Proteine. Struttura tridimensionale Parte II

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Proteine. Struttura tridimensionale Parte II"

Transcript

1 Proteine Struttura tridimensionale Parte II

2 (D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 4th ed., W.H. Freeman & Co., 2005)

3 Plot di Ramachandran Una situazione opposta a quella della glicina è rappresentata dall aminoacido prolina, la cui catena laterale ciclica limita i valori di φ intorno a 60 (± 25 ). Ciò rende la prolina l aminoacido con maggiori restrizioni conformazionali.

4 Plot di Ramachandran Le regioni del plot di Ramachandran sono indicate con il nome della conformazione risultante in un peptide se i corrispondenti angoli (φ, ψ) sono ripetuti negli aminoacidi successivi lungo la catena polipeptidica. α-eliche destrorse filamenti β antiparalleli e paralleli α-eliche sinistrorse (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004

5 L elica sinistrorsa di poli-pro (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

6 Page 235 La tripla elica del tropocollagene

7 (Pro-Hyp-Gly)- (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

8 Immagine in microscopia elettronica di Page 237 fibrille di collagene della pelle

9 Page 237 Origine delle bande (ca. 640 Angstroem) presenti nella fibrilla di collagene. Ogni molecola di tropocollagene si estende per 4 periodi.

10 Page 236 Struttura schematica della posizione dei filamenti polypeptidici nella tripla elica del collagene (Pro-Hyp-Gly)-

11 Page 239 Collagene patologico

12 β-bend, o reverse turn (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

13 MOTIVI o STRUTTURE SUPER-SECONDARIE Le principali topologie di motivo sono: α α β β β α β

14 Motivi o Strutture super-secondarie nelle proteine (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

15 Motivi α Nonostante siano le strutture secondarie più frequenti nelle proteine, le α eliche isolate non sono stabili in soluzione. Nelle strutture terziarie delle proteine le α eliche si impaccano in modo adiacente una all altra attraverso interazioni tra le catene laterali idrofobiche. Iprincipalimotivi α sono: - α-loop-α - EF hand

16 Motivi α: α-loop-α Il motivo α più semplice consiste di 2 α eliche antiparallele collegate da una regione di loop, chiamato α hairpin. La più breve connessione fra 2 α eliche coinvolge 2aminoacidi, di cui il secondo è sempre Gly, orientati perpendicolarmente agli assi delle eliche. Le eliche risultano cosi antparallele, e sono stabilizzate dall interazione dei loro macrodipoli. N C

17 Motivi α: α-loop-α Un particolare motivo α-loop-α è caratteristico di alcune proteine che riconoscono e legano specifiche zone di DNA. (noto anche come motivo HTH) In particolare, una di queste 2 eliche si va ad inserire nel solco maggiore del DNA, e riconosce le basi nucleotidiche, mentre l altra interagisce con i gruppi fosfato dello scheletro desossiribosio-fosfato. Kinemage... Exercises/E19

18 Motivi α: EF hand Il secondo motivo α è specifico per il legame del calcio ed è presente in proteine che legano il calcio quali parvalbumina, calmodulina e troponina C, che regolano l attività cellulare. Questo particolare motivo, trovato per la prima volta nella parvalbumina, viene chiamato EF hand. Il loop fra le 2 eliche lega lo ione Ca 2+ Kinemage Cam

19 Motivi α: EF hand Gli aminoacidi che costituiscono il loop devono avere particolari caratteristiche per formare questo motivo α: - i primi 5 aminoacidi legano il calcio e le loro catene laterali devono possedere cariche negative (Asp e Glu); - il sesto aminoacido deve essere Gly; - un certo numero di aminoacidi devono essere idrofobici per formare una piccola zona idrofobica fra le 2 α eliche.

20 Motivi β: β-hairpin Il motivo β più semplice è quello costituito da 2 filamenti β antiparalleli adiacenti collegati da un tratto di loop. Questo motivo, chiamato β-hairpin o unità β β, ricorre molto frequentemente nelle strutture β antiparallele, come motivo isolato o come parte di un foglietto β più complesso. La lunghezza del tratto di loop tra i filamenti β è variabile, ma di solito è costituito da 2-5 aminoacidi (v. reverse-turns, come elementi di struttura secondaria). A questo motivo β non è associata nessuna funzione specifica.

21 Page 229 Possibili collegamenti tra due filamenti β adiacenti

22 Motivi α/β: Cross over connection Alla base dei motivi α/β sta il modo in cui 2 filamenti β paralleli vengono collegati. Due filamenti β paralleli adiacenti di solito sono connessi da un α elica, che collega l estremità C-terminale del primo filamento β con l estremità N- terminale del secondo filamento β, in modo tale che l asse dell elica sia parallelo ai filamenti β. Questo motivo β-α-β viene chiamato cross-over connection.

23 Motivi α/β: Cross over connection La cross over connection consiste di di due filamenti β paralleli, un α elica e due loop (che possono variare notevolmente in lunghezza). L α elica si impacca con i 2 filamenti β, riparando dal solvente gli aminoacidi idrofobici dei filamenti β. La cross over connection può essere considerata come un largo giro di superelica, a partire dal primo filamento β, attraverso la connessione, fino al secondo filamento β. La cross over connection può essere di tipo destrorso (a) o sinistrorso (b). Quasi tutte le proteine presentano una cross over connection destrorsa.

24 Page 230 La crossover connection e sempre destrorsa

25 DOMINI nelle Proteine N

26 Principali topologie di dominio Treccia di α-eliche Barile beta up-and-down Barile beta a chiave greca Barile beta a jelly-roll Barile α/β (TIM-barrel) α/β open-sheet (dominio di legame del nucleotide)

27 Treccia di α-eliche (α-helical bundle) (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

28 Treccia di α-eliche (α-helical bundle) (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

29 Barile-β a topologia up-and-down (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

30 Domini β: Up and down La topologia più semplice per foglietti β antiparalleli è chiamata up and down: in essa i filamenti β adiacenti sono collegati da regioni di loop (β-hairpin). Spesso l ultimo filamento β è collegato al primo da legami idrogeno, a formare un barile (β barrel) di 8 filamenti β, come nel caso delle proteine che legano il retinolo o acidi grassi. In questi casi, nelle sequenze dei filamenti β catene laterali idrofobiche si alternano a catene laterali polari e cariche idrofiliche, in modo tale da formare il core idrofobico all interno del barile e da interagire esternamente con il solvente.

31 Domini β: Chiave greca Un altro modo per collegare filamenti β antiparalleli a formare un β barrel è la topologia a chiave greca, che connette filamenti β sui lati opposti del barile β.

32 (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

33 Kinemage Exercises/Ig-fold Domini β: Chiave greca Se si vogliono collegare 8 filamenti β antiparalleli con una topologia diversa da quella up and down, ci sono solo 2 alternative: collegare il filamento β n a quello n+3 oppure a quello n- 3. I due casi rappresentano le 2 possibili mani, cioè 2 opposte sceltechirali:intuttelestrutturedi proteine finora note si è trovata sempre e solo la topologia a chiave greca indicata in fig. a, quella destrorsa.

34 Un dominio a barile-β con topologia a chiave greca (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

35 Un dominio a barile β con topologia a chiave greca G60 (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

36 Kinemage Exercises/viral-coat Domini β: Jelly roll Nella topologia jelly roll, le coppie di filamenti β (1-8, 2-7, 3-6 e 4-5) sono disposte in modo tale che il filamento β 1 sia adiacente al 2, il 7 al 4, il 5 al 6 e il 3 all 8. In questo modo si possono formare altri legami idrogeno fra questi filamenti β. 2 connessioni attraversano l estremità superiore del barile e 2 attraversano quella inferiore. In più ci sono 2 connessioni tra filamenti β adiacenti nell estremità superiore del barile e 1 all estremità inferiore. Esempi: proteine costituenti il capside dei virus sferici, emmaglutinina

37 Un dominio a barile β con topologia a Jelly roll (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

38 Un dominio a barile β con topologia a Jelly roll (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

39 Dominio con topologia a barile (α/β)8 Kin abbarrel.kin (ANIMATE) (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

40 Dominio con topologia a barile (α/β) 8 (TIM) Page 229

41 (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

42 Dominio con topologia α/β open sheet : dominio di legame di nucleotidi (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

43 Page 229 Dominio con topologia α/β open sheet : dominio di legame di nucleotidi

44 (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

45 (D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 4th ed., W.H. Freeman & Co., 2005)

46 (D. Voet, J.G. Voet, C.W. Pratt, Fundamentals of Biochemistry, 2nd ed., John Wiley & Sons, 2005)

47 (D. Voet, J.G. Voet, C.W. Pratt, Fundamentals of Biochemistry, 2nd ed., John Wiley & Sons, 2005)

48 Strutture Terziarie

49 Strutture Quaternarie

50 Simmetrie nelle strutture quaternarie delle proteine Page 267

51 Simmetrie nelle strutture quaternarie delle proteine: asse di simmetria di ordine 2 Page 267

52 Simmetrie nelle strutture quaternarie delle proteine

53 (D. Voet, J.G. Voet, C.W. Pratt, Fundamentals of Biochemistry, 2nd ed., John Wiley & Sons, 2005)

54 Page 268 Simmetrie nelle strutture quaternarie delle proteine (Gln-sintasi)

55 Page 268 Simmetrie nelle strutture quaternarie delle proteine (Gln-sintasi)

56 Simmetrie nelle strutture quaternarie delle proteine

57 Simmetrie nelle strutture quaternarie delle proteine Page 268

58 Virus con capside sferico Un altro modo in cui subunità equivalenti si dispongono a costituire il capside dei virus è quello di formare un poliedro sferico, secondo due principi base: - specificità: le subunità devono riconoscersi con precisione per formare la giusta interfaccia di interazioni non-covalenti, visto che i virus si assemblano spontaneamente dai loro componenti individuali; - economia genetica: il capside è costituito da molte copie di alcuni tipi di subunità. Questi due principi implicano la simmetria: pattern di legame ripetuti e specifici di unità costituenti identiche portano ad una struttura finale simmetrica.

59 Virus con capside sferico Come disporre in modo simmetrico oggetti identici in modo tale da costruire una sfera? Esiste solo un numero limitato di modi per farlo e fra questi la simmetria icosaedrica è la più alta possibile, permettendo al maggior numero di oggetti identici di formare una sfera. Lo studio del capside dei virus sferici con il microscopio elettronico e con la cristallografia a raggi X ha indicato che la simmetria icosaedrica sta alla base della loro architettura.

60 Virus con capside sferico L icosaedro è un oggetto approssimativamente sferico costituito da 20 triangoli equilateri identici. La sua simmetria è descritta da tipi diversi di rotazioni, che lo portano a coincidere con se stesso. 12 vertici (asse di rotazione di ordine 5) 20 facce (asse di rotazione di ordine 3) 30 spigoli (asse di rotazione di di 2) Kin exercises/viral-coat

61 Virus con capside sferico L icosaedro presenta 12 5 = 60 (o 20 3, o 30 2) posizioni equivalenti. Ogni oggetto che presenta simmetria è costituito da parti più piccole, identiche e messe in relazione una con l altra da operazioni di simmetria; tali parti vengono chiamate unità connesse da simmetria o unità asimmetriche. Le subunità proteiche che costituiscono il capside dei virus sferici sono unità asimmetriche: il numero minimo di subunità proteiche necessarie a formare il capside con simmetria icosaedrica è quindi uguale alle posizioni equivalenti dell icosaedro. Le proprietà di simmetria dell icosaedro non si limitano alla superficie, ma si estendono all intero volume. Un unità asimmetrica è quindi una parte di questo volume: è un cuneo che parte dalla superficie, fino al centro dell icosaedro.

62 Virus con capside sferico L icosaedro ha 60 unità asimmetriche, per cui il numero minimo di subunità proteiche richiesto per formare il capside di un virus a simmetria icosaedrica è 60. Ciascuna unità asimmetrica può contenere una o più catene polipeptidiche.

63

64 X-Ray structure of satellite tobacco mosaic virus (STMV). The virion is shown in cutaway view along its icosahedral (T-1) 5-fold axis. From: Biochemistry Voet & Voet (2004) J. Wiley and Sons Inc.

65 Virus con capside sferico In un capside sferico costituito solo da 60 subunità proteiche ben poco spazio è lasciato alla molecola di DNA/RNA. I virus autosufficienti hanno genomi molto lunghi, che codificano per enzimi necessari alla replicazione del loro acido nucleico virale, oltre che per le proteine strutturali del capside. Questi genomi necessitano ampi spazi all interno del capside e quindi un capside più grande. Come si può costruire un capside più grande mantenendo la simmetria icosaedrica? L aumento delle dimensioni di ciascuna subunità porterebbe ad un piccolo guadagno nelle dimensioni del capside ma ad un notevole suo ispessimento. Il solo modo possibile è aumentare il numero delle subunità, cioè ciascuna unità asimmetrica dell icosaedro deve contenere più di una subunità (che possono essere identiche o diverse).

66 Virus con capside sferico Il numero totale di subunità costituenti il capside deve essere un multiplo intero di 60. Donald Caspar e Aaron Klug nel 1962 hanno dimostrato che solo alcuni multipli interi (1, 3, 4, 7, ) di 60 (subunita proteiche) sono possibili per mantenere la specificità delle interazioni all interno della simmetria icosaedrica, in modo tale che i contatti proteina-proteina siano simili. Questi multipli interi sono chiamati numeri di triangolazione T. I valori di T permessi sono dati dalla seguente formula: T = h 2 + hk + k 2 [h, k interi positivi] Nel caso di T = 1 le subunità proteiche si impaccano a formare l icosaedro in modo strettamente equivalente. Nel caso di T > 1 le subunità si possono impaccare con pattern di legame solo leggermente diversi, in modo quasi equivalente.

67 Virus con capside sferico: T = 1 I virus satellite, che sono non autosufficienti, poiché non codificano da soli tutte le funzioni richieste per la loro replicazione, hanno il capside sferico costituito soltanto da 60 catene proteiche (numero di triangolazione T = 1). Un esempio è il virus satellite della necrosi del tabacco, che è anche uno dei più piccoli finora conosciuti. Esso ha un diametro di 180 Å e per replicarsi ha bisogno dell aiuto del virus della necrosi del tabacco. Il suo RNA codifica per una sola catena polipeptidica (195 aminoacidi) per unità asimmetrica dell icosaedro.

68 Virus con capside sferico: T = 3 Nel caso di T = 3(180 subunità), ciascuna unità asimmetrica contiene 3 subunità proteiche (A, B e C) con un diverso environment. Le subunità A interagiscono intorno all asse di rotazione di ordine 5, mentre le subunità B e C si alternano intorno all asse di rotazione di ordine 3. Ci sono, quindi, 6 subunità (3 B e 3 C) disposte in modo pseudo-simmetrico intorno all asse di rotazione di ordine 3, che diventa quindi anche un asse di pseudo-simmetria di ordine 6. La disposizione delle subunità intorno all asse di simmetria di ordine 5 e a quello di pseudo-simmetria di ordine 6 dovrebbe essere molto simile, con piccole alterazioni delle modalità di impaccamento. T = 3

69 T = 3 icosadeltahedron. (a) Exact rotational symmetry of an icosahedron (solid symbols) plus local 6-fold, 3-fold, and 2-fold rotational axes (hollow symbols). (b) 3 quasi-equivalent sets of 60 icosahedrally related lobes. From: Biochemistry Voet & Voet (2004) J. Wiley and Sons Inc.

70 Virus con capside sferico: T = 3 Un esempio di capside di virus sferico con T = 3 è dato dal virus del pomodoro (tomato bushy stunt virus). Questo virus contiene 180 catene polipeptidiche chimicamente identiche (386 aminoacidi) per un diametro totale di 330 Å. Ciascuna subunità è costituita da un dominio R, una regione di loop (a) che connette R con il dominio S, a formare il guscio virale, edaundominio P che si proietta fuori dalla superficie. I domini P ed S sono collegati da una cerniera (h). Le catene polipeptidiche identiche hanno diverse strutture tridimensionali quando formano le 3 subunità A, B e C. A B C

71 Radial organization of TBSV indicating the distribution of its protein and RNA components. From: Biochemistry Voet & Voet (2004) J. Wiley and Sons In

72 X-Ray structure of the tomato bushy stunt virus (TBSV) coat protein subunit. Page 1381 From: Biochemistry Voet & Voet (2004) J. Wiley and Sons In

73 END

74 (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004)

Diagramma di Ramachandran

Diagramma di Ramachandran Chimica Biologica A.A. 2010-2011 Diagramma di Ramachandran Diagramma di Ramachandran Catena polipeptidica La formazione in successione di legami peptidici genera la cosiddetta catena principale o scheletro

Dettagli

struttura quaternaria. supersecondaria Domini

struttura quaternaria. supersecondaria Domini La struttura quaternaria La struttura quaternaria L ultimo livello nella gerarchia strutturale delle proteine è rappresentato dalla struttura quaternaria. Struttura supersecondaria Domini La struttura

Dettagli

Chimica Biologica A.A α-elica foglietto β reverse turn

Chimica Biologica A.A α-elica foglietto β reverse turn Chimica Biologica A.A. 2010-2011 α-elica foglietto β reverse turn Str. Secondaria sperimentalmente osservata: Si distinguono fondamentalmente tre tipi di strutture secondarie: α elica foglietto β reverse

Dettagli

Macromolecole Biologiche. I domini (II)

Macromolecole Biologiche. I domini (II) I domini (II) Domini β Nonostante l elevato numero di possibili disposizioni di filamenti β (a costituire foglietti β antiparalleli) connessi da tratti di loop, i domini β più frequentemente osservati

Dettagli

AMMINOACIDI E PROTEINE

AMMINOACIDI E PROTEINE AMMINOACIDI E PROTEINE 1 AMMINOACIDI Gli amminoacidi sono composti organici composti da atomi di carbonio, idrogeno, ossigeno e azoto e in alcuni casi anche da altri elementi come lo zolfo. Gli amminoacidi

Dettagli

Macromolecole Biologiche. La struttura secondaria (III)

Macromolecole Biologiche. La struttura secondaria (III) La struttura secondaria (III) Reverse turn Le proteine globulari hanno una forma compatta, dovuta a numerose inversioni della direzione della catena polipeptidica che le compone. Molte di queste inversioni

Dettagli

Macromolecole Biologiche. La struttura secondaria (II)

Macromolecole Biologiche. La struttura secondaria (II) La struttura secondaria (II) Nello stesso anno (1951) in cui proposero l α elica, Pauling e Corey postularono anche l esistenza di un altra struttura secondaria: il foglietto β (β-sheet). Dopo l α elica,

Dettagli

Struttura secondaria, Motivi e Domini nelle Proteine

Struttura secondaria, Motivi e Domini nelle Proteine Struttura secondaria, Motivi e Domini nelle Proteine Proprietà generali Le forme ioniche degli aminoacidi, senza considerare alcuna ionizzazione delle catene laterali. Proprietà generali Tutti gli aminoacidi

Dettagli

I motivi generalmente si combinano a formare strutture globulari compatte, chiamate domini. Una proteina può essere costituita da uno o più domini.

I motivi generalmente si combinano a formare strutture globulari compatte, chiamate domini. Una proteina può essere costituita da uno o più domini. I motivi generalmente si combinano a formare strutture globulari compatte, chiamate domini. Una proteina può essere costituita da uno o più domini. I domini sono definiti come una catena polipeptidica

Dettagli

Macromolecole Biologiche. La struttura secondaria (I)

Macromolecole Biologiche. La struttura secondaria (I) La struttura secondaria (I) La struttura secondaria Struttura primaria PRPLVALLDGRDETVEMPILKDVATVAFCDAQSTQEIHE Struttura secondaria La struttura secondaria Le strutture secondarie sono disposizioni regolari

Dettagli

Macromolecole Biologiche. I domini (III)

Macromolecole Biologiche. I domini (III) I domini (III) Domini α/β La cross over connection è l unità costitutiva su cui si basa la topologia di 3 tipi di domini α/β osservati nelle proteine: - α/β barrel - motivi ricchi di Leu (fold a ferro

Dettagli

Chimotripsina Una proteina globulare. Glicina Un amminoacido

Chimotripsina Una proteina globulare. Glicina Un amminoacido Chimotripsina Una proteina globulare Glicina Un amminoacido - In teoria un numero enorme di differenti catene polipeptidiche potrebbe essere sintetizzato con i 20 amminoacidi standard. 20 4 = 160.000 differenti

Dettagli

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune AMINO ACIDI sono le unità monomeriche che costituiscono le proteine sono 20 hanno tutti una struttura comune sono asimmetrici La carica di un amino acido dipende dal ph Classificazione amino acidi Glicina

Dettagli

Macromolecole Biologiche. I domini (I)

Macromolecole Biologiche. I domini (I) I domini (I) I domini I motivi generalmente si combinano a formare strutture globulari compatte, chiamate domini. Una proteina può essere costituita da uno o più domini. I domini sono definiti come una

Dettagli

gruppo amminico Gli aminoacidi polimerizzano durante la sintesi delle proteine mediante la formazione di legami peptidici. gruppo carbossilico

gruppo amminico Gli aminoacidi polimerizzano durante la sintesi delle proteine mediante la formazione di legami peptidici. gruppo carbossilico gruppo amminico Gli aminoacidi polimerizzano durante la sintesi delle proteine mediante la formazione di legami peptidici. gruppo carbossilico Il legame peptidico si ha quando il gruppo carbossilico (-

Dettagli

formare strutture globulari compatte, chiamate domini. Una proteina può essere costituita i da unoo più domini.

formare strutture globulari compatte, chiamate domini. Una proteina può essere costituita i da unoo più domini. Idomini(I) I domini I motivi generalmente si combinano a formare strutture globulari compatte, chiamate domini. Una proteina può essere costituita i da unoo più domini. I domini sono definiti come parte

Dettagli

Domini nelle Proteine

Domini nelle Proteine Struttura secondaria, Motivi e Domini nelle Proteine Proprietà generali Le forme ioniche degli aminoacidi, senza considerare alcuna ionizzazione delle catene laterali. Proprietà generali Tutti gli aminoacidi

Dettagli

Gli angoli diedri (φ, ψ) della catena polipeptidica in conformazione foglietto β cadono nella. (quadrante in alto a sinistra).

Gli angoli diedri (φ, ψ) della catena polipeptidica in conformazione foglietto β cadono nella. (quadrante in alto a sinistra). Strutture secondarie (b) Foglietto β Nello stesso anno (1951) in cui proposero l α α elica, Pauling e Corey postularono anche l esistenza di un altra struttura secondaria: il foglietto β (β-sheet). Dopo

Dettagli

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici Gli aminoacidi Proprietà comuni Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici paragonabili Il gruppo α-aminico è un acido più forte (o una base più debole

Dettagli

Le macromolecole dei tessuti - 1

Le macromolecole dei tessuti - 1 Le macromolecole dei tessuti - 1 Che cosa sono le proteine? Sono macromolecole complesse ad alta informazione Sono costituite da una o più catene polipeptidiche Ogni catena peptidica è composta da centinaia

Dettagli

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α Aminoacidi Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α 1 Isomeria ottica Tutti gli AA, esclusa la glicina, presentano almeno un atomo di carbonio asimmetrico, il

Dettagli

La struttura delle proteine

La struttura delle proteine La struttura delle proteine Funzioni delle proteine Strutturali Contrattili Trasporto Riserva Ormonali Enzimatiche Protezione Struttura della proteina Struttura secondaria: ripiegamento locale della catena

Dettagli

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE 1 CARATTERISTICHE DEL LEGAME PEPTIDICO lunghezza intermedia tra un legame singolo e uno doppio ibrido di risonanza per il parziale carattere di doppio

Dettagli

Biologia. Lezione 09/11/2010

Biologia. Lezione 09/11/2010 Biologia Lezione 09/11/2010 Tutte le molecole contenute nelle cellule sono costituite da composti del carbonio Zuccheri Lipidi Proteine Acidi nucleici Polimeri Sono macromolecole formate da unità (MONOMERI)

Dettagli

Formazione del legame peptidico:

Formazione del legame peptidico: Formazione del legame peptidico: Planare, ha una forza intermedia tra il legame semplice ed il legame doppio. 2^ lezione N R C C O O O + R N R C O C O O N R C C N C C O Ogni piano delle unità peptidiche

Dettagli

Struttura delle Proteine

Struttura delle Proteine Biotecnologie applicate alla progettazione e sviluppo di molecole biologicamente attive A.A. 2010-2011 Modulo di Biologia Strutturale Struttura delle Proteine Marco Nardini Dipartimento di Scienze Biomolecolari

Dettagli

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO LE PROTEINE SONO Polimeri formati dall unione di ATOMI DI C, H, N, O CHE SONO AMMINOACIDI (AA) Uniti tra loro dal Legame peptidico 20 TIPI DIVERSI MA HANNO STESSA STRUTTURA GENERALE CON Catene peptidiche

Dettagli

LE PROTEINE -struttura tridimensionale-

LE PROTEINE -struttura tridimensionale- LE PROTEINE -struttura tridimensionale- Struttura generale di una proteina Ceruloplasmina Cosa sono??? Sono biopolimeri con forme ben definite. composti da molteplici amminoacidi, legati con legami peptidici

Dettagli

BIOMOLECOLE LE BASI DELLA BIOCHIMICA. Capitolo 1 Dal Carbonio agli OGM PLUS

BIOMOLECOLE LE BASI DELLA BIOCHIMICA. Capitolo 1 Dal Carbonio agli OGM PLUS BIOMOLECOLE LE BASI DELLA BIOCHIMICA Capitolo 1 Dal Carbonio agli OGM PLUS BIOMOLECOLE Carboidrati Lipidi Acidi Nucleici Proteine BIOMOLECOLE Carboidrati Lipidi Acidi Nucleici - monosaccaridi - disaccaridi

Dettagli

Formazione. di un peptide.

Formazione. di un peptide. Formazione. di un peptide. Quando due aminoacidi si uniscono si forma un legame peptidico. In questo caso il dipeptide glicilalanina (Gly-Ala) viene mostrato come se si stesse formando in seguito a eliminazione

Dettagli

STRUTTURA TRIDIMENSIONALE DELLE PROTEINE

STRUTTURA TRIDIMENSIONALE DELLE PROTEINE STRUTTURA TRIDIMENSIONALE DELLE PROTEINE Biologia della Cellula Animale 2016 1 STRUTTURA PROTEINE Cooper: The Cell, a Molecular Approach, 2 nd ed. http://en.wikipedia.org/wiki/protein_structure STRUTTURA

Dettagli

L ACQUA E LE SUE PROPRIETÀ

L ACQUA E LE SUE PROPRIETÀ L ACQUA E LE SUE PROPRIETÀ L acqua è una sostanza indispensabile per tutte le forme di vita. Ogni molecola di acqua (H2O) è formata da due atomi di idrogeno e un atomo di ossigeno, uniti tramite due legami

Dettagli

Introduzione alla biologia della cellula. Lezione 2 Le biomolecole

Introduzione alla biologia della cellula. Lezione 2 Le biomolecole Introduzione alla biologia della cellula Lezione 2 Le biomolecole Tutte le molecole contenute nelle cellule sono costituite da composti del carbonio Zuccheri Lipidi Proteine Acidi nucleici Polimeri Sono

Dettagli

Il DNA: istruzioni per la vita Bibliografia I colori della Biologia Gatti- Giusti- Anelli Ed. Pearson

Il DNA: istruzioni per la vita Bibliografia I colori della Biologia Gatti- Giusti- Anelli Ed. Pearson Il DNA: istruzioni per la vita Bibliografia I colori della Biologia Gatti- Giusti- Anelli Ed. Pearson Una divisione equa Quando una cellula si divide, si formano due nuove cellule che contengono esattamente

Dettagli

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri I composti organici Atomi e molecole di carbonio Carboidrati Lipidi Proteine Acidi nucleici Composti organici Materiale composto da biomolecole - Formate in buona parte da legami ed anelli di carbonio.

Dettagli

Legami chimici. Covalente. Legami deboli

Legami chimici. Covalente. Legami deboli Legami chimici Covalente Legami deboli Legame fosfodiesterico Legami deboli Legami idrogeno Interazioni idrofobiche Attrazioni di Van der Waals Legami ionici STRUTTURA TERZIARIA La struttura tridimensionale

Dettagli

scaricato da www.sunhope.it Proteine semplici costituite dai soli amminoacidi

scaricato da www.sunhope.it Proteine semplici costituite dai soli amminoacidi Proteine semplici costituite dai soli amminoacidi Proteine coniugate costituite dagli amminoacidi + porzioni di natura non amminoacidica dette GRUPPI PROSTETICI Le Proteine coniugate prive del gruppo prostetico

Dettagli

ACIDI GRASSI INSATURI

ACIDI GRASSI INSATURI LIPIDI ACIDI GRASSI SATURI ACIDI GRASSI INSATURI TRIGLICERIDI TRIGLICERIDI Grassi neutri o lipidi semplici glicerolo + 1 acido grasso monogliceride glicerolo + 2 acidi grassi digliceride glicerolo + 3

Dettagli

Il DNA conserva l informazione genetica

Il DNA conserva l informazione genetica Il DNA conserva l informazione genetica Gli esperimenti di Frederick Griffith (1928) Gli esperimenti di Oswald Avery (1944) + Estratti dal ceppo IIIS ucciso al calore di Polisaccaridi Lipidi Proteine Acidi

Dettagli

Le Biomolecole I parte. Lezioni d'autore di Giorgio Benedetti

Le Biomolecole I parte. Lezioni d'autore di Giorgio Benedetti Le Biomolecole I parte Lezioni d'autore di Giorgio Benedetti LE BIOMOLECOLE Le biomolecole, presenti in tutti gli esseri viventi, sono molecole composte principalmente da carbonio, idrogeno, azoto e ossigeno.

Dettagli

Funzioni delle proteine

Funzioni delle proteine Funzioni delle proteine ENZIMI Proteine di trasporto Proteine di riserva Proteine contrattili o motili Proteine strutturali Proteine di difesa Proteine regolatrici Proteine di trasporto Emoglobina Lipoproteine

Dettagli

Formula generale di un amminoacido

Formula generale di un amminoacido Formula generale di un amminoacido Gruppo carbossilico Gruppo amminico Radicale variabile che caratterizza i singoli amminoacidi Le catene laterali R degli amminoacidi di distinguono in: Apolari o idrofobiche

Dettagli

LA SINTESI PROTEICA LE MOLECOLE CHE INTERVENGONO IN TALE PROCESSO SONO:

LA SINTESI PROTEICA LE MOLECOLE CHE INTERVENGONO IN TALE PROCESSO SONO: LA SINTESI PROTEICA La sintesi proteica è il processo che porta alla formazione delle proteine utilizzando le informazioni contenute nel DNA. Nelle sue linee fondamentali questo processo è identico in

Dettagli

Polimorfismo genetico del collageno

Polimorfismo genetico del collageno COLLAGENO È la proteina più abbondante del nostro corpo costituendo il 25% delle proteine totali. È la proteina principale dei tessuti connettivi, la cui matrice extracellulare contiene anche: -proteoglicani

Dettagli

Corso di Laurea in Farmacia Insegnamento di BIOCHIMICA. Angela Chambery Lezione 6

Corso di Laurea in Farmacia Insegnamento di BIOCHIMICA. Angela Chambery Lezione 6 Corso di Laurea in Farmacia Insegnamento di BIOCHIMICA Angela Chambery Lezione 6 La struttura secondaria delle proteine Concetti chiave: Il carattere planare di un gruppo peptidico limita la flessibilitàconformazionale

Dettagli

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 10 Le basi della biochimica 3 Sommario 1. Le molecole biologiche si dividono in quattro classi 2. I carboidrati sono il «carburante»

Dettagli

RUOLI BIOLOGICI DELLE PROTEINE. Biochimica

RUOLI BIOLOGICI DELLE PROTEINE. Biochimica RUOLI BIOLOGICI DELLE PROTEINE Biochimica Il collagene una proteina strutturale Il collagene è un componente principale di tessuti quali la pelle, i capelli, i tendini, le ossa, il cartilagine, i vasi

Dettagli

Costituenti chimici della materia vivente

Costituenti chimici della materia vivente Costituenti chimici della materia vivente Le macromolecole biologiche Macromolecole (dal greco macros = grande) biologiche. Classi di composti biologici multifunzionali: Polisaccaridi proteine acidi

Dettagli

I materiali della vita

I materiali della vita I materiali della vita I componenti chimici dei viventi Il corpo dei viventi è formato da relativamente pochi elementi chimici e in percentuale diversa da quella del mondo non vivente. Le molecole dei

Dettagli

Struttura delle Proteine

Struttura delle Proteine Chimica Biologica A.A. 2010-2011 Struttura delle Proteine Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Macromolecole Biologiche Struttura Proteine Proteine:

Dettagli

INTERAZIONI INTERMOLECOLARI NELLE PROTEINE

INTERAZIONI INTERMOLECOLARI NELLE PROTEINE INTERAZIONI INTERMOLECOLARI NELLE PROTEINE 1 RICHIAMI DI TERMODINAMICA 2 Entalpia Entropia Energia Libera di Gibbs ENERGIA INTERNA (U) L energia interna riassume tutti i contributi cinetici e potenziali

Dettagli

Capitolo 3 Le biomolecole

Capitolo 3 Le biomolecole apitolo 3 Le biomolecole opyright 2006 Zanichelli editore I composti organici e i loro polimeri 3.1 La diversità molecolare della vita è basata sulle proprietà del carbonio Un atomo di carbonio può formare

Dettagli

PROTEINE DEFINIZIONE:

PROTEINE DEFINIZIONE: Cap.4 Le PROTEINE DEFINIZIONE: Macromolecole formate di AA della serie L uniti tra loro da un legame peptidico. FUNZIONI DELLE PROTEINE Enzimi Proteine di riconoscimento Proteine di trasporto Proteine

Dettagli

MACROMOLECOLE. Polimeri (lipidi a parte)

MACROMOLECOLE. Polimeri (lipidi a parte) MACROMOLECOLE Monomeri Polimeri (lipidi a parte) Le caratteristiche strutturali e funzionali di una cellula o di un organismo sono determinate principalmente dalle sue proteine. Ad esempio: Le proteine

Dettagli

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA)

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA) La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA) L atomo del carbonio (C).. C. Atomo tetravalente. C C C C Gli idrocarburi I legami del carbonio 109.5 gradi

Dettagli

Velocita di reazione Reazioni di I e II ordine Molecolarita di una reazione t 1/2 Velocita e costanti di equilibrio

Velocita di reazione Reazioni di I e II ordine Molecolarita di una reazione t 1/2 Velocita e costanti di equilibrio Cinetica enzimatica Cenni alla cinetica delle reazioni Velocita di reazione Reazioni di I e II ordine Molecolarita di una reazione t 1/2 Velocita e costanti di equilibrio OVVERO: CINETICA ENZIMATICA LO

Dettagli

Macromolecole Biologiche. Chimica Biologica A.A. 2010-2011. Struttura Terziaria

Macromolecole Biologiche. Chimica Biologica A.A. 2010-2011. Struttura Terziaria Macromolecole Biologiche Chimica Biologica A.A. 2010-2011 Struttura Terziaria Domini e struttura terziaria Struttura terziaria L arrangiamento spaziale degli amminoacidi di una singola catena polipeptidica

Dettagli

Immagini e concetti della biologia

Immagini e concetti della biologia Sylvia S. Mader Immagini e concetti della biologia 2 A3 Le molecole biologiche 3 Il carbonio è l elemento di base delle biomolecole Una cellula batterica può contenere fino a 5000 tipi diversi di composti

Dettagli

CORSO DI BIOCHIMICA PER INGEGNERIA BIOMEDICA I ESERCITAZIONE

CORSO DI BIOCHIMICA PER INGEGNERIA BIOMEDICA I ESERCITAZIONE CORSO DI BIOCHIMICA PER INGEGNERIA BIOMEDICA I ESERCITAZIONE 1) Che tipo di ibridazione ha il carbonio coinvolto nel doppio legame degli alcheni? Descrivi brevemente. Alcheni Ibridazione sp 2 2s p x p

Dettagli

Duplicazione del DNA. 6 Dicembre 2007

Duplicazione del DNA. 6 Dicembre 2007 Duplicazione del DNA 6 Dicembre 2007 Duplicazione - Trascrizione - Traduzione DNA Trascrizione DNA - La DUPLICAZIONE è il processo che porta alla formazione di copie delle molecole di DNA ed al trasferimento

Dettagli

Parametri dell α-elica. residui/giro 3.6. passo dell elica

Parametri dell α-elica. residui/giro 3.6. passo dell elica GRAFICO DI RAMACHANDRAN Parametri dell α-elica residui/giro 3.6 spazio/residuo passo dell elica 1.5 Å 5.4 Å 1 L α-elica può essere destabilizzata da interazioni tra i gruppi R: repulsione/attrazione elettrostatica

Dettagli

CARBOIDRATI C H O ZUCCHERO SACCARIDE GLUCIDE CARBOIDRATO

CARBOIDRATI C H O ZUCCHERO SACCARIDE GLUCIDE CARBOIDRATO CARBOIDRATI ZUCCHERO SACCARIDE GLUCIDE CARBOIDRATO C H O carboidrati C n H 2n O n H C O C O Il glucosio è un monosaccaride con 6 atomi di carbonio GLUCOSIO Forma ciclica Forma lineare a ph 7 circa lo 0,0026%

Dettagli

LE PROTEINE SINTESI PROTEICA. funzione delle proteine nel nostro organismo

LE PROTEINE SINTESI PROTEICA. funzione delle proteine nel nostro organismo LE PTEIE Le proteine sono sostanze organiche presenti in tutte le cellule di tutti gli organismi viventi Le proteine sono costituite da,,,, (S) Struttura delle proteine Le proteine sono macromolecole (

Dettagli

STRUTTURA E FUNZIONE DELLE PROTEINE

STRUTTURA E FUNZIONE DELLE PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE PROTEINE 50% DEL PESO SECCO DI UNA CELLULA STRUTTURA intelaiatura citoscheletrica strutture cellulari impalcatura di sostegno extracellulare FUNZIONE catalisi enzimatica

Dettagli

Alcune sequenze di DNA insolite. Palindromo. Sequenze con una simmetria doppia

Alcune sequenze di DNA insolite. Palindromo. Sequenze con una simmetria doppia Alcune sequenze di DNA insolite Palindromo Sequenze con una simmetria doppia Possono formare: Struttura a croce dette anche anse cruciformi DNA rilassato DNA parzialmente disavvolto DNA cruciforme Struttura

Dettagli

FORMAZIONE DEL LEGAME PEPTIDICO

FORMAZIONE DEL LEGAME PEPTIDICO AMINOACIDI FORMAZIONE DEL LEGAME PEPTIDICO SEQUENZA AMINOACIDICA DELL INSULINA STRUTTURA SECONDARIA DELLE PROTEINE STRUTTURA TERZIARIA DELLE PROTEINE STRUTTURA QUATERNARIA DELLE PROTEINE Definizione Processi

Dettagli

CONTROLLO DELL ESPRESSIONE GENICA NEI PROCARIOTI

CONTROLLO DELL ESPRESSIONE GENICA NEI PROCARIOTI CONTROLLO DELL ESPRESSIONE GENICA NEI PROCARIOTI Unità trascrizionale E. Coli possiede diversi fattori sigma generale shock da calore carenza di azoto sintesi flagellare stress calore e sali Fattori sigma

Dettagli

La chimica della pelle

La chimica della pelle La chimica della pelle 1 Gli amminoacidi Queste unità hanno la particolare caratteristica di contenere nella stessa molecola un gruppo acido (- COOH) ed uno basico (- NH 2 ), legati tra loro attraverso

Dettagli

LIVELLI DI STRUTTURA DELLE PROTEINE

LIVELLI DI STRUTTURA DELLE PROTEINE FUNZIONI E STRUTTURA DELLE PROTEINE PROF.SSA AUSILIA ELCE Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 LIVELLI

Dettagli

α-cheratine (α-elica) collageni e cheratine β-cheratine (conformazione β) M.N. Gadaleta

α-cheratine (α-elica) collageni e cheratine β-cheratine (conformazione β) M.N. Gadaleta Per la scoperta delle conformazioni più comuni delle catene polipeptidiche cioè α-elica e β-conformazione è stato particolarmente importante lo studio delle cheratine, proteine fibrose, e l analisi della

Dettagli

NUCLEOTIDI. Hanno la funzione di conservare, trasmettere e modulare l informazione genetica e di tradurla nella sintesi proteica.

NUCLEOTIDI. Hanno la funzione di conservare, trasmettere e modulare l informazione genetica e di tradurla nella sintesi proteica. NUCLEOTIDI a) Forma di energia utilizzata nel metabolismo cellulare (ATP, GTP) b) Entrano a far parte della struttura di cofattori enzimatici (coenzimi) e intermedi metabolici c) Costituiscono gli ACIDI

Dettagli

Struttura degli amminoacidi

Struttura degli amminoacidi AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE Le proteine sono macromolecole costituite dall unione di un grande numero di unità elementari: gli amminoacidi

Dettagli

Amminoacidi Peptidi Proteine

Amminoacidi Peptidi Proteine Amminoacidi Peptidi Proteine Amminoacidi-Peptidi-Proteine Amminoacidi: Struttura generale COOH H NH 2 Centro chiralico Stereoisomeri: composti con la stessa connessione tra gli atomi, ma con una differente

Dettagli

Strutture alternative e strutture superiori degli acidi nucleici

Strutture alternative e strutture superiori degli acidi nucleici Strutture alternative e strutture superiori degli acidi nucleici Strutture alternative La struttura a doppia elica proposta da Crick e Watson, e che abbiamo sopra descritto, è quella ottenuta mediante

Dettagli

Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Reticolo Cristallino: insieme di punti detti nodi separati da intervalli a, b, e c (reticolo di ripetizione)

Dettagli

OLIGOMERICHE Sono costituite cioè da più catene polipeptidiche PROTOMERI O SUBUNITÀ

OLIGOMERICHE Sono costituite cioè da più catene polipeptidiche PROTOMERI O SUBUNITÀ Scaricato da Le proteine con peso molecolare superiore a 50.000 sono OLIGOMERICHE Sono costituite cioè da più catene polipeptidiche PROTOMERI O SUBUNITÀ SunHope.it 1 Scaricato da Le proteine oligomeriche

Dettagli

L ACQUA. Struttura e proprieta dell acqua

L ACQUA. Struttura e proprieta dell acqua L ACQUA Struttura e proprieta dell acqua (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004) Le proprietà del ghiaccio e dell acqua liquida sono in gran parte dovute alla presenza di legami

Dettagli

Nucleotidi e Acidi Nucleici. Struttura di DNA e RNA

Nucleotidi e Acidi Nucleici. Struttura di DNA e RNA Nucleotidi e Acidi Nucleici Nucleosidi Nucleotidi Funzioni biologiche dei nucleotidi Struttura di DNA e RNA Concatenazione e appaiamento dei nucleotidi Lo scheletro degli acidi nucleici Componenti degli

Dettagli

LE PROTEINE DEL CONNETTIVO: IL COLLAGENO, L ELASTINA.

LE PROTEINE DEL CONNETTIVO: IL COLLAGENO, L ELASTINA. UNITÀ BIOTEC. DIDATTICA DI BIOCHIMICA GENERALE LE PROTEINE DEL CONNETTIVO: IL COLLAGENO, L ELASTINA. Roberto Giacominelli Stuffler IL COLLAGENO 2 IL COLLAGENO E una famiglia di proteine fibrose con ruolo

Dettagli

STRUTTURA E FUNZIONE DELLE PROTEINE

STRUTTURA E FUNZIONE DELLE PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE Le PROTEINE sono i biopolimeri maggiormente presenti all interno delle cellule, dal momento che costituiscono dal 40 al 70% del peso secco. Svolgono funzioni biologiche

Dettagli

LA CHIMICA DELLA VITA

LA CHIMICA DELLA VITA LA CHIMICA DELLA VITA L elemento presente in tutte le molecole caratteristiche degli esseri viventi è IL CARBONIO Il carbonio ha numero atomico 6 (Z=6). Ha valenza 4: ai suoi atomi mancano 4 elettroni

Dettagli

La funzione delle proteine dipende dalla loro struttura tridimensionale

La funzione delle proteine dipende dalla loro struttura tridimensionale La funzione delle proteine dipende dalla loro struttura tridimensionale La struttura dipende dal ripiegamento di particolari sequenze aminoacidiche La sequenza aminoacidica della catena polipeptidica è

Dettagli

http://digilander.libero.it/glampis64 Idrogeno, ossigeno, carbonio e azoto costituiscono il 99% delle cellule. I composti del carbonio sono chiamati composti organici o molecole organiche. I composti organici

Dettagli

La struttura delle proteine viene suddivisa in quattro livelli di organizzazione:

La struttura delle proteine viene suddivisa in quattro livelli di organizzazione: Luciferasi Emoglobina Cheratina La struttura delle proteine viene suddivisa in quattro livelli di organizzazione: Struttura primaria Struttura secondaria Struttura terziaria Struttura quaternaria Sequenza

Dettagli

Le proteine. Polimeri composto da 20 diversi aminoacidi

Le proteine. Polimeri composto da 20 diversi aminoacidi Le proteine Polimeri composto da 20 diversi aminoacidi (D. Voet, J.G. Voet, Biochemistry, 3 ed., John Wiley & Sons, 2004) PROTEINE come ATTUATORI nella cellula Trasporto elettronico Trasporto di ioni e

Dettagli

F. Fogolari Milano, Marzo

F. Fogolari Milano, Marzo Biomolecole - 1 Federico Fogolari Dipartimento Scientifico e Tecnologico Universita di Verona Ca Vignal 1, Strada Le Grazie 15 37134 Verona, Italy tel. ++39-045-8027906 fax. ++39-045-8027929 email: fogolari@sci.univr.it

Dettagli

DOGMA CENTRALE DELLA BIOLOGIA. Secondo il dogma centrale della biologia, il DNA dirige la. sintesi del RNA che a sua volta guida la sintesi delle

DOGMA CENTRALE DELLA BIOLOGIA. Secondo il dogma centrale della biologia, il DNA dirige la. sintesi del RNA che a sua volta guida la sintesi delle DOGMA CENTRALE DELLA BIOLOGIA Secondo il dogma centrale della biologia, il DNA dirige la sintesi del RNA che a sua volta guida la sintesi delle proteine. Tuttavia il flusso unidirezionale di informazioni

Dettagli

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA STRUTTURA TERZIARIA le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. Le proteine globulari dopo aver organizzato il proprio scheletro polipeptidico con

Dettagli

CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA LEZIONE PRIMA PARTE. Dott.ssa A. Fiarè

CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA LEZIONE PRIMA PARTE. Dott.ssa A. Fiarè CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA LEZIONE PRIMA PARTE Dott.ssa A. Fiarè IL DNA (ACIDO DESOSSIRIBONUCLEICO) E UN ACIDO NUCLEICO DEFINITO POLINUCLEOTIDE, IN QUANTO E UNA MOLECOLA FORMATA

Dettagli

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5 Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA Angela Chambery Lezione 5 Il legame peptidico Concetti chiave: In un polipeptide gli amminoacidi sono uniti dai legami peptidici. Il legame

Dettagli

COMPORTAMENTO ANFOTERO DEGLI AA

COMPORTAMENTO ANFOTERO DEGLI AA Proprietà acido-basiche degli aminoacidi FORMA NON IONICA Non esiste a nessun valore di ph FORMA ZWITTERIONICA È la forma prevalente a ph 7 COMPORTAMENTO ANFOTERO DEGLI AA CARICA NETTA +1 CARICA NETTA

Dettagli

Legami chimici. Covalente. Legami deboli

Legami chimici. Covalente. Legami deboli Legami chimici Covalente Legami deboli Legame fosfodiesterico Legami deboli Legami idrogeno Interazioni idrofobiche Attrazioni di Van der Waals Legami ionici Studio delle macromolecole Lipidi

Dettagli

La battaglia contro l influenza

La battaglia contro l influenza La battaglia contro l influenza Il contributo della biologia strutturale allo sviluppo di inibitori della sialidasi Prof. Elena Luraschi Virus dell influenza I virus dell influenza sono virus a RNA, con

Dettagli

02/12/2014. Tutti gli esseri viventi sono composti da cellule LA CELLULA E L UNITA STRUTTURALE E FUNZIONALE DEGLI ORGANISMI VIVENTI

02/12/2014. Tutti gli esseri viventi sono composti da cellule LA CELLULA E L UNITA STRUTTURALE E FUNZIONALE DEGLI ORGANISMI VIVENTI Tutti gli esseri viventi sono composti da cellule Eubatteri Procarioti unicellulari Archebatteri LA CELLULA E L UNITA STRUTTURALE E FUNZIONALE DEGLI ORGANISMI VIVENTI -Autoconservazione mantenimento della

Dettagli

10/03/ Proteine di membrana

10/03/ Proteine di membrana Proteine di membrana http://www.nfsdsystems.com/w3bio315/; http://www.ncbi.nlm.nih.gov/books/nbk28193/figure/a105/?report=objectonly Proteine di membrana 1 I domini transmembrana delle proteine integrali

Dettagli

ACIDI NUCLEICI Il dogma centrale della biologia

ACIDI NUCLEICI Il dogma centrale della biologia ACIDI NUCLEICI Il dogma centrale della biologia DNA RNA PROTEINE DNA POLINUCLEOTIDI NUCLEOTIDI NUCLEOSIDI ZUCCHERI ACIDO FOSFORICO BASI AZOTATE Ribosio 2 deossiribosio PURINE PIRIMIDINE Adenina Guanina

Dettagli

GLI ELEMENTI STRUTTURALI DELLE PROTEINE

GLI ELEMENTI STRUTTURALI DELLE PROTEINE CAPITOLO 3 GLI ELEMENTI STRUTTURALI DELLE PROTEINE Gli elementi di struttura secondaria si possono ricondurre sostanzialmente a tre diverse tipologie (Fig. 1): - α-elica - filamenti β - anse o ripiegamenti

Dettagli

CROMATINA ISTONI. Proteine relativamente piccole, con forte carica positiva per la presenza degli aminoacidi lisina e arginina

CROMATINA ISTONI. Proteine relativamente piccole, con forte carica positiva per la presenza degli aminoacidi lisina e arginina CROMATINA Complesso molecolare formato da DNA, istoni e proteine non istoniche ISTONI Proteine relativamente piccole, con forte carica positiva per la presenza degli aminoacidi lisina e arginina Si conoscono

Dettagli

Adenina Adenine H H N N N N N Z

Adenina Adenine H H N N N N N Z Adenina Adenine Z Guanina O GUAIA Z Citosina CITOSIA Z O Timina Thymine C3 O Z O Siti di attacco elettrofilo 3 Thymine Basi appaiate: Timina-Adenina Adenine C 3 O O 3.ooA Basi appaiate: Citosina-Guanina

Dettagli