MATEMATIKA OLASZ NYELVEN

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATIKA OLASZ NYELVEN"

Transcript

1 Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

2 Indiczioni importnti Richieste di form: 1. L insegnnte deve correggere il compito con un penn di colore differente d quello usto dllo studente. Deve indicre gli errori in bse ll propri esperienz.. I punti devono essere scritti nell second csell grigi, nell prim è segnto il punteggio mssimo. 3. Nel cso di un soluzione perfett è sufficiente scrivere il punteggio mssimo nell csell degut. 4. Nel cso di un soluzione sbglit o incomplet, nche i punti przili per le prti vlutbili devono essere scritti sul compito. 5. Le prti scritte mtit, oltre i disegni, non verrnno vlutte. Richieste di contenuto: 1. Alcuni esercizi possono vere soluzioni diverse le cui vlutzioni sono indicte nell tvol. Nel cso di soluzioni diverse dlle quelle indicte, l insegnnte deve vlutre in bse lle prti corrispondenti dell tvol.. I punti dell tvol possono essere suddivisi solo in punti interi. 3. Se lo svolgimento e il risultto finle sono evidentemente giusti, meritno il punteggio mssimo nche se l soluzione è meno dettglit di quell dell tvol. 4. Non vle punto il pssggio in cui si commette un errore di clcolo. Per i successivi pssi, in ccordo con l soluzione giust si possono dre punti przili corrispondenti, ptto che in conseguenz di un clcolo sbglito il problem non si cmbito. 5. In un unità logic (è indict con line doppi nell tvol) nenche i pssggi formlmente giusti meritno punti se seguono un rgionmento sbglito. Se lo studente pplic un risultto przile, derivnte d un rgionmento errto, in modo giusto, come il dto di prtenz dell unità logic seguente, merit il punteggio mssimo di quest unità, ptto che in conseguenz dell errore il problem non si cmbito. 6. L soluzione è considert complet nche se mncno un notzione o l unità di misur indict fr prentesi nell tvol di soluzione. 7. Tr gli svolgimenti giusti, si vlut un sol soluzione, quell che è indict dllo studente. 8. L insegnnte non può dre punti in premio.(punti più lti di quelli determinti.) 9. L insegnnte non può sottrrre punti per i pssggi przili errti non utilizzti nell soluzione. 10. Dei tre esercizi dell prte II/B possono esserne vlutti solo due. Lo studente probbilmente h segnto il numero dell esercizio l cui vlutzione non verrà ggiunt ll somm dei punti. Ovvimente l esercizio soprddetto non v corretto. Se l scelt dello studente non è univoc, llor l ultimo esercizio (numero18 ) non srà vlutto. írásbeli vizsg 061 / október 5.

3 I. 1. A B = {5; 7; 9} Seprtmente A e B non vlgono punti.. C = Per l rispost giust di 1 ottiene. C 3. A = 1, B = A > B 4. Il numero delle plline blu: 9. Il numero delle plline rosse: 11. il numero dei csi fvorevoli P = il numero dei csi possibili 11 = = 0, punti Il risultto giusto vle 3 punti. Vlgono i 3 punti nche se l rispost è l seguente: Il rpporto delle plline rosse è 55%, llor l probbilitá è 0, ) fls b) ver c) fls 6. L insieme dei numeri reli positivi. Anche l rispost x > 0 vle. írásbeli vizsg / október 5.

4 S n 5 = n * 60 S 5 = 5 S = * Se non scrive l formul, m l pplic bene ottiene = 60 Ottiene i nche se dà l rispost elencndo i numeri. Se elenc lmeno 30 numeri, m non tutti, può ricevere l mssimo. 9. π x 1 = 6 5π x = 6 Se scrive nche il periodo, può ricevere 1 solo punto. Se d l rispost in grdi, può ricevere l mssimo. 10. c = b; c = (3i j) ( i + 5j) c = 6i 4j + i 5j c = 7i 9j 3 punti Il risultto giusto vle 3 punti. írásbeli vizsg / október 5.

5 x Si x il quinto numero, = 7. 5 x = 5 punto 1. Il vlore minimo dell funzione è 1, negli estremi dell intervllo dto i vlori dell funzione sono 5 e 10. Il codominio dell funzione è l intervllo [1; 10]. * * 3 punti * Se il codominio è giusto, ottiene 1-1 punti. Il codominio giusto dto in qulsisi form vle 3 punti. írásbeli vizsg / október 5.

6 II./A 13. ) L funzione esponenzile (in bse 5) è sempre crescente x < 13 - x x < 5 l soluzione dell equzione: {1; ; 3; 4} 13. b) 0 4 punti x * 3 x 3 = 3 L funzione esponenzile (in bse 5) è sempre crescente, perciò x = x 3. 4x = x 6x + 9 x 10x + 9 = 0 x 1 = 1 x = 9 Az x = 1 non è soluzione dell equzione L soluzione dell equzione nell insieme dei numeri reli è x = 9. 8 punti Se elenc i quttro numeri dell soluzione giust, ottiene, se si riferisce l ftto che non ci sono ltre soluzioni, riceve ltri. Vle il punto nche se non riferisce ll monotonità. *Se dà correttmente l insieme delle soluzioni in bse ll esme del codominio, oppure con sostituzione, punteggio totle. riceve 14. ) Nell ul ci sono x tvoli e il numero dell clsse è y. x + 8 = y 3 x 7 = y x = 15 è y = 38 Controllo Nell ul ci sono 15 tvoli e il numero degli studenti è punti Se il significto di x ed y risult dll equzione o dl sistem di equzioni, ottiene il punto. írásbeli vizsg / október 5.

7 14. b) Il numero delle dte possibili: , Allor possono essere formte 480 dte. 14. c) Il numero delle dte reli in un nno non bisestile è 365, Ogni dt può essere formt con l stess probbilità*. 365 Cosi l probbilità di un dt rele è (= 0, ). * Nel cso di un rispost giust i vlgono nche se lo studente non scrive il concetto soprindicto. 15. ) α. β m e Disegno ccurto che esprime l comprensione del rpporto tr il qudrto e il rombo. (T qudrto = és T rombo = m ) = m 1 L ltezz del rombo: m = 6,5 (cm) * 3 punti 5 punti * per l soluzione giust vle il punto totle nche se il disegno mnc. írásbeli vizsg / október 5.

8 15. b) m sin α = (dove α è un ngolo cuto) α = 30 =150 β 15. c) D qulsisi tringolo rettngolo per un rpporto deguto che contiene l digonle piú lung, p.es e cos15 =. 13 e = 13 cos 15 e = 5,11 (cm) 4 punti Per ltre soluzioni giuste (per es. ppliczione del teorem del coseno) vle il punto mssimo. írásbeli vizsg / október 5.

9 16. ) II./B I risultti del primo turno Domnd 1 d d 3 d 4 Domn- Domn- Domn- L rispost di Anikó giust sbglit giust sbglit Il numero delle risposte giuste Il punteggio rggiunto d Anikó Ogni dto giusto vle b) L colonn dell second domnd si modific cosí: giust, 11, 9; Anikó h ricevuto 9 punti. Il punteggio rggiunto d Anikó srà 7, che è il 150% del punteggio originle. llor il punteggio srebbe umentto del 50%. 16. c) Prim soluzione: Anikó può rispondere lle domnde in 81 modi diversi. 4 punti L rispost può essere dedott in modo che l umento di 9 punti è il 50% del punteggio originle. In un solo cso l su rispost srà giust, perciò l 1 probbilità cerct è:. 81 Second soluzione: L probbilità dell rispost giust è 3 1 per ogni domnd. Le risposte sono indipendenti l un dll ltr, perciò l probbilità cerct è: = d) Se risultno x risposte giuste, llor i prtecipnti che rispondono esttmente ricevono 0 x punti test. Il punteggio rggiunto totle: x(0 x). írásbeli vizsg / október 5.

10 Voglimo trovre il mssimo dell funzione x 0x x nell insieme dei numeri interi positivi minori di 0. Il luogo del mssimo è ( si con il metodo grfico, 3 punti si con l trsformzione in un qudrto di un binomio, si con il riferimento l rpporto tr l medi ritmetic e l medi geometric dei numeri, si con l elenco dei csi possibili) x = 10. L somm dei punti dei gioctori sr mssimle se 10 gioctori rispondono bene. 7 punti 17. ) Il numero degli ordini delle lettere è: 5! I nipotini possono ricevere le lettere in 10 sequenze. 17. b) Ognuno dei cinque nipotini può essere l ultimo con l stess probbilità. Il numero dei csi fvorevoli è 4!, il numero dei csi possibili è 5!. Anche questo modello vle. Allor l probbilità cerct è : c) Le lunghezze delle prti dell scirp ftte giornlmente formno un successione geometric. Nell successione geometric 1 = 8, q= 1, L lunghezz totle dell scirp è l somm dei primi n termini dell successione. n q 1 S n = 1 q 1 n 1, 1 00 = 8 0, = 1, n lg 6 n = lg1, n 9,83 L scirp srà pront il decimo giorno. 11 punti Il punto vle nche se il concetto risult soltnto dll soluzione. I vlgono nche se quest ffermzione risult soltnto dll ppliczione delle formule. I 3 punti vlgono nche se trov il vlore di n con ripetizione dell moltipliczione. írásbeli vizsg / október 5.

11 18. ) C φ 5 5 K A α Disegno ccurto, indicndo nche i dti. Se l ngolo di pertur del cono è φ, llor sin ϕ = 0 = 0, D cui φ = 45,4 4 punti 18. b) m = = 48 r π m 400 π 48 V = = 3 3 V 0106,19 (cm 3 ). 0 F 0 ρ B írásbeli vizsg / október 5.

12 18. c) Il rggio dell sfer inscritt nel cono è identico l rggio dell circonferenz inscritt nel tringolo isoscele. L ngolo ll bse del tringolo è α = 67,38. ρ tg 33,69 = 0 I vlgono nche se il concetto risult soltnto dl clcolo o dl disegno. ρ = 13,33 (cm) L misur dell superficie dell sfer: A 34,01 (cm ) 18. d) L lunghezz dell rco del settore circolre: i = rπ, 6 punti i = 0 π 15,66 (cm) i R T superficie lterle = = 0 π 6 T superficie lterle 367,6 (cm ) 4 punti Il punto vle nche se lo studente rrotond i numeri: ρ = 13,33 A 3,90(cm ). vle nche se lo studente clcol con due cifre decimli: 367,16 (cm ), írásbeli vizsg / október 5.

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indicazioni

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint 0911 ÉRETTSÉGI VIZSGA 011 május MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Indicazioni

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Dettagli

MATEMATIKA OLASZ NYELVEN MATEMATICA

MATEMATIKA OLASZ NYELVEN MATEMATICA Matematika olasz nyelven középszint 05 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA OLASZ NYELVEN MATEMATICA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA ESAME SCRITTO DI MATURITÁ LIVELLO INTERMEDIO JAVÍTÁSI-ÉRTÉKELÉSI

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint ÉRETTSÉGI VIZSGA 0. május 8. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Indicazioni importanti

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgebric di monomi. Esempio: b ; y y ; b c sono polinomi. I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche

Dettagli

Dr`avni izpitni center MATEMATICA. Prova d'esame. Giovedì, 1 giugno 2006 / 120 minuti senza interruzioni

Dr`avni izpitni center MATEMATICA. Prova d'esame. Giovedì, 1 giugno 2006 / 120 minuti senza interruzioni Codice del cndidto: Dr`vni izpitni center *P06C0I* PRIMA SESSIONE D'ESAME MATEMATICA Prov d'esme Giovedì, giugno 006 / 0 minuti senz interruzioni Requisiti consentiti: penn stilogrfic o penn sfer, mtit,

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Indicazioni

Dettagli

MATEMATIKA OLASZ NYELVEN MATEMATICA

MATEMATIKA OLASZ NYELVEN MATEMATICA Középszint Matematika olasz nyelven 0631 ÉRETTSÉGI VIZSGA 006. október 5. MATEMATIKA OLASZ NYELVEN MATEMATICA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA ESAME SCRITTO DI MATURITÁ LIVELLO INTERMEDIO JAVÍTÁSI-ÉRTÉKELÉSI

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgeric di monomi. ; c sono polinomi. ; I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche essere considerto

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint 131 É RETTSÉGI VIZSGA 013. október 15. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Indicazioni

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Indicazioni

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

Dr`avni izpitni center MATEMATICA. Prova d'esame. Sabato 28 agosto 2004 / 120 minuti senza interruzioni

Dr`avni izpitni center MATEMATICA. Prova d'esame. Sabato 28 agosto 2004 / 120 minuti senza interruzioni Codice del cndidto: Dr`vni izpitni center *P04C10111I* II SESSIONE D'ESAME MATEMATICA Prov d'esme Sbto 8 gosto 004 / 10 minuti senz interruzioni Requisiti consentiti: penn stilogrfic o penn sfer, mtit,

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A Isi E. Fermi Lucc Progrmm di mtemtic Prof.ss Tcchi Luci nno scolstico 7/8 clsse I Gli insiemi numerici i numeri nturli i numeri interi i numeri rzionli ssoluti i reltivi. Potenze nche con esponente intero

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Unità Didattica N 02. I concetti fondamentali dell aritmetica

Unità Didattica N 02. I concetti fondamentali dell aritmetica 1 Unità Didttic N 0 I concetti fondmentli dell ritmetic 01) Il concetto di potenz 0) Proprietà delle potenze 0) L nozione di rdice ritmetic 0) Multipli e divisori di un numero 05) Criteri di divisibilità

Dettagli

Dr`avni izpitni center MATEMATICA. Prova d'esame. Lunedì, 28 agosto 2006 / 120 minuti senza interruzioni

Dr`avni izpitni center MATEMATICA. Prova d'esame. Lunedì, 28 agosto 2006 / 120 minuti senza interruzioni Codice del cndidto: Dr`vni izpitni center *P06C0I* SECONDA SESSIONE D'ESAME MATEMATICA Prov d'esme Lunedì, 8 gosto 006 / 0 minuti senz interruzioni Requisiti consentiti: penn stilogrfic o penn sfer, mtit,

Dettagli

I.S.I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I.S.I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : B Insegnnte : Ghilrducci Pol I.S.I. E. Fermi - Lucc Istituto Tecnico settore Tecnologico Equzioni e disequzioni di primo grdo : Equzioni intere frtte e letterli

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

). Poiché tale funzione è una parabola, il suo

). Poiché tale funzione è una parabola, il suo PROBLEMA ) Il rggio dell circonferenz di centro B vri tr i vlori: x b) ( x x ) ( PQCR) = ( ABC) ( APR) ( BPQ) = ( x) x = + 8 6 8 I vlori di x che rendono minim o mssim l funzione rendono, rispettivmente,

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H Istituto Professionle di Stto per l Industri e l Artiginto Gincrlo Vlluri Clsse I H ALUNNO CLASSE Ulteriore ripsso e recupero nche nei siti www.vlluricrpi.it (dip. mtemtic recupero). In vcnz si può trovre

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Matematika olasz nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Indicazioni

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2017/18. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2017/18. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: 7/8 Istituto tecnico settore tecnologico. Clsse II H Progrmm di mtemtic Equioni di primo grdo prmetriche. Disequioni di primo grdo sistemi di disequioni

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero Polo Scientifico Tecnico Professionle Settore Tecnico E.Fermi Progrmm di mtemtic clsse II D e indicioni per il recupero Anno scolstico / Frioni lgeriche e reltive operioni. Le funioni polinomili. Il Teorem

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Il calcolo letterale

Il calcolo letterale Appunti di Mtemtic Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Dr`avni izpitni center MATEMATICA. Prova d'esame. Lunedì 31 maggio 2004 / 120 minuti senza interruzioni

Dr`avni izpitni center MATEMATICA. Prova d'esame. Lunedì 31 maggio 2004 / 120 minuti senza interruzioni Codice del cndidto: Dr`vni izpitni center *P041C10111I* I SESSIONE D'ESAME MATEMATICA Prov d'esme Lunedì 31 mggio 004 / 10 minuti senz interruzioni Requisiti consentiti: penn stilogrfic o penn sfer, mtit,

Dettagli

Calendario Boreale (EUROPA) 2014 QUESITO 1

Calendario Boreale (EUROPA) 2014 QUESITO 1 www.mtefili.it Clendrio Borele (EUROPA) 204 QUESITO Si determini, se esiste, un cono circolre retto tle che il suo volume e l su superficie totle bbino lo stesso vlore numerico. Indichimo con r il rggio

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

Appunti di Matematica 4 - Triangoli qualsiasi - Triangoli qualsiasi

Appunti di Matematica 4 - Triangoli qualsiasi - Triangoli qualsiasi Tringoli qulsisi Considerimo un tringolo qulsisi ABC e dottimo l seguente notzione: nel vertice A l ngolo è α, nel vertice B β, nel vertice C γ e indichimo con il lto opposto d A, con b quello opposto

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lucc Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : II C Insegnnte : Podestà Tiin Divisione tr due polinomi.regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA

ISTITUTO TECNICO INDUSTRIALE E. FERMI LUCCA ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA Anno Scolstico / Progrmm di MATEMATICA svolto dll clsse second se. A INSEGNANTE: MUSUMECI LUCIANA Divisione tr due polinomi.regol di Ruffini. Teorem del resto.

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI I ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico -7 MATEMATICA Clsse E Istituto tecnico tecnologico Progrmm svolto Insegnnte : Ptrii Consni ALGEBRA: Regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika olasz nyelven középszint 1613 ÉRETTSÉGI VIZSGA 017. május 9. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Indicazioni importanti

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Dr`avni izpitni center MATEMATICA. Prova d'esame. Giovedì 3 febbraio 2005 / 120 minuti senza interruzioni

Dr`avni izpitni center MATEMATICA. Prova d'esame. Giovedì 3 febbraio 2005 / 120 minuti senza interruzioni Codice del cndidto: Dr`vni izpitni center *P043C0I* III SESSIONE D'ESAME MATEMATICA Prov d'esme Giovedì 3 febbrio 005 / 0 minuti senz interruzioni Requisiti consentiti: penn stilogrfic o penn sfer, mtit,

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

a. Sulla base dei dati riportati nel grafico indica se ciascuna delle seguenti affermazioni è vera (V) o falsa (F).

a. Sulla base dei dati riportati nel grafico indica se ciascuna delle seguenti affermazioni è vera (V) o falsa (F). scicolo 3 D. Il polinomio x 3 8 è divisibile per A. x 2 B. x + 8 C. x 4 D. x + 4 D2. Osserv il grfico che riport lcuni dti rccolti dll stzione meteorologic di Udine.. Sull bse dei dti riportti nel grfico

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: /7 Progrmm di mtemtic Istituto tecnico settore tecnologico. Clsse II H Disequioni di primo grdo sistemi di disequioni e disequioni frtte. Segno

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Compiti delle vacanze di matematica CLASSE 4BS a.s. 2014/2015

Compiti delle vacanze di matematica CLASSE 4BS a.s. 2014/2015 Compiti delle vcnze di mtemtic CLASSE 4BS.s. 014/01 - PER GLI STUDENTI CON ESAME A SETTEMBRE ( e consiglito chi h vuto difficoltà durnte l nno scolstico) : Studire gli rgomenti ffrontti durnte l nno svolgere

Dettagli

APOTEMA AREA POLIGONO REGOLARE LUNGHEZZA CIRCONFERENZA LUNGHEZZA ARCO CIRCONFERENZA AREA CERCHIO AREA SETTORE CIRCOLARE AREA CORONA CIRCOLARE

APOTEMA AREA POLIGONO REGOLARE LUNGHEZZA CIRCONFERENZA LUNGHEZZA ARCO CIRCONFERENZA AREA CERCHIO AREA SETTORE CIRCOLARE AREA CORONA CIRCOLARE CERCHIO E CIRCONFERENZ CIRCONFERENZ CERCHIO POSIZIONE RETT RISPETTO CIRCONFERENZ POSIZIONE DI DUE CIRCONFERENZE NGOLI L CENTRO NGOLI LL CIRCONFERENZ SETTORE CIRCOLRE PROPRIET CORDE E RCHI POLIGONI INSCRITTI

Dettagli

Istituto Tecnico Industriale E.Fermi Programma di matematica classe II I Anno scolastico 2017/2018

Istituto Tecnico Industriale E.Fermi Programma di matematica classe II I Anno scolastico 2017/2018 Istituto Tecnico Industrile E.Fermi Progrmm di mtemtic clsse II I Anno scolstico / Insegnnte : Mrco Cmi Divisione tr due polinomi : Regol di Ruffini. Teorem del resto. Scomposiione di un polinomio con

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2016/2017 Programma di MATEMATICA classe I Sez. H Insegnante:Bianchi Dario

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2016/2017 Programma di MATEMATICA classe I Sez. H Insegnante:Bianchi Dario ISTITUTO TECNICO INDUSTIALE "E. Fermi" LUCCA Anno Scolstico 0/0 Progrmm di MATEMATICA clsse I Sez. H InsegnnteBinchi Drio Gli insiemi ppresentzioni di un insieme digrmmi di Eulero-Venn, tulre, trmite proprietà

Dettagli

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018 Isi E.Fermi Progrmm di mtemtic clsse II L Prof.ss Tcchi Luci Anno scolstico / Ripsso: Polinomi ed operioni con essi. Prodotti notevoli. Scomposiioni. Frioni lgeriche. Equioni di primo grdo intere letterli

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/2017)

SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/2017) SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/017) 1. INSONNIA [04] L operzione richiest equivle sommre 01 volte 017 messo in colonn e spostto sempre di un csell come in figur. Nell prte finle del numero

Dettagli

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i!

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i! Esercitzioni di Sttistic Mtemtic A Lezione 6 Appliczioni dell legge dei grndi numeri e dell formul di Chebicev 1.1) Si {X i } i N un successione di vribili letorie i.i.d. (indipendenti ed identicmente

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli