE DELLE PROTEINE Molti diversi tipi di struttura non avvolta (unfolded states) Un solo tipo di struttura avvolta (folded state) Proteina NATIVA Principi della strutturazione proteica: 1) La

Dettagli

9) Scrivere un disaccaride formato dal β-d-galattosio e dall α-d-n-acetil-glucosammina legati da un legame glicosidico β(1-4).

9) Scrivere un disaccaride formato dal β-d-galattosio e dall α-d-n-acetil-glucosammina legati da un legame glicosidico β(1-4). CARBOIDRATI - AMMINOACIDI - PROTEINE 1) Scrivere la proiezione di Fisher del D-ribosio e del D-glucosio. La lettera D a cosa si riferisce? Disegnare inoltre il disaccaride ottenuto dalla condensazione

Dettagli

STRUTTURA TERZIARIA. H 3 N + COO - β-foglietto

STRUTTURA TERZIARIA. H 3 N + COO - β-foglietto STRUTTURA TERZIARIA α-eliche H 3 N + COO - β-foglietto La catena polipeptidica delle proteine GLOBULARI oltre ad organizzarsi in strutture di tipo secondario va incontro ad un ulteriore ripiegamento sino

Dettagli

REPLICAZIONE DEL DNA

REPLICAZIONE DEL DNA REPLICAZIONE DEL DNA La replicazione (o anche duplicazione) è il meccanismo molecolare attraverso cui il DNA produce una copia di sé stesso. Ogni volta che una cellula si divide, infatti, l'intero genoma

Dettagli

STRUTTURA TRIDIMENSIONALE DELLE PROTEINE

STRUTTURA TRIDIMENSIONALE DELLE PROTEINE STRUTTURA TRIDIMENSIONALE DELLE PROTEINE Biologia della Cellula Animale 2016 1 STRUTTURA PROTEINE Cooper: The Cell, a Molecular Approach, 2 nd ed. http://en.wikipedia.org/wiki/protein_structure STRUTTURA

Dettagli

06_citologia_SER_golgi 1

06_citologia_SER_golgi 1 1 La sintesi proteica inizia sempre nello stesso modo: aggancio della piccola subunità ribosomale al estremità 5 dell mrna. si aggancio la grande subunità ribosomale In corrispondenza del codone di inizio

Dettagli

α-amminoacidi O α O α R CH C O - NH 3 forma ionizzata sale interno (zwitterione) OH NH 2 forma non ionizzata (non esistente in realtà)

α-amminoacidi O α O α R CH C O - NH 3 forma ionizzata sale interno (zwitterione) OH NH 2 forma non ionizzata (non esistente in realtà) Amminoacidi 2 forma non ionizzata (non esistente in realtà) 3 forma ionizzata sale interno (zwitterione) In soluzione acquosa c'è equilibrio tra tre forme 3 forma cationica p molto acidi 3 forma zwitterionica

Dettagli

Proteine: struttura e funzione

Proteine: struttura e funzione Proteine: struttura e funzione Prof.ssa Flavia Frabetti PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi composti quaternari (C, H, O,

Dettagli

La struttura delle proteine viene suddivisa in quattro livelli di organizzazione:

La struttura delle proteine viene suddivisa in quattro livelli di organizzazione: Luciferasi Emoglobina Cheratina La struttura delle proteine viene suddivisa in quattro livelli di organizzazione: Struttura primaria Struttura secondaria Struttura terziaria Struttura quaternaria Sequenza

Dettagli

GLI AMMINOACIDI E LE PROTEINE

GLI AMMINOACIDI E LE PROTEINE UNITÀ VET. DIDATTICA DI PROPEDEUTICA BIOCHIMICA GLI AMMINOACIDI E LE PROTEINE Roberto Giacominelli Stuffler INTRODUZIONE Tutte le proteine, sia nei batteri, sia nelle forme di vita più complesse, sono

Dettagli

LA TRADUZIONE E IL CODICE GENETICO

LA TRADUZIONE E IL CODICE GENETICO LA TRADUZIONE E IL CODICE GENETICO La traduzione La traduzione è il processo di sintesi di una catena polipeptidica, un polimero costituito da amminoacidi legati insieme da legami peptidici Le molecole

Dettagli

INFORMAZIONE FUNZIONE mrna Proteina TRADUZIONE

INFORMAZIONE FUNZIONE mrna Proteina TRADUZIONE LA SINTESI PROTEICA RAPPRESENTA LA TAPPA IN CUI I GENI (INFORMAZIONE) VENGONO TRADOTTI IN PROTEINE (FUNZIONE) INFORMAZIONE FUNZIONE mrna Proteina TRADUZIONE DAL PUNTO DI VISTA CHIMICO GLI ACIDI NUCLEICI

Dettagli

Funzioni delle proteine

Funzioni delle proteine Funzioni delle proteine ENZIMI Proteine di trasporto Proteine di riserva Proteine contrattili o motili Proteine strutturali Proteine di difesa Proteine regolatrici Proteine di trasporto Emoglobina Lipoproteine

Dettagli

Percorsi di chimica organica - Soluzioni degli esercizi del testo

Percorsi di chimica organica - Soluzioni degli esercizi del testo ercorsi di chimica organica - Soluzioni degli esercizi del testo AITL 14 1. Il prefisso α negli α-amminoacidi sta ad indicare che il gruppo amminico, - 2, si trova sul carbonio alfa (carbonio legato al

Dettagli

CORSO MONODISCIPLINARE DI BIOCHIMICA (6 CFU)

CORSO MONODISCIPLINARE DI BIOCHIMICA (6 CFU) UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN BIOTECNOLOGIE CORSO MONODISCIPLINARE DI BIOCHIMICA (6 CFU) Roberto Giacominelli Stuffler IL CORSO MONODISCIPLINARE DI BIOCHIMICA È SUDDIVISO IN DUE UNITÀ

Dettagli

Il legame peptidico è polare

Il legame peptidico è polare Scaricato da Il legame peptidico è polare SONO FAVORITE QUELLE CONFIGURAZIONI CHE CONSENTONO IL MAGGIOR NUMERO DI INTERAZIONI TRA LE PARTI DELLA CATENA POLIPEPTIDICA. A CAUSA DELLA POLARITA' DEL LEGAME

Dettagli

Struttura degli Amminoacidi

Struttura degli Amminoacidi Amminoacidi Struttura degli Amminoacidi Amminoacido (o α-amminoacido): molecola che possiede un gruppo amminico primario (-NH 2 ) come sostituente dell atomo di carbonio α, e un gruppo carbossilico acido

Dettagli

Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH

Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH Nomenclatura AMIDI Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH R-CO-O-CO-R + H 2 O Alcol + Acido estere R-COOH

Dettagli

PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi

PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi POTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi composti quaternari (,, O, N) macromolecole organiche, molecole informazionali, polimeri

Dettagli

AMINOACIDI Struttura. Funzione. Classificazione. Proprietà

AMINOACIDI Struttura. Funzione. Classificazione. Proprietà AMINOACIDI Struttura Funzione Classificazione Proprietà 1 STRUTTURA Composti caratterizzati dalla presenza di un gruppo aminico (NH 2 ) e di un gruppo acido (COOH) legati al medesimo carbonio (C). In soluzione

Dettagli

La struttura terziaria delle proteine

La struttura terziaria delle proteine La struttura terziaria delle proteine 1 La struttura terziaria L arrangiamento spaziale degli aminoacidi di una singola catena polipeptidica a formare la sua struttura tridimensionale a domini viene chiamata

Dettagli

Il Codice Genetico. La decodifica della sequenza nucleotidica in. sequenza aminoacidica

Il Codice Genetico. La decodifica della sequenza nucleotidica in. sequenza aminoacidica Il Codice Genetico La decodifica della sequenza nucleotidica in sequenza aminoacidica La sequenza del mrna viene letta a gruppi di 3 nucleotidi, senza interruzioni e senza sovrapposizioni; 4 3 = 64 ---------64

Dettagli

Struttura delle proteine

Struttura delle proteine Struttura delle proteine I II III Copyright 2001-2018 by Giorgio Sartor. All rights reserved. Versione 1.3 24/09/2018 15:58 Proteine Biomolecole, macromolecole Più del 50% del peso secco di una cellula

Dettagli

Nel DNA e nell RNA i nucleotidi sono legati covalentemente da legami fosfodiesterei.

Nel DNA e nell RNA i nucleotidi sono legati covalentemente da legami fosfodiesterei. DNA e RNA Composizione e proprietà Struttura Analisi 1 STRUTTURA DAGLI ACIDI NUCLEICI Nel DNA e nell RNA i nucleotidi sono legati covalentemente da legami fosfodiesterei. I gruppi fosforici hanno pka vicino

Dettagli

Proteine. Struttura tridimensionale Parte II

Proteine. Struttura tridimensionale Parte II Proteine Struttura tridimensionale Parte II (D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 4th ed., W.H. Freeman & Co., 2005) Plot di Ramachandran Una situazione opposta a quella della glicina

Dettagli

Predizione della struttura secondaria

Predizione della struttura secondaria Predizione della struttura secondaria Predire la struttura secondaria Mediamente il 50% dei residui in una proteina si trovano in conformazione strutturata classica (alfa o beta) o altre conformazioni

Dettagli

Capitolo 3 Le biomolecole

Capitolo 3 Le biomolecole apitolo 3 Le biomolecole I composti organici e i loro polimeri 3.1 La diversità molecolare della vita è basata sulle proprietà del carbonio Un atomo di carbonio può formare quattro legami covalenti. Questi

Dettagli

COMPORTAMENTO ANFOTERO DEGLI AA

COMPORTAMENTO ANFOTERO DEGLI AA Proprietà acido-basiche degli aminoacidi FORMA NON IONICA Non esiste a nessun valore di ph FORMA ZWITTERIONICA È la forma prevalente a ph 7 COMPORTAMENTO ANFOTERO DEGLI AA CARICA NETTA +1 CARICA NETTA

Dettagli

DNA E PROTEINE IL DNA E RACCHIUSO NEL NUCLEO, MENTRE LA SINTESI PROTEICA SI SVOLGE NEL CITOPLASMA: COME VIENE TRASPORTATA L INFORMAZIONE?

DNA E PROTEINE IL DNA E RACCHIUSO NEL NUCLEO, MENTRE LA SINTESI PROTEICA SI SVOLGE NEL CITOPLASMA: COME VIENE TRASPORTATA L INFORMAZIONE? DNA E PROTEINE NUMEROSI DATI SUGGERISCONO CHE IL DNA SVOLGA IL SUO RUOLO GENETICO CONTROLLANDO LA SINTESI DELLE PROTEINE, IN PARTICOLARE DETERMINANDONE LA SEQUENZA IN AMINOACIDI E NECESSARIO RISPONDERE

Dettagli

Capitolo 3 Le biomolecole

Capitolo 3 Le biomolecole apitolo 3 Le biomolecole opyright 2006 Zanichelli editore I composti organici e i loro polimeri 3.1 La diversità molecolare della vita è basata sulle proprietà del carbonio Un atomo di carbonio può formare

Dettagli

Introduzione alla biologia della cellula. Lezione 2 Le biomolecole

Introduzione alla biologia della cellula. Lezione 2 Le biomolecole Introduzione alla biologia della cellula Lezione 2 Le biomolecole Tutte le molecole contenute nelle cellule sono costituite da composti del carbonio Zuccheri Lipidi Proteine Acidi nucleici Polimeri Sono

Dettagli

SUBUNITA MAGGIORE = 60S (rrna 28S, 5.8S e 5S + 45 proteine) SUBUNITA MAGGIORE = 50S (rrna 23S e 5S + 34 proteine)

SUBUNITA MAGGIORE = 60S (rrna 28S, 5.8S e 5S + 45 proteine) SUBUNITA MAGGIORE = 50S (rrna 23S e 5S + 34 proteine) TRADUZIONE I RIBOSOMI I Ribosomi hanno un diametro di circa 15-30 nm, sono costituiti da proteine ed rrna e sia nei Procarioti che negli Eucarioti, sono costituiti da una subunità maggiore e da una subunità

Dettagli

Fondamentali in ogni organismo, hanno molteplici ruoli:

Fondamentali in ogni organismo, hanno molteplici ruoli: Le proteine Fondamentali in ogni organismo, hanno molteplici ruoli: Componenti strutturali (collagene, tessuto connettivo, citoscheletro, pelle) Trasportatori (emoglobina, albumina) Trasmettitori di messaggi

Dettagli

Predizione della struttura delle proteine

Predizione della struttura delle proteine Predizione della struttura delle proteine Predire la struttura secondaria Le strutture secondarie sono determinate in primo luogo dalla struttura primaria che ha dei vincoli di disposizione nello spazio.

Dettagli

Vittoria Patti MACROMOLECOLE BIOLOGICHE. 4. proteine

Vittoria Patti MACROMOLECOLE BIOLOGICHE. 4. proteine Vittoria Patti MACROMOLECOLE BIOLOGICHE 4. proteine 1 Funzioni principali delle proteine funzione cosa significa esempi ENZIMATICA STRUTTURALE TRASPORTO MOVIMENTO DIFESA IMMUNITARIA ORMONALE catalizzare

Dettagli

Traduzione dell informazione genetica (1)

Traduzione dell informazione genetica (1) Traduzione dell informazione genetica (1) 1 Traduzione dell informazione genetica (2) Il processo negli eucarioti richiede: 70 diverse proteine ribosomiali >20 enzimi che attivano i precursori degli amminoacidi

Dettagli

Fondamenti di chimica organica Janice Gorzynski Smith Copyright 2009 The McGraw-Hill Companies srl. c. d. HOOCCH 2 CH 2 N

Fondamenti di chimica organica Janice Gorzynski Smith Copyright 2009 The McGraw-Hill Companies srl. c. d. HOOCCH 2 CH 2 N opyright 2009 The McGraw-ill ompanies srl Soluzioni ai problemi proposti nel libro apitolo 26 26.1 S S 2 3 S 3 2 2 3 S 2 3 2 3 L-isoleucine 2 3 2 3 2 3 26.2 a. b. 3 ( 3 ) 2 ( 3 ) 2 2 3 c. d. 2 2 3 26.3

Dettagli