La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria."

Transcript

1 La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli I questo motoiduttoe gli assi soo paalleli.

2 La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli, icideti La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli, icideti o sghembi. Ruote elicoidali ad assi sghembi

3 La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli, icideti o sghembi. Vite seza fie e uota elicoidale La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli, icideti o sghembi. Coppia coica Nelle coppie coiche gli assi delle due uote soo icideti. Quado ciò o accade e gli assi soo sghembi la coppia si dice ipoide Coppia ipoide 3

4 Coppia ipoide. La tasmissioe di poteza ta albei co uote di fizioe o è utilizzata peché ichiedeebbe eomi foze di cotatto a fote di modeste coppie tasmesse M t N f f coefficiete di attito Agolo d attito Ipotizzado u coefficiete di attito di,5 (acciaio su acciaio), la compoete tageziale, utile alla tasmissioe della coppia, è cica u settimo di quella adiale. oze di cotatto t oze tageziali 4

5 Coviee petato utilizzae dei pofili coiugati che possao tasmettee coppia attaveso foze omali alle supefici i cotatto e o tageziali t è la compoete utile della foza agete sulla supeficie i cotatto La coppia tasmessa vale: M t t ω ω α Pe valoi di α o elevati la compoete utile t è di poco ifeioe alla foza che sollecita la supeficie i cotatto. La tasmissioe pe igaaggi cosete di tasfeie elevate poteze co alto edimeto ed ampia gamma di velocità, co costuzioi compatte ed affidabili. Pe u agolo caatteistico di, la compoete tageziale è cica il tiplo di quella adiale. t M t α agolo caatteistico Il movimeto può essee tasfeito ta assi paalleli, cocoeti o sghembi, co appoto di tasmissioe fisso o vaiabile i modo discotio o, ache, i modo ciclico. 5

6 Le uote detate cilidiche possoo essee ache o cicolai pe ealizzae u appoto di tasmissioe vaiabile i modo ciclico Negli igaaggi la tasmissioe del moto avviee ta due pofili coiugati che si scambiao foze omali, a meo di piccole compoeti di attito. Pofilo cicloidale: otteuto facedo otolae ua cicofeeza sul cechio base. La sezioe del dete è otteuta co due achi di pofili cicloidali accodati i testa da u aco di cechio 6

7 Negli igaaggi la tasmissioe del moto avviee ta due pofili coiugati che si scambiao foze omali, a meo di piccole compoeti di attito. Pofilo cicloidale: otteuto facedo otolae ua cicofeeza sul cechio base. Ua classica applicazioe dei pofili cicloidali soo i compessoi volumetici Root Negli igaaggi la tasmissioe del moto avviee ta due pofili coiugati che si scambiao foze omali, a meo di piccole compoeti di attito. Pofilo ad evolvete: otteuto facedo otolae ua etta sul cechio base. 7

8 Negli igaaggi la tasmissioe del moto avviee ta due pofili coiugati che si scambiao foze omali, a meo di piccole compoeti di attito. Cicofeeze base Pofilo ad evolvete: otteuto facedo otolae ua etta sul cechio base. Retta d azioe Negli igaaggi la tasmissioe del moto avviee ta due pofili coiugati che si scambiao foze omali, a meo di piccole compoeti di attito. Cicofeeze di tocatua M A La Il distaza appoto MN di è tasmissioe usualmete idicata co il vale simbolo λ ω τ ω Cicofeeza pimitiva Cicofeeza base B N b 8

9 Negli igaaggi la tasmissioe del moto avviee ta due pofili coiugati che si scambiao foze omali, a meo di piccole compoeti di attito. Cicofeeze di tocatua M A La distaza MN è usualmete idicata co il simbolo λ N Cicofeeza pimitiva Cicofeeza base B b Negli igaaggi la tasmissioe del moto avviee ta due pofili coiugati che si scambiao foze omali, a meo di piccole compoeti di attito. A Cicofeeze Pe otteee le di tocatua detatue itee si utilizzao acoa gli stessi pofili coiugati ma il mateiale occupa la zoa che el caso pecedete costituiva il vao ta i deti Cicofeeza pimitiva Cicofeeza base B N M b 9

10 Nomeclatua z umeo di deti d diameto pimitivo Passo p distaza ta due pofili omologhi misuata lugo la cicofeeza pimitiva Modulo m m p/π m d/z Popozioameto modulae π p z Addedum h a m Dededum h f.5 m Spessoe del dete Vao ta i deti Passo pimitivo Supeficie di testa Laghezza del dete Cilido di testa iaco di testa iaco di piede Supeficie di fodo Addedum Dededum Cilido di piede Cechio Base Cechio Pimitivo Passo base Nomeclatua z umeo di deti d diameto pimitivo Passo p distaza ta due pofili omologhi misuata lugo la cicofeeza pimitiva Modulo m m p/π m d/z π p z Passo base p b b cosθ distaza ta due pofili omologhi misuata sul piao base ovveo lugo la etta d azioe p b p cosθ π b pb z

11 Nomeclatua z umeo di deti d diameto pimitivo Passo p π z Modulo m m p/π m d/z Passo base p b π b z cosθ Popozioameto modulae Addedum h a m Dededum h f.5 m Altezza del dete h.5 m b p b p cosθ aggio pimitivo θ agolo di pessioe Gado di icopimeto (detto ache appoto di codotta) Γ λ p b Raggio di tocatua estea a + h a Raggio di tocatua itea f h f z z Iteasse di fuzioameto i + m ω Rappoto di tasmissioe τ ω M p b λ N Peché ci sia cotiuità del moto deve essee: Γ Nomeclatua z umeo di deti d diameto pimitivo Passo p π z Modulo m m p/π m d/z Passo base p b π b z cosθ Popozioameto modulae Addedum h a m Dededum h f.5 m Altezza del dete h.5 m Raggio di tocatua estea a + h a Raggio di tocatua itea f h f z z Iteasse di fuzioameto i + m ω Rappoto di tasmissioe τ ω b p b p cosθ Codizioe di o itefeeza z aggio pimitivo θ agolo di pessioe Gado di icopimeto (detto ache appoto di codotta) ( se θτ ( τ + ) + + ) se θ ( τ + ) Γ Nella codizioe di igaameto co la detiea: τ / si ha: z se θ 7 pe θ λ p b

12 I vataggi dei pofili ad evolvete soo molti, a comiciae dal modo i cui possoo essee costuiti. Il modo appaetemete più semplice di ealizzae ua uota detata è quello di aspotae il mateiale pe ceae il cavo ta i deti patedo da u todo il cui diameto sia quello di tocatua estea della detatua. I questo modo peò è ecessaio avee u utesile cofomato i modo paticolae che saà utilizzabile solo pe costuie uote co u detemiato modulo e diameto. U gade vataggio della pofilatua ad evolvete di cechio cosiste ella possibilià di ealizzae i deti pe iviluppo, ovveo co u movimeto mutuo ta utesile e uota simile a quello di igaameto. v/ω ω Detiea: uota di aggio ifiito v moto di taglio

13 U gade vataggio della pofilatua ad evolvete di cechio cosiste ella possibilià di ealizzae i deti pe iviluppo, ovveo co u movimeto mutuo ta utesile e uota simile a quello di igaameto. Co ua detiea utesile di modulo m è possibile costuie qualsiasi uota co tale modulo, idipedetemete dal diameto e dal umeo di deti. Liea dei dati: piei vuoti Modulo m p/π Passo p h a.5 m h f. m Il popozioameto modulae dell utesile è iveso, pe quel che iguada addedum e dededum, ispetto alla detatua omale. U gade vataggio della pofilatua ad evolvete di cechio cosiste ella possibilià di ealizzae i deti pe iviluppo, ovveo co u movimeto mutuo ta utesile e uota simile a quello di igaameto. Co ua detiea utesile di modulo m è possibile costuie qualsiasi uota co tale modulo, idipedetemete dal diameto e dal umeo di deti. ω v h a.5 m h f. m v/ω Il diameto della pimitiva è stabilito dal appoto ta la velocità di avazameto dell utesile e la velocità di otazioe della uota da costuie 3

14 Il appoto ta la otazioe ω della uota costueda e l avazameto v della detiea utesile è stabilito dalla catea ciematica della macchia detatice. v d ω v ω Imposto dalla ciematica Schema del ciematismo di ua macchia detatice ω v U gade vataggio della pofilatua ad evolvete di cechio cosiste ella possibilià di ealizzae i deti pe iviluppo, ovveo co u movimeto mutuo ta utesile e uota simile a quello di igaameto. Co ua detiea utesile di modulo m è possibile costuie qualsiasi uota co tale modulo, idipedetemete dal diameto e dal umeo di deti. ω v h a.5 m h f. m Se, mateedo costate il appoto v/ω, la uota costueda viee spostata i diezioe omale all utesile, allotaadola o avviciadola ad esso, la geometia della detatua e isulta alteata ma le pimitiva imae ivaiata. 4

15 U gade vataggio della pofilatua ad evolvete di cechio cosiste ella possibilià di ealizzae i deti pe iviluppo, ovveo co u movimeto mutuo ta utesile e uota simile a quello di igaameto. Co ua detiea utesile di modulo m è possibile costuie qualsiasi uota co tale modulo, idipedetemete dal diameto e dal umeo di deti. Il diameto di tocatua estea va adeguato alle dimesioi modificate ω s s spostameto x s/m spostameto elativo h a.5 m v h f. m Se, mateedo costate il appoto v/ω, la uota costueda viee spostata i diezioe omale all utesile, allotaadola o avviciadola ad esso, la geometia della detatua e isulta alteata ma le pimitiva imae ivaiata. Taglio pe geeazioe di uote cilidiche co pofili ad evolvete di cechio. β Pe ealizzae ua uota a detatua elicoidale può essee acoa utilizzato la stessa detiea utesile: è sufficiete icliala dell agolo β Taglio pe geeazioe 5

16 U gade vataggio della pofilatua ad evolvete di cechio cosiste ella possibilià di ealizzae i deti pe iviluppo, ovveo co u movimeto mutuo ta utesile e uota simile a quello di igaameto. Taglio di ua uota cilidica a deti elicoidali La detatua viee acoa ceata pe iviluppo ma la detiea è icliata dell agolo β. Taglio pe geeazioe di uote cilidiche co pofili ad evolvete di cechio. 6

17 Taglio pe geeazioe di uote cilidiche co pofili ad evolvete di cechio. Il taglio è oggi geealmete eseguito co u utesile otate detto ceatoe. I fiachi dei deti del ceatoe soo equivaleti ad ua detiea utesile. Moto di taglio del ceatoe 7

18 Ad ogi valoe del modulo co il quale si vuol costuie ua uota detata coispode u utesile. È evidete, quidi, che coviee omalizzae i valoi del modulo. Dimesioi omalizzate i mm Nella tabella soo ipotati i valoi omalizzati ta e mm I coloi cotaddistiguoo i valoi cosigliati, scosigliati o fotemete scosigliati Il pogetto o la veifica di ua coppia di uote detate, dal puto di vista della esisteza stuttuale, si basa sulla valutazioe delle possibili avaie. Quelle che più fequetemete si veificao ell esecizio delle tasmissioi di poteza pe igaaggi soo: ) ) L eosioe supeficiale pe eccessiva pessioe di cotatto ta i fiachi dei deti: il cosiddetto feomeo del pittig. La ottua a fatica pe flessioe del dete. 3) L eccessivo suiscaldameto della zoa di cotatto ta i deti a causa di isufficiete lubificazioe che compota micofusioi locali, co pofoda alteazioe della geometia delle supefici coiugate. 8

19 Dimesioameto i base alla pessioe di cotatto Il pogetto cosiste el calcolae le dimesioi delle uote i modo da limitae la pessioe di cotatto ta i fiachi dei deti ad u valoe ammissibile i base alle caatteistiche del mateiale ed alla duata pevista. Dimesioameto i base alla pessioe di cotatto Pe la valutazioe della pessioe di cotatto si utilizza la teoia di etz. Il compotameto dei fiachi dei deti è appesetato, i modo appossimato, dai due cilidi osculatoi che hao, ella zoa di cotatto, la stessa cuvatua dei pofili coiugati. 9

20 Dimesioameto i base alla pessioe di cotatto Igaaggi cilidici a deti ditti Dimesioameto i base alla pessioe di cotatto deti ditti I base alla teoia di etz la massima tesioe di cotatto che si geea ta due cilidi di lughezza idefiita è data dalla elazioe: q R + R π R R + R dove q L R ed R soo i aggi dei cilidi a cotatto L E ν è il modulo di elasticità a cotazioe lateale impedita R

21 Dimesioameto i base alla pessioe di cotatto deti ditti I base alla teoia di etz la massima tesioe di cotatto che si geea ta due cilidi di lughezza idefiita è data dalla elazioe: q L q R + R π R R K E π E + E + I moduli di elasticità vegoo agguppati i u uica quatità: R R L Se il mateiale delle due uote è lo stesso: E E K E π Dimesioameto i base alla pessioe di cotatto deti ditti Valutazioe dei aggi R e R : Lughezza del segmeto AB A B seϑ + seϑ se ϑ ϑ B b ϑ Cicofeeze base Cicofeeze pimitive b A se ϑ

22 Dimesioameto i base alla pessioe di cotatto deti ditti Calcolo del aggio elativo R + R R R + AB seϑ x x ( + AB se x) ϑ x ( ) [( ) ] Valutazioe dei aggi R e R : Lughezza del segmeto AB A B seϑ + seϑ ( + )se ϑ ϑ B b ϑ ( + ) seϑ Cicofeeze base b A x Cicofeeze pimitive Si cosideio due qualsiasi pofili i cotatto La loo posizioe sul segmeto di igaameto è data dall ascissa x Dimesioameto i base alla pessioe di cotatto deti ditti Valutazioe dei aggi R e R : Calcolo del aggio elativo Lughezza del segmeto AB R R A B seϑ + seϑ + R ( + ) seϑ ( + ) seϑ R x [ ( + ) seϑ x] ( + )se ϑ ϑ B b ϑ Cicofeeze base b A Cicofeeze pimitive Si cosideio due qualsiasi pofili i cotatto La loo posizioe sul segmeto di igaameto è data dall ascissa x

23 Dimesioameto i base alla pessioe di cotatto deti ditti Calcolo del aggio elativo R + R R R ( + ) x seϑ seϑ seϑ Cicofeeze base ( + ) seϑ ( + ) seϑ [( + ) seϑ x] Valutazioe dei aggi R e R : Lughezza del segmeto AB A B seϑ + seϑ ϑ B b A b ϑ ( + ) seϑ Cicofeeze pimitive Quado i due pofili si tovao el puto C di tageza ta le pimitive ell espessioe del aggio elativo si elimia l icogita x Dimesioameto i base alla pessioe di cotatto deti ditti Calcolo del aggio elativo R + R R R ( + ) seϑ Adameto della pessioe di cotatto duate l igaameto λ Pessioe di cotatto p b p b A M C Posizioe sul segmeto AB N x B 3

24 Dimesioameto i base alla pessioe di cotatto deti ditti q R + R π R R K E K E L + + seϑ C + L seϑ cosϑ ( + τ ) C K E L se( ϑ ) d 4K E C se ( ϑ ) L ( + τ ) d q L K E π E + E R R R R + ( + ) C cosϑ τ C cosϑ θ seϑ C Dimesioameto i base alla pessioe di cotatto deti ditti 4K E C se K se ( ϑ ) ( ϑ ) L ϕ 4 E C ( + τ ) d ( + τ ) d L ϕ d Basso valoe di ϕ L ϕ d Alto valoe di ϕ 4K E 6 W se( ϑ ) π ϕ ( + τ ) d 3 ( + τ ) 4K E 6 W 3 3 se( ϑ ) π ϕ m z ( τ ) 4K E 6 W + m 3 3 se( ϑ ) π ϕ z il valoe di ϕ è geealmete compeso ta.5 ed È coveiete espimee la foza tageziale C i fuzioe della poteza da tasmettee W C W ω d 6 W π d m d / z 6 W π d Può essee coveiete, ifie, espimee il diameto attaveso il modulo ed il umeo di deti: 4

25 Dimesioameto i base alla pessioe di cotatto deti ditti 4K E 6 W se( ϑ ) π ϕ ( + τ ) d 3 ( τ ) 4K E 6 W + m 3 3 se( ϑ ) π ϕ z B 3 6 h 7 uificazioe m m u d u Diameto pigoe d 3 z mi τ ( ) x se ϑ z z z deve essee u umeo iteo Diameto uota d Laghezza fascia detata L Iteasse i Evetuale spostameto elativo x Dimesioameto i base alla pessioe di cotatto Igaaggi cilidici a deti elicoidali La teoia di etz può essee acoa utilizzata el caso di detatue elicoidali. q R + R π R R + omalmete la elazioe di pogetto è divesa da quella icavata el caso di detatua ditta, essedo divesa la geometia del cotatto. 5

26 Dimesioameto i base alla pessioe di cotatto deti elicoidali Il fattoe dipedete dal mateiale o vaia ispetto al caso dei deti ditti. K E π E + E Si modificao ivece i fattoi che dipedoo dalla foza applicata e dalla geometia del dete q L R + R R R Aalisi delle foze ageti sul dete Dimesioameto i base alla pessioe di cotatto piao base B deti elicoidali α A C a π θ θ α C D E t piao tagete alle pimitive a π cosθ se θ a π seα cosθ C π cosθ seα W 6W C ω d π d 6

27 Aalisi delle foze ageti sul dete Dimesioameto i base alla pessioe di cotatto piao base B deti elicoidali α A a C a π cosθ se θ π θ θ C α C C cosθ ta θ D E t piao tagete alle pimitive W 6W C ω d π d a C taα Aalisi delle foze ageti sul dete Dimesioameto i base alla pessioe di cotatto Il tiagolo CED CDA CEB CBA è ettagolo i BE D piao base B deti elicoidali α A a C a BE taθ CE AD ta θ CD CE CD π θ ta θ ta θ θ α BE CD CE AD BE AD C D CD CE E ta θ ta θ ta θ t Valoe uificato 7

28 Aalisi delle foze ageti sul dete Dimesioameto i base alla pessioe di cotatto piao base B deti elicoidali α A a C a AB seα CA DE seα CD θ π θ θ α C seα AB CD CD cos θ seα CA DE CA CD CAcos AB DE D E ta θ seα seα cosθ t Valoe uificato se α cos θ Lughezza del cotatto Dimesioameto i base alla pessioe di cotatto deti elicoidali Liea di cotatto 8

29 Lughezza del cotatto Dimesioameto i base alla pessioe di cotatto θ A M C O N CO B M P b P b α M λ deti elicoidali P b P b N Γ a L P b a λ Γt P Γ Γt + Γ a taα L P b Aea del ettagolo λ L N λ L l c P b l L λ L c λ Pb P b Γ t λ P b L Γt L lc Dimesioameto i base alla pessioe di cotatto deti elicoidali Laghezza della fascia detata A C Piao base C C CC C C C C BC C C C AC α C B C C CC Raggio elativo R + R R R AC BC A AC BC B 9

30 Dimesioameto i base alla pessioe di cotatto deti elicoidali A C B Raggio elativo R + R R R R C C C R C A α B I aggi di cuvatua delle supefici coiche el puto C valgoo: R CC R C C AC BC Dimesioameto i base alla pessioe di cotatto t θ A deti elicoidali Raggio elativo R + R R R C θ C C O θ O C C t B + ( + ) R R R R cos se θ α +τ se θ I aggi di cuvatua delle supefici coiche el puto C valgoo: R CC R C C AC BC AC se θ BC se θ se θ R se θ R 3

31 q R + R π R R Dimesioameto i base alla pessioe di cotatto + ( + ) C cos α Γ L cosθ se θ τ K E t deti elicoidali cosθ q Γt L lc C q Γ L cosθ K E E + E R + R R R t π +τ se θ C W 6W C ω d π d se θ se θ d ( + τ ) 3 C cos α K E Γt Lse θ cosθ d se θ cos θ se K se(θ ) Ld ( θ ) 3 4 E C cos α 4K E C Φ se(θ ) Ld ( + τ ) Γ t ( + τ ) Γ t q R + R π R R Dimesioameto i base alla pessioe di cotatto + ( + ) C cos α Γ L cosθ se θ τ K E t deti elicoidali cosθ q Γt L lc C q Γ L cosθ K E π E + E R + R R R t +τ se θ C W 6W C ω d π d 4K E C Φ se(θ ) Ld 3 cos α Φ se α cos θ seα seα cosθ ( + τ ) ( se α cos θ ) se θ ta α Φ( θ, α) + Γ t 3

32 Dimesioameto i base alla pessioe di cotatto deti elicoidali Relazioe di pogetto / veifica 4K E C Φ se(θ ) Ld ( + τ ) Γ t W 6W C ω d π d Codizioe sul umeo di deti del pigoe ( se α θ ) ( x) z cos se θ Gado di icopimeto tasvesale Γ t ( z + ) z cos θ + ( z + ) z cos θ ( z z ) + π cosθ se θ se θ se θ se α cos θ cosθ cosθ se α cos θ Dimesioameto i base alla sollecitazioe di flessioe deti ditti Relazioe di Lewis β β > θ t θ β h C Tave ad uifome esisteza + M f f ± W f h ± t Lg 6 C 6h f C 6hm 6h C g Lg Lgm Lm g C f Y Lm f g 6h m Y f m 3

33 Dimesioameto i base alla sollecitazioe di flessioe deti ditti Relazioe di Lewis g 6h m Y f Il fattoe di foma Y f dipede del umeo di deti, dall agolo θ e dallo spostameto elativo x Y f x > x Vaiazioe della foma del dete pe valoi di z cescete x < z umeo di deti Dimesioameto i base alla sollecitazioe di flessioe deti ditti Relazioe di Lewis Valoi del fattoe di foma Y f elativo a θ i fuzioe del umeo di deti e dello spostameto elativo x Deti ditti, z 8, x attoe Y f.34 33

34 Relazioe di Lewis Dimesioameto i base alla sollecitazioe di flessioe Detatua elicoidale piao base B α A C a π θ θ α C E t a La foza agisce sul dete pepedicolamete ad esso Nel caso dei deti obliqui deve essee quidi cosideata la π i luogo della C Iolte deve essee cosideato il modulo omale m i luogo del modulo m D C π m m Dimesioameto i base alla sollecitazioe di flessioe deti elicoidali Relazioe di Lewis Lughezza del cotatto: a Γt L lc C AC BC AC CD α ε A α l c l c cosε l c B Dai tiagoli ABC e ACD si ha: θ D BC CD BC CD t l c l c Dal tiagolo BCD si ha: cosε BC CD cosε BC CD cosε 34

35 Dimesioameto i base alla sollecitazioe di flessioe deti elicoidali Relazioe di Lewis C f Y Lm f f π Y l m f c cos α cos α C f Y f Γt L m C π m m l c l c Γt L lc Γt L l c cos α Ψ( θ ( θ ) C f Ψ α, Y f Γt L m se α cos θ, α) cos α Dimesioameto i base alla sollecitazioe di flessioe deti elicoidali Nel caso dei deti elicoidali il fattoe di foma Y f può acoa essee icavato dalle cuve elative ai deti ditti, puché si utilizzi u umeo di deti fittizio z Cilido pimitivo cos α α d z m z m d m cos α d d z 3 cos α m m m z z 3 cos α Il fattoe di foma del dete obliquo è miglioe del coispoete dete ditto, peché è otteuto da ua cicofeeza pimitiva maggioe di quella eale. 35

36 Dimesioameto i base alla sollecitazioe di flessioe deti elicoidali Nel caso dei deti elicoidali il fattoe di foma Y f può acoa essee icavato dalle cuve elative ai deti ditti, puché si utilizzi u umeo di deti fittizio z Esempio: pe z α 3 x z cos attoe Y f pe detatua elicoidale.395 attoe Y f pe detatua ditta

37 37

Curve caratteristiche meccaniche di motori elettrici C.C.

Curve caratteristiche meccaniche di motori elettrici C.C. Motoi 1 Idie ue aatteistihe meaihe di motoi elettii.. osideazioi geeali Motoi ad eitazioe idipedete 1 Opeazioi o oete d eitazioe ostate Opeazioi o oete d eitazioe aiabile e tesioe d amatua ostate Motoi

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari . MODELLO DINAMICO AD UN GRADO DI LIBERTÀ Alcue defiizioi prelimiari I sistemi vibrati possoo essere lieari o o lieari: el primo caso vale il pricipio di sovrapposizioe degli effetti el secodo o. I geerale

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

R-402A R-404A R-410A R-507 SIZE COLOR CODE

R-402A R-404A R-410A R-507 SIZE COLOR CODE La temostatica BQ può essee pesonalizzata pe qualsiasi applicazione di efigeazione e condizionamento. Devi solo selezionae il coetto elemento temostatico, la giusta taglia dell oifizio ed il tipo di copo

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

Campo elettrostatico nei conduttori

Campo elettrostatico nei conduttori Campo elettostatico nei conduttoi Consideeemo conduttoi metallici (no gas, semiconduttoi, ecc): elettoni di conduzione libei di muovesi Applichiamo un campo elettostatico: movimento di caiche tansiente

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Motori maxon DC e maxon EC Le cose più importanti

Motori maxon DC e maxon EC Le cose più importanti Motori maxo DC e maxo EC Il motore come trasformatore di eergia Il motore elettrico trasforma la poteza elettrica P el (tesioe U e correte I) i poteza meccaica P mech (velocità e coppia M). Le perdite

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

FAST FOURIER TRASFORM-FFT

FAST FOURIER TRASFORM-FFT A p p e n d i c e B FAST FOURIER TRASFORM-FFT La tasfomata disceta di Fouie svolge un uolo molto impotante nello studio, nell analisi e nell implementazione di algoitmi dei segnali in tempo disceto. Come

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

La sicurezza sul lavoro: obblighi e responsabilità

La sicurezza sul lavoro: obblighi e responsabilità La sicurezza sul lavoro: obblighi e resposabilità Il Testo uico sulla sicurezza, Dlgs 81/08 è il pilastro della ormativa sulla sicurezza sul lavoro. I sostaza il Dlgs disciplia tutte le attività di tutti

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

ESERCITAZIONE L adsorbimento su carbone attivo

ESERCITAZIONE L adsorbimento su carbone attivo ESERCITAZIONE adsorbimeto su carboe attivo ezioi di riferimeto: Processi basati sul trasferimeto di materia Adsorbimeto su carboi attivi Testi di riferimeto: Water treatmet priciples ad desi, WH Pricipi

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario Valutazioe delle prestazioi termiche di sistemi co solai termoattivi i regime o stazioario MICHELE DE CARLI, Ph.D., Ricercatore, Dipartimeto di Fisica Tecica, Uiversità degli Studi di Padova, Padova, Italia.

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard)

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard) Sistemi LTI descrivibile mediate SDE (Equazioi alle Differeze Stadard) Nella classe dei sistemi LTI ua sottoclasse è quella dei sistemi defiiti da Equazioi Stadard alle Differeze Fiite (SDE), dette così

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE DISPENSE DI: FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE Testo di riferieto E. Fuaioli ed altri Meccaica applicata alle acchie vol. e - Ed. Patro BOZZA Idice. INTRODUZIONE ALLA MECCANICA APPLICATA

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Comportamento delle strutture in C.A. in Zona Sismica

Comportamento delle strutture in C.A. in Zona Sismica Comportameto delle strutture i c.a. i zoa sismica Pagia i/161 Comportameto delle strutture i C.A. i Zoa Sismica Prof. Paolo Riva Dipartimeto di Progettazioe e ecologie Facoltà di Igegeria Uiversità di

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI Mirta Debbia LS A. F. Formiggii di Sassuolo (MO) - debbia.m@libero.it Maria Cecilia Zoboli - LS A. F. Formiggii di Sassuolo (MO) - cherubii8@libero.it

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Valutazioe e riduzioe della vulerailità sismia di ediii esisteti i.a. Roma, 9-0 maggio 00 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Di Ludovio

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Elementi della teoria della diffusione

Elementi della teoria della diffusione Elementi della teoia della diffusione Pe ottenee infomazioni sulla stuttua della mateia, dai nuclei ai solidi, si studia la diffusione scatteing) di paticelle: elettoni, paticelle alfa, potoni, neutoni,

Dettagli

FIGURE GEOMETRICHE SIMILI

FIGURE GEOMETRICHE SIMILI FIGUE GEOMETICHE SIMILI Nel linguaggio comune si dice che due oggetti sono simili quando si «assomigliano». Così si dicono simili due cani della stessa razza, i fiori della stessa pianta, gli abiti dello

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

CARATTERISTICHE GENERALI / GENERAL FEATURES

CARATTERISTICHE GENERALI / GENERAL FEATURES OPZON» odello co distribuzioe a disco geroller» otori i versioe flagia o ruota» otori corti» Attacchi tubazioi laterali e posteriori» Alberi cilidrici, coici e detati» Altre caratteristiche speciali OPTONS»

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

L OFFERTA DI LAVORO 1

L OFFERTA DI LAVORO 1 L OFFERTA DI LAVORO 1 La famiglia come foritrice di risorse OFFERTA DI LAVORO Notazioe utile: T : dotazioe di tempo (ore totali) : ore dedicate al tempo libero l=t- : ore dedicate al lavoro : cosumo di

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

CARATTERISTICHE GENERALI / GENERAL FEATURES

CARATTERISTICHE GENERALI / GENERAL FEATURES OPZIONI» otori i versioe flagia;» Coessioi laterali o posteriori;» Albero: cilidrico o scaalato;» Coessioi metriche o BSPP;» Altre caratteristiche speciali OPTIONS» Flage mout;» Side ad rear ports;» Shafts-

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

3M Prodotti per la protezione al fuoco. Building & Commercial Services

3M Prodotti per la protezione al fuoco. Building & Commercial Services 3M Prodotti per la protezioe al fuoco Buildig & Commercial Services Idice Sviluppi e treds...4-5 3M e le soluzioi aticedio...6-7 Dispositivi di attraversameto...8-19 Giuti di costruzioe...20-21 Sistemi

Dettagli

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile INDUCTIVE COMPONENTS I 0 I 0 IBK ELETTROMAGNETI IBK Elettomneti e l utomzione flessibile Ctloo eli elettomneti IBK e l zionmento ei sistemi oscillnti Eizione Mio 2004 www.eoitli.it/ootti/feee.tml Elettomneti

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

LA RICLASSIFICAZIONE DEL BILANCIO:

LA RICLASSIFICAZIONE DEL BILANCIO: LA RICLASSIFICAZIONE DEL BILANCIO: STATO PATRIMONIALE ATTIVO: + ATTIVO IMMOBILIZZATO: Investimenti che si trasformeranno in denaro in un periodo superiore ad un anno + ATTIVO CIRCOLANTE: Investimenti che

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

ATTREZZATURE A TEMPERATURA POSITIVA

ATTREZZATURE A TEMPERATURA POSITIVA ANUGA COLONIA 05-09 OTTOBRE 2013 Ragione Sociale Inviare a : all'attenzione di : Padiglione Koelnmesse Srl Giulia Falchetti/Alessandra Cola Viale Sarca 336 F tel. 02/86961336 Stand 20126 Milano fax 02/89095134

Dettagli

l = 0, 1, 2, 3,,, n-1n m = 0, ±1,

l = 0, 1, 2, 3,,, n-1n m = 0, ±1, NUMERI QUANTICI Le autofuzioi soo caratterizzate da tre parametri chiamati NUMERI QUANTICI e soo completamete defiite dai loro valori: : umero quatico pricipale l : umero quatico secodario m : umero quatico

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità)

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità) 4 Quai eravamo, quai siamo, quai saremo Che cosa si impara el capiolo 4 er cooscere le caraerisiche e l evoluzioe della popolazioe ialiaa araverso u lugo arco di empo uilizziamo il asso di icremeo medio

Dettagli

ATTIVATORE STABILIZZATO PER BOBINE DI SGANCIO A LANCIO DI CORRENTE.

ATTIVATORE STABILIZZATO PER BOBINE DI SGANCIO A LANCIO DI CORRENTE. Compatibilità totale con ogni apparato. Si usa con pulsanti normalmente chiusi. ella linea dei pulsanti c'è il 24Vcc. Insensibile alle interruzioni di rete. Insensibile agli sbalzi di tensione. Realizzazione

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario USUFRUTTO 1) Che cos è l sfrtto e come si pò costitire? L sfrtto è il diritto di godimeto ( ovvero di possesso) di bee altri a titolo gratito ; viee chiamato sfrttario chi esercita tale diritto, metre

Dettagli

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \ 3,6 56 3,6 TEOR I A SPETTRALE La teoria spettrale degli operatori lieari- eo spazio di Hilbert é f odata, coe per gi spazi f i-ito-dimes ioal j-, sula defiizioe di- risolvete di u operatole' Sia (A,DA)

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Appui di Teoria dei Segali a.a. / Aalisi dei segali el domiio del empo L.Verdoliva I quesa prima pare del corso sudieremo come rappreseare i segali empo coiuo e discreo el domiio del empo e defiiremo le

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

TASSI DI ASSENZA, MAGGIOR PRESENZA E ASSENTEISMO NETTO DEL PERSONALE DIPENDENTE DIVISO PER AREE DIRIGENZIALI (compresi i Dirigenti)

TASSI DI ASSENZA, MAGGIOR PRESENZA E ASSENTEISMO NETTO DEL PERSONALE DIPENDENTE DIVISO PER AREE DIRIGENZIALI (compresi i Dirigenti) CAMERA DI COMMERCIO NUMERO UNITA' DI PERSONALE 333 333 333 329 332 332 329 328 363 365 360 358 1.256 996 896 1.691 879 1.089 1.736 3.368 1.157 817 1.049 1.543 B) GIORNI LAVORATI COMPLESSIVI 5.709 5.962

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli