ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006"

Transcript

1 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato per delimitare il perimetro di u aiuola rettagolare. a) Qual è l aiuola di area massima che è possibile delimitare? Si pesa di tagliare il filo i due parti e utilizzarle per delimitare u aiuola quadrata e u altra circolare. Come si dovrebbe tagliare il filo affiché: b) la somma delle due aree sia miima? c) la somma delle due aree sia massima? U aiuola, ua volta realizzata, ha la forma di parallelepipedo rettagolo; ua scatola, cioè, colma di terreo. Si discute di aumetare del 0% ciascua sua dimesioe. Di quato terreo i più, i termii percetuali, si ha bisogo? PRBLEMA Si cosiderio le fuzioi f e g determiate da f () log e g () a, essedo a u parametro reale e il logaritmo di base e.. Si discuta, al variare di a, l equazioe log a e si dica, i particolare, per quale valore di a i grafici di f e g soo tra loro tageti.. Si calcoli, posto a e, l area che è compresa fra i grafici di f e g (co 0) ella striscia di piao determiata dalle rette di equazioi e. 3. Si studi la fuzioe h() log a scegliedo per a u valore umerico maggiore di e se e disegi il e grafico. 3 QUESTINARI Si arra che l ivetore del gioco degli scacchi chiedesse di essere compesato co chicchi di grao: u chicco sulla prima casella, due sulla secoda, quattro sulla terza e così via, sempre raddoppiado il umero dei chicchi, fio alla 64 a casella. Assumedo che 000 chicchi pesio circa 38 g, calcola il peso i toellate della quatità di grao pretesa dall ivetore. I poliedri regolari - oti ache come solidi platoici - soo, a meo di similitudii, solo cique: il tetraedro, il cubo, l ottaedro, il dodecaedro e l icosaedro. Sai dimostrarlo? I u piao soo dati ua retta r e due puti A e B a essa esteri ma situati el medesimo semipiao di origie r. Si trovi il più breve cammio che cogiuga A co B toccado r. Zaichelli Editore, 006

2 Si dimostri che l equazioe se ha ua e ua sola radice e, utilizzado ua calcolatrice tascabile, se e dia ua stima. Si descriva altresì ua procedura di calcolo che coseta di approssimare co la precisioe voluta. Si dimostri che la somma dei coefficieti dello sviluppo di (a b) è uguale a per ogi N. L equazioe risolvete u dato problema è: k cos 5k 0 dove k è u parametro reale e ha le segueti limitazioi: Si discuta per quali valori di k le radici dell equazioe siao soluzioi del problema. Bruo de Fietti ( ), tra i più illustri matematici italiai del secolo scorso, del quale ricorre quest ao il ceteario della ascita, alla domada: «che cos è la probabilità?» era solito rispodere: «la probabilità o esiste!». Quale sigificato puoi attribuire a tale risposta? È possibile collegarla a ua delle diverse defiizioi di probabilità che soo state storicamete proposte? U tiratore spara ripetutamete a u bersaglio; la probabilità di colpirlo è di 0,3 per ciascu tiro. Quati tiri deve fare per avere probabilità 0,99 di colpirlo almeo ua volta? Della fuzioe f () si sa che è derivabile e diversa da zero i ogi puto del suo domiio e, acora, che: f () f () e f (0). Puoi determiare f ()? Teuto coto che: 4 0 d calcola u approssimazioe di utilizzado uo dei metodi di itegrazioe umerica studiati. Durata massima della prova: 6 ore. È cosetito soltato l uso di calcolatrici o programmabili. No è cosetito lasciare l Istituto prima che siao trascorse 3 ore dalla dettatura del tema. Zaichelli Editore, 006

3 SLUZINE DELLA PRVA D ESAME CRS SPERIMENTALE P.N.I. 006 PRBLEMA a) Poiché la lughezza del filo rappreseta il perimetro del rettagolo che delimita l aiuola, detti b, h rispettivamete la base e l altezza di tale rettagolo (figura ), vale: b h l. Figura. b h b h h b Scelta b come icogita, si ha h l b, quidi la fuzioe area da massimizzare risulta la seguete: (b) b l b b l b, b 0; l. Il grafico di (b) è ua parabola co la cocavità rivolta verso il basso e vertice di ascissa 4 l. Quidi il massimo della fuzioe è l ordiata del vertice, cioè: ma b 0; l (b) 4 l l6. l Si tratta del caso i cui l aiuola ha la forma di u quadrato di lato. 4 b) Si idica co la parte del filo che si usa per delimitare l aiuola di forma quadrata. La lughezza del lato del quadrato Q è duque 4. Di cosegueza, la lughezza della circofereza che delimita l aiuola di forma circolare è l ; si ricava quidi il raggio r: r l r l. Figura. Q 4 π 4 3 Zaichelli Editore, 006

4 Si è ora i grado di calcolare le due aree: area(q) 4 6 ; area( ) l (l ). 4 Sommado si ottiee la seguete fuzioe: g ( ) 6 4 l l, [0; l ]. 4 Il grafico di g è u ramo di parabola compreso tra i puti A(0; g (0)) e B (l; g (l )), co la cocavità rivolta verso l alto (figura 3). Si osserva che i casi 0 e l corrispodoo etrambi all utilizzo del filo itero (seza effettuare alcu taglio) per delimitare ua sola aiuola di forma circolare ( 0) o ua sola aiuola di forma quadrata ( l). 4π A 6 4(4+π) V B 4 4+π Figura 3. La fuzioe g () è cotiua i u itervallo limitato e chiuso, quidi, per il teorema di Weierstrass, ammette massimo e miimo assoluti. Precisamete, detto V il vertice della parabola, il miimo di g è l ordiata di V. Poiché V, allora: 4 4l mi g () g [0;l ] 4l 4 l. 4(4 ) c) Il massimo di g viee assuto i uo degli estremi dell itervallo di defiizioe. sservado che: l l g (0) g (l ), 4 6 l si coclude che ma g (), cioè l area massima si ottiee quado il filo o viee tagliato besì 4 utilizzato tutto per delimitare u uica aiuola di forma circolare. Si cosideri ora u parallelepipedo a base rettagolare di dimesioi a, b, c. Il suo volume è: V abc. Icremetado del 0% ciascua dimesioe (figura 4), si ottiee u uovo parallelepipedo di volume: V 0 00 a 0 00 b 0 00 c 0 3 abc 3 0 abc. 4 Zaichelli Editore, 006

5 0 c c b 0 b a 0 a Figura 4. La differeza tra i due volumi risulta essere: V V 3 0 abc. I termii percetuali, pertato, si ottiee: ,% PRBLEMA. Primo metodo Si discute l equazioe log a co metodo grafico poedo log e a e determiado gli evetuali puti di itersezioe tra i grafici delle due fuzioi, al variare di a. a 0. La fuzioe a è rappresetata da ua parabola co il vertice ell origie e co la cocavità rivolta verso il basso (figura 5). =log =a Figura 5. Si ha sempre u solo puto di itersezioe. a 0. La fuzioe a diveta 0. I questo caso (figura 6) il puto di itersezioe ha coordiate (; 0) e la soluzioe dell equazioe è quidi. a 0. La fuzioe a è rappresetata da ua parabola co il vertice ell origie e co la cocavità rivolta verso l alto. Figura 6. =log =0 5 Zaichelli Editore, 006

6 Ci soo tre possibilità al variare di a (figura 7): - abbiamo parabole che itersecao il grafico di log i due puti distiti; - esiste ua parabola tagete; - ci soo parabole che o itersecao mai il grafico di log. =a T =log Determiiamo la parabola tagete. Risulta: a log D(a ) D(log) a log a log a a e a. e Figura 7. La parabola tagete ha quidi equazioe e Riassumedo la discussioe dell equazioe log a, risulta: - per a 0, soluzioe; - per 0 a e, soluzioi distite; - per a e, soluzioi coicideti; - per a e, essua soluzioe. le due curve devoo itersecarsi. le due curve devoo avere la stessa tagete el puto comue log a e il puto di tageza T ha coordiate e;. Secodo metodo Le evetuali soluzioi dell equazioe log a soo gli zeri della fuzioe h() log a al variare di a R, che risulta cotiua el suo campo di esisteza D ]0; [. sserviamo che per a 0 si ottiee la ota fuzioe logaritmica che ha u uico zero i (figura 8). Sia ora a 0 e studiamo l adameto della fuzioe agli estremi del campo di esisteza. Vale: lim h () per ogi valore di a, 0 lim h () se a 0 se a 0 a=0 =log Figura 8. 6 Zaichelli Editore, 006

7 Trattiamo allora separatamete i casi a 0 e a 0. a 0. Dallo studio dei limiti effettuato, deduciamo che esistoo, D tali che f ( ) 0 e f ( ) 0. Per il teorema degli zeri, esiste almeo u puto ell itervallo ] ; [ i cui la fuzioe si aulla. D altra parte, risulta: h () a 0 per D, quidi la fuzioe è strettamete crescete. Pertato ache el caso a 0 l equazioe log a ha u uica soluzioe. a 0. I questo caso i limiti agli estremi del campo di esisteza soo etrambi egativi. Studiamo il sego della derivata prima h () a i D. Risulta: h () 0 a a. Poiché il massimo della fuzioe è assuto i di tale massimo. Calcoliamo l immagie: a log a a, l esisteza degli zeri di h dipede dal sego h (log a ). Studiamo la disequazioe: h a 0 log a 0 a. e I coclusioe: - 0 a : il massimo di h è positivo, i limiti agli estremi del campo di esisteza soo etrambi e egativi, ed esiste u solo puto critico; quidi la fuzioe h() ammette due zeri; - a : il massimo di h è zero ed esiste u solo puto critico, pertato l ascissa di tale massimo è e l uica soluzioe dell equazioe assegata dal problema; - a : poiché ma h 0, o esistoo soluzioi di h () 0. e Gli zeri dell equazioe log a possoo essere iterpretati graficamete come le ascisse dei puti di itersezioe tra i grafici di f () e g (), come mostra la figura 9. =a =a =a =log =log =log e 0<a< e a= e a> e Figura 9. 7 Zaichelli Editore, 006

8 I grafici di f e g soo tageti solo per a. Ifatti le due curve soo tageti se e solo se si itersecao e hao la stessa retta tagete el puto di itersezioe. Algebricamete, questo equivale a risol- e vere il seguete sistema: g () f () g () f () a log a log. a Questo sistema è soddisfatto se e solo se e e a. e. La fuzioe g assume i questo caso la forma g () e. Per quato visto el puto precedete, sappiamo che i grafici di f e g hao u puto i comue, che i tal caso è proprio il puto P (e ; ). Cosiderado le itersezioi tra la retta e i grafici delle fuzioi g e f, si ottegoo rispettivamete i puti di ascissa e e e. Per determiare l area evideziata i figura 0, occorre duque suddividere il domiio di itegrazioe ei due itervalli [e ; e ] e [e ; e ]. = e e e e P =log = = 0 e0 e (log ) d 0 0e e (e ) d Figura 0. [ log ] e e e 0 0 d [ ] e e e e 3 e 3 e e 4 5 e Scegliamo a e studiamo la fuzioe h () log. Per quato visto ei puti precedeti: - il campo di esisteza è D ]0; [; - o esistoo itersezioi co gli assi cartesiai e la fuzioe è sempre egativa perché il massimo è egativo; - i limiti agli estremi di D soo etrambi ; - f (), la fuzioe è crescete i 0;, decrescete i h'() h() ma Figura. ; e ma h () h D (log ), come riassuto ella figura. sserviamo che o vi soo asitoti obliqui perché lim h (). Rimae ora da studiare la derivata secoda: h () 4 ( ). 8 Zaichelli Editore, 006

9 Risulta quidi: h () 0 ( ) 0 e questa disequazioe o è mai soddisfatta. Pertato la derivata secoda è sempre egativa e la fuzioe ha la cocavità rivolta verso il basso i tutto il campo di esisteza. Il grafico della fuzioe è riportato ella figura. (log+) =log Figura. QUESTINARI Si tratta di calcolare la somma dei primi 64 termii della progressioe geometrica a, N, co ragioe q. Poiché la somma vale: s a q, q risulta: s ,84 0 9, dove s 64 rappreseta il umero dei chicchi. Si calcola il peso m, teedo coto che 000 chicchi pesao circa 38 g. m, g 69,9 0 6 g 69,9 0 0 t. U poliedro si dice regolare quado le sue facce soo poligoi regolari cogrueti e i suoi agoloidi soo cogrueti. Pertato gli agoli delle facce di ogi suo agoloide devoo essere agoli di poligoi regolari e devoo essere almeo tre. Ioltre, per u oto teorema di geometria solida, i ogi agoloide la somma degli agoli delle facce è miore strettamete di 360. Se le facce del poliedro soo triagoli equilateri, l agolo di ogi faccia è di 60, quidi si possoo avere agoloidi di tre facce (si ottiee il tetraedo), di quattro facce (si ottiee l ottaedro), di cique facce (si ottiee l icosaedro) ma o di più, perché la loro somma sarebbe maggiore o uguale a 360 e ciò è impossibile per il suddetto teorema. Se le facce del poliedro regolare soo quadrati, l agolo di ogi faccia è di 90, quidi si può avere solo l agoloide di tre facce (si ottiee il cubo). Se le facce del poliedro regolare soo petagoi regolari, l agolo di ogi faccia è di 08, quidi si può avere l agoloide di tre facce (si ottiee il dodecaedro) ma o di più. Se le facce del poligoo regolare soo esagoi regolari, l agolo di ogi faccia è di 0 quidi o si possoo avere poliedri relativi perché la somma degli agoli di tre facce è 360 il che è impossibile. Aalogamete o è possibile costruire poliedri regolari aveti per facce poligoi regolari co più di sei lati. 9 Zaichelli Editore, 006

10 3 Siao a e b le distaze di A e B dalla retta r e h la distaza tra le loro proiezioi D e C su r (figura 3). Si cosidera il caso i cui il puto P sia itero al segmeto CD. Posto PC, co 0 h, risulta: BP a, PD h, AP b (h ) h b h. È ecessario miimizzare la fuzioe f () BP AP, ovvero: B A a b D h P C r Figura 3. f () a h b h, 0 h. Si studia il sego della derivata prima f : h f (). a h b h Posto f () 0: h b h ( h) a a h b h 0, segue che: h b h (h )a. Si eleva al quadrato teedo coto che 0 h: ( h b h ) (h h)(a ) 4 h 3 b h a h h a 4 a h h 3 (a b ) a h a h 0 ah ah. a b a b ah Poiché 0 h e è maggiore di h, si ottiee la seguete tabella del sego di f () (figura 4). a b ah Si coclude che la fuzioe f ha u miimo per. a b Qualora si preda il puto P estero al segmeto CD, posto PC, si 0 + f () trova che la fuzioe g () da miimizzare è maggiore o uguale a f (), 0 ah h a b cioè g () f (). f() mi ah Pertato il miimo m del cammio rimae per e sostituedo ella fuzioe f si trova: a b Figura 4. m f ah a b (a b) h. 4 Defiita la fuzioe f () se, questa è derivabile e quidi cotiua su R; la sua derivata prima vale: f () cos. Scelto l itervallo I [; ], risulta che: 0 Zaichelli Editore, 006

11 f () 0,84 0 e f () 0, Pertato, per il teorema degli zeri, esiste almeo u puto tale che f () 0. Ioltre, poiché: f () 0 ]; [, il puto è uico. Per stimare il valore di si può procedere, per esempio, co il metodo di bisezioe e si ottiee la seguete tabella. a f(a) b f(b) a b f a b 0,84 0,090,5 0,497,5 0,497 0,090,75 0,34,75 0,34 0,090,875 0,079,875 0,079 0,090,938 0,005 Si può proseguire così fio alla precisioe voluta (la soluzioe alla quarta cifra decimale è,9346). 5 6 Lo sviluppo della poteza -esima di u biomio si può otteere co la formula del biomio di Newto: (a b) b k 0 ak k a a b b. k 0 La somma dei coefficieti dello sviluppo della poteza -esima del biomio si ottiee poedo a e b : ( ). Si ha quidi:. 0 0 Per k 0 l equazioe diveta 0 che è impossibile; si può quidi dividere per k 0 e diveta: cos 5k, k che (co le limitazioi espresse i radiati) equivale al sistema: A = 3 cos 5k k 4 Risolviamo il sistema graficamete (figura 5). Si trova: A cos k k 4(3 0) ; k 97 π 4 π B π 3 4 π = cos π Figura 5. B 0 k 5. Zaichelli Editore, 006

12 Pertato l equazioe ammette ua sola soluzioe per: 5 k 4(3 0) Tra le varie defiizioi di probabilità che soo state storicamete proposte vi è quella soggettiva che si usa per gli eveti per i quali o è possibile calcolare teoricamete il umero dei casi favorevoli e possibili e o si può sottoporre l eveto a prove sperimetali ripetute elle stesse codizioi. Essa viee applicata i vari casi reali, ad esempio se si vuole stimare la probabilità di vittoria di ua squadra di calcio a u toreo. La valutazioe soggettiva porta a cosiderare il calcolo della probabilità come a ua scommessa; essa è defiita come la misura del grado di fiducia che ua persoa attribuisce al verificarsi di u eveto E secodo la sua opiioe. Il valore si ottiee effettuado il rapporto tra la somma P che si è disposti a pagare i ua scommessa e la somma V che si riceverà el caso i cui l eveto si verifichi: p (E ) V P. Bruo De Fietti è il matematico italiao che ha fissato i fodameti della cocezioe soggettiva della probabilità; affermado che la probabilità o esiste itedeva forse dire che o esiste i modo oggettivo, cioè uguale per tutti, poiché, come già detto, i varie situazioi è possibile esprimere solo valutazioi soggettive e quidi persoali sul verificarsi di u eveto. 8 9 La probabilità di colpire il bersaglio è p 0,3 e di macarlo è q p 0,7. La probabilità di o colpirlo mai i tiri è q (0,7), perciò quella di colpire almeo ua volta i tiri è la probabilità cotraria (0,7). Si tratta ora di determiare il miimo itero tale che: (0,7) 0,99 (0,7) 0,0. Passado ai logaritmi si trova: log(0,7) log(0,0) log(0,7),9. log( 0,7) Quidi il tiratore deve compiere 3 tiri per colpire il bersaglio almeo ua volta. Ua fuzioe reale f, diversa da zero i ogi puto del suo campo di esisteza, che soddisfa la codizioe f ()f () è la fuzioe espoeziale f () ke, co k reale. Impoedo la codizioe f (0), risulta: k e f () e, R. Qualora si abbiao competeze sulle equazioi differeziali, si può risolvere il problema cosiderado d l equazioe. d Separiamo le variabili: d d l c ke co k reale. Impoedo la codizioe (0), risulta e. 0 Per il calcolo approssimato di si può utilizzare il metodo dei rettagoli. Dividedo l itervallo [0; ] i 5 parti uguali, si ottiee: 4 d f (0) f 5 f 5 f 3 5 f 4 5 ovvero 3,35. Aumetado il umero si può migliorare l approssimazioe. Zaichelli Editore, 006

13 Per esercitarti acora sugli argometi trattati el Svolgi il Problema Problema 83 pag. V 07 Problema 84 pag. V 08 Problema 88 pag. V 08 Problema Esercizio 739 pag. N 9 Problema pag. W 64 (puti a, b) Esercizio 500 pag. V 77 Esercizio pag. W 8 Problema 6 pag. W 40 (puto a) Quesito Problema pag. S 78 Quesito Quesito pag. 4 Quesito 3 pag. 4 Quesito 3 Esercizio 97 pag. V 09 Problema 0 pag. W 69 Quesito 4 Esercizio 70 pag. 8 Quesito 7 pag. 6 Quesito 5 Quesito 4 pag. 40 Quesito 9 pag. 40 Quesito 6 Esercizio 676 pag. Q 8 Esercizio 678 pag. Q 8 Quesito 7 Esercizio 3 pag. 77 Esercizio 35 pag. 77 Quesito 8 Test 7 pag. 97 Quesito 9 Esercizio 45 pag. V 45 (secodo caso) Quesito 0 Problema 8 pag. 57 (puto c) Quesito 5 pag. 6 3 Zaichelli Editore, 006

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard)

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard) Sistemi LTI descrivibile mediate SDE (Equazioi alle Differeze Stadard) Nella classe dei sistemi LTI ua sottoclasse è quella dei sistemi defiiti da Equazioi Stadard alle Differeze Fiite (SDE), dette così

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

La sicurezza sul lavoro: obblighi e responsabilità

La sicurezza sul lavoro: obblighi e responsabilità La sicurezza sul lavoro: obblighi e resposabilità Il Testo uico sulla sicurezza, Dlgs 81/08 è il pilastro della ormativa sulla sicurezza sul lavoro. I sostaza il Dlgs disciplia tutte le attività di tutti

Dettagli

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari . MODELLO DINAMICO AD UN GRADO DI LIBERTÀ Alcue defiizioi prelimiari I sistemi vibrati possoo essere lieari o o lieari: el primo caso vale il pricipio di sovrapposizioe degli effetti el secodo o. I geerale

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI Mirta Debbia LS A. F. Formiggii di Sassuolo (MO) - debbia.m@libero.it Maria Cecilia Zoboli - LS A. F. Formiggii di Sassuolo (MO) - cherubii8@libero.it

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

ESERCITAZIONE L adsorbimento su carbone attivo

ESERCITAZIONE L adsorbimento su carbone attivo ESERCITAZIONE adsorbimeto su carboe attivo ezioi di riferimeto: Processi basati sul trasferimeto di materia Adsorbimeto su carboi attivi Testi di riferimeto: Water treatmet priciples ad desi, WH Pricipi

Dettagli

Motori maxon DC e maxon EC Le cose più importanti

Motori maxon DC e maxon EC Le cose più importanti Motori maxo DC e maxo EC Il motore come trasformatore di eergia Il motore elettrico trasforma la poteza elettrica P el (tesioe U e correte I) i poteza meccaica P mech (velocità e coppia M). Le perdite

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

L OFFERTA DI LAVORO 1

L OFFERTA DI LAVORO 1 L OFFERTA DI LAVORO 1 La famiglia come foritrice di risorse OFFERTA DI LAVORO Notazioe utile: T : dotazioe di tempo (ore totali) : ore dedicate al tempo libero l=t- : ore dedicate al lavoro : cosumo di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Comportamento delle strutture in C.A. in Zona Sismica

Comportamento delle strutture in C.A. in Zona Sismica Comportameto delle strutture i c.a. i zoa sismica Pagia i/161 Comportameto delle strutture i C.A. i Zoa Sismica Prof. Paolo Riva Dipartimeto di Progettazioe e ecologie Facoltà di Igegeria Uiversità di

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario USUFRUTTO 1) Che cos è l sfrtto e come si pò costitire? L sfrtto è il diritto di godimeto ( ovvero di possesso) di bee altri a titolo gratito ; viee chiamato sfrttario chi esercita tale diritto, metre

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Valutazioe e riduzioe della vulerailità sismia di ediii esisteti i.a. Roma, 9-0 maggio 00 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Di Ludovio

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario Valutazioe delle prestazioi termiche di sistemi co solai termoattivi i regime o stazioario MICHELE DE CARLI, Ph.D., Ricercatore, Dipartimeto di Fisica Tecica, Uiversità degli Studi di Padova, Padova, Italia.

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

l = 0, 1, 2, 3,,, n-1n m = 0, ±1,

l = 0, 1, 2, 3,,, n-1n m = 0, ±1, NUMERI QUANTICI Le autofuzioi soo caratterizzate da tre parametri chiamati NUMERI QUANTICI e soo completamete defiite dai loro valori: : umero quatico pricipale l : umero quatico secodario m : umero quatico

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano L4 Iterpolazioe L4 Prologo Co iterpolazioe si itede il processo di idividuare ua fuzioe, spesso u poliomio, che passi per u isieme dato di puti: (x,y). y x L4 2 Fii dell iterpolazioe 1. Sostituire u isieme

Dettagli

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE DISPENSE DI: FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE Testo di riferieto E. Fuaioli ed altri Meccaica applicata alle acchie vol. e - Ed. Patro BOZZA Idice. INTRODUZIONE ALLA MECCANICA APPLICATA

Dettagli

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \ 3,6 56 3,6 TEOR I A SPETTRALE La teoria spettrale degli operatori lieari- eo spazio di Hilbert é f odata, coe per gi spazi f i-ito-dimes ioal j-, sula defiizioe di- risolvete di u operatole' Sia (A,DA)

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

Curve caratteristiche meccaniche di motori elettrici C.C.

Curve caratteristiche meccaniche di motori elettrici C.C. Motoi 1 Idie ue aatteistihe meaihe di motoi elettii.. osideazioi geeali Motoi ad eitazioe idipedete 1 Opeazioi o oete d eitazioe ostate Opeazioi o oete d eitazioe aiabile e tesioe d amatua ostate Motoi

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Rettangoli isoperimetrici

Rettangoli isoperimetrici Bruno Jannamorelli Rettangoli isoperimetrici Questo rettangolo ha lo stesso perimetro di quello precedente. E l area? È la stessa? Il problema di Didone Venere ad Enea: Poi giunsero nei luoghi dove adesso

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria.

La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria. La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli I questo

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola Fuoco, direttrice ed equazione di una parabola traslata Bruna Cavallaro, Treccani scuola 1 Traslare parabole con fuoco e direttrice Su un piano Oxy disegno una parabola, con fuoco e direttrice. poi traslo

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Problemi per ragazzini dai 5 ai 15 anni. V. I. Arnold

Problemi per ragazzini dai 5 ai 15 anni. V. I. Arnold Problemi per ragazzini dai 5 ai 5 anni V. I. Arnold Sommario Questo fascicolo presenta 77 problemi utili a sviluppare la capacità di ragionare, che l autore ha scelto o ha composto di suo pugno. In generale,

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli