CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI"

Transcript

1 CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI Il testo che segue contiene brevi ppunti reltivi lle lezioni svolte sull teori elementre dell integrzione di funzioni reli di un vribile rele. Lo scopo è quello di dre un orientmento semplice e sintetico sull rgomento. Gli studenti sono invitti consultre i testi consigliti per completre l preprzione. 1. Integrle definito. Definizione. Se f(x) è un funzione regolre (lmeno continu, o continu trtti) definit nell intervllo [, b], e positiv, o comunque non negtiv, il suo integrle definito sull intervllo, che si denot f(x)dx. (1) rppresent l re dell figur delimitt dl grfico dell funzione, l sse delle scisse (sse delle x), e le rette verticli x = e x = b. I punti e b sono detti, rispettivmente, estremo inferiore ed estremo superiore di integrzione. Esempio 1. Si consigli il lettore di disegnre l re nel pino crtesino reltiv l cso =, b = 1, f(x) = x 2. Se l funzione è costnte l re designt dll integrle (1) si determin fcilmente: l figur è un rettngolo di bse b ed ltezz c, e l re è quindi c(b ). Nello stesso modo si risolve nche il cso di funzioni costnti trtti, tli cioè che il loro dominio si divide in intervlli su ciscuno dei quli l funzione è costnte. (Queste funzioni si chimno nche funzioni semplici.) L figur di cui dobbimo determinre l re è in questo cso ftt di un certo numero di rettngoli che hnno per bse quegli intervlli e per ltezz il vlore dell funzione. L integrle (1) è quindi l somm delle ree di questi rettngoli. Esempio 2. Considerimo l integrle sull intervllo [, 1] dell funzione costnte trtti definit come f(x) = 1 per x < 1/2 e f(x) = 2 per 1/2 x 1. (Si disegni l figur per mggiore chirezz.) L figur di cui si deve clcolre l re è ftt di due rettngoli, entrmbi di bse 1/2, il primo di ltezz 1 e il secondo di ltezz 2. Si h pertnto 1 f(x)dx = 1/2 1+1/2 2 = 3/2. Nel cso generle di un funzione continu positiv qulsisi f(x) l re si clcol come limite di pprossimzioni successive relizzte con funzioni costnti trtti, con un procedimento che or illustreremo in form semplifict. Denotimo con A l re incognit d clcolre A = 1 f(x)dx. (2)

2 Dividimo l interllo [,b] in un numero n di intervllini di lunghezz δ = b n : I 1 = [,+δ], I 2 = [+δ,+2δ],..., I n = [+(n 1)δ,b]. (Si noti che +nδ = b.) L funzione f è continu, e quindi su ognuno degli intervllini I j, che sono chiusi e limitti, ssume si un vlore minimo, che denotimo m j, che un vlore mssimo M j, e sino x j e x j punti in cui sono rggiunti rispettivmente i vlori m j e M j. Considerimo l funzione costnte trtti f (n) M (x) che in ogni intervllino I j ssume il vlore mssimo M j. Il grfico di f (n) M (x) è un specie di sclint che st sempre sopr il grfico dell f(x), cioè f (n) M (x) f(x). Quindi si h n S n = f (n) M (x) = δ n M j = f(x j )δ > A. (3) j=1 Inftti S n rppresent l re dell figur compres tr il grfico dell f (n) M (x) (l sclint ), l sse delle scisse e le rette verticli x = e x = b, che contiene l figur l cui re è clcolt dll integrle (2) dell f(x). Quindi S n, che è l somm delle ree dei rettngolini con bse I j, di lunghezz δ, ed ltezz M j, è un re mggiore di A. (Si trcci l figur, oppure si confronti con l figur pg. 154 di [1]). Anlogmente si vede che se si costruisce l funzione semplice con gli stessi intervlli I j, m prendendo i minimi, invece dei mssimi, ottenimo un nuov funzione con grfico sclint, tle che f m (n) (x) f(x). Rgionndo come sopr si vede che s n = f (n) n m (x) = δ m j = j=1 j = 1 n f(x j )δ < A. In generle se prendimo dei punti qulsisi x j in ogni intervllo I j invece dei punti di mssimo e di minimo vremo un somm con vlore intermedio n s n f(x j )δ S n. (4) j = 1 Abbimo quindi, per ogni n, s n A S n (scrivimo invece di < per coprire il cso bnle in cui f è costnte). E chiro quindi che j = 1 (3b) S n A S n s n, A s n S n s n. (5) Si può dimostrre che S n s n per n, il che implic per le (5) che lim n S n = A, di lim n s n = A e (per il teorem dei crbinieri ) nche tutte le somme intermedie del tipo (4) tendono d A. L dimostrzione del ftto che S n s n è semplice nel cso che f si derivbile. Inftti S n s n rppresent l redi nrettngolidi bse δ eltezz M j m j = f(x j ) f(x j ) (si ricvi l figur dlle figure di [1], pg. 154) e quindi S n s n = n [f(x j ) f(x j )]δ. (6) j=1 2

3 Applicndo il teorem di Lgrnge, si trov f(x j ) f(x j ) = f (x j )(x j x j ) dove x j I j e f rppresent l derivt. Se dunque K = mx x [,b] f (x), osservndo che x j x j δ, perchè i due punti sono dentro lo stesso intervllino I j, ottenimo dll (6), ricordndo che δ = b n, S n s n Knδ 2 = K (b )2, n e il membro di destr tende zero per n. Dunque l re che dovevmo trovre si ottiene come limite per n di somme del tipo (4), tr le quli includimo come csi prticolri le somme S n e s n. Questo ftto è ricordto nell notzione stess dell integrle: il simbolo, che è un S llungt, st per l somm, mentre il termine f(x)dx rppresent l re del rettngolo di bse infinitesim dx e ltezz f(x). L notzione è quindi un rppresentzione simbolic del limite delle somme finite (4). Osservzione. Qunto detto non è del tutto corretto, perchè gli intervllini contigui, essendo chiusi hnno un punto estremo in comune. Per esempio nel punto + δ, che è l estremo in comune d I 1 e d I 2 non si s se ssegnre s f (n) M (+δ) il vlore M 1 oppure M 2. Il problem si può risolvere ssegnndo nel punto in comune di due intervlli, nel cso di vlori diversi per i due mssimi o minimi, il vlore dell intervllo di sinistr. Osservzione. Si può fcilmente vedere che non è necessrio dividere l intervllo [, b] in intervllini di egule lunghezz. Si possono considerre somme integrli del tipo (4) in cui le lunghezze degli intervllini possono essere diverse, m è comunque necessrio che l loro lunghezz mssim tend zero nel procedimento di limite. L nozione di integrle definito si estende l cso di funzioni che sono negtiveinmodo semplice. Se l funzione f è negtiv l integrle (1) rppresent sempre l re compres tr il grfico di f, l sse delle scisse e le rette verticli x =, e x = b, m pres con il segno, cioè l integrle è negtivo. Anche in questi csi è ovvio che l integrle (1) è il limite di somme integrli del tipo (4). Nel cso generle l intervllo[,b]si dividein intervlliincui f èpositiv ein intervlli in cui f è negtiv, e si sommno i corrispondenti integrli. In conclusione possimo dire che per un vst clsse di funzioni bbstnz regolri, come quelle ci limitimo considerre nell nostr trttzione, l integrle definito (1) è il limite per il numero n, dove n è degli intervllini in cui è diviso l intervllo di integrzione, di somme integrli del tipo (4). Queste somme sono nche dette somme di Riemnn, dl nome del mtemtico tedesco dell Ottocento che per primo ne h studito le condizioni di convergenz. Proprietà elementri dell integrle definito. L integrle definito (1) h le seguenti proprietà (si ved [1]). 3

4 Se f 1,f 2 sono funzioni continue trtti e k è un numero si h [f 1 (x)+f 2 (x)]dx = f 1 (x)dx+ f 2 (x)]dx, (7) (kf(x))dx = k f(x)dx f(x)dx = c f(x)dx+ c f(x)dx. Le prime due sono ovvie dll definizione di integrle definito come limite. L (7c) è nche ovvi se c [,b]. Se invece c è fuori dell intervllo l (7c) segue dll convenzione f(x)dx = f(x)dx, b che si ssume vlid per ogni scelt di,b e di f(x). (7b) (7c) 2. Medi integrle. Si f(x) un funzione continu sull intervllo [, b]. Si definisce medi integrle su [,b] l quntità 1 b f(x)dx. (8) b L medi integrle h proprietà nloghe quelle dell medi ritmetic. In prticolre l seguente. Lemm. L medi integrle (8) è compres tr il mssimo e il minimo dell funzione: min f(x) 1 f(x)dx mx f(x). (9) x [,b] b x [,b] Dimostrzione. Supponimo per semplicitàche sif(x) perognix [,b],edicimo M il suo mssimo e m il suo minimo su [,b]. E chiro che l figur l cui re è dt dll integrle nell (8) è contenut nel rettngolo di bse [,b] e ltezz M, e quindi 1 b f(x)dx M(b ) b b = M. L ltr disuguglinz (9) si ottiene osservndo che l figur l cui re è dt dll integrle nell (8) contiene il rettngolo di bse [,b] e ltezz m. 3. Primitiv o integrle indefinito. 4

5 Definizione. Si dice primitiv dell funzione f(x) (che supponimo continu), in un certo dominio D, un funzione F tle che F (x) = f(x) per ogni x D. Per esempio l funzione F(x) = sinx è un primitiv dell funzione f(x) = cosx. Teorem di Torricelli.L funzione integrle dell vribile x F T (x) = x f(t)dt (1) qulunque si nel dominio di f, è un primitiv dell funzione f(x). Dimostrzione. Per clcolre l derivt scrivimo il rpporto incrementle F T (x+h) F T (x) h [ = 1 x+h f(t)dt h x f(t)dt ] = 1 h x+h x f(t)dt, (11) dove bbimo usto l proprietà (7c) con c = x, b = x+h. Supponendo per semplicità h >, destr dell (11) bbimo l medi integrle di f nell intervllo [x,x+h]. Sino x h e x h i punti dell intervllo [x,x+h] in cui l funzione f rggiunge il mssimo e il minimo rispettivmente. Per il lemm precedente bbimo f(x h ) F T(x+h) F T (x) h f(x h ). Qundo h si x h che x h tendono x per il teorem dei crbinieri (sono compresi tr x e x+h), e poichè f è continu bbimo lim h f(x h ) = lim h f(x h ) = f(x). Osservzione. Si noti che per l funzione (1) si h F T () = e quindi x f(t)dt = F T (x) F T (). (12) Il termine destr dell (12) si chim incremento dell funzione F T tr ed x. L incremento di un funzione F nell intervllo [x 1,x 2 ] si indic nche per brevità come F(x 2 ) F(x 1 ) = [F] x 2 x 1. L primitivdi un funzione f(x)nonèunic, mdtedue qulunqueprimitivef 1,F 2 di ess, l loro differenz è un costnte. Inftti si F(x) = F 2 (x) F 1 (x). Abbimo F (x) = F 2 (x) F 1 (x) = f(x) f(x) =. Quindi F 2 F 1 = c ovvero F 2 = F 1 +c. D questo segue che gli incrementi di F 1 e F 2 sono gli stessi per ogni scelt di x 1 < x 2 : F 2 (x 2 ) F 2 (x 1 ) = F 1 (x 2 ) F 1 (x 1 ). 5

6 Qunto detto nelle righe di sopr è in prtic l dimostrzione di un semplice m importnte risultto, dto dl seguente teorem. Teorem fondmentle del clcolo integrle. Se F è un qulunque primitiv di f, llor per ogni intervllo [,b] nel dominio di f si h f(x)dx = F(b) F() = [F] b. (13) Dimostrzione. Inftti per l (12) il risultto è vero per l primitiv F T dt dll (1). Poichè gli incrementi sono eguli per tutte le primitive di f, ne segue l sserto del teorem. L clsse di tutte le primitive F di f si chim integrle indefinito di f e si indic con il segno di integrle senz gli estremi di integrzione. Per esempio si può scrivere cosx dx = sinx, m srebbe più corretto scrivere cosx dx = sinx+c, dove c indic un qulunque constnte. 4. Metodi di integrzione. Oltre ll conoscenz esplicit delle primitive delle singole funzioni (potenze, esponenzili, etc.) che proviene dlle regole di derivzione, indichimo due metodi di crttere generle. Integrzioni per prti. L ben not regol per l derivzione del prodotto (f(x)g(x)) = f (x)g(x)+f(x)g (x) conduce ll regol di integrzione f (x)g(x)dx = f(x)g(x) f(x)g (x)dx. (14) Quest regol nturlmente v pplict nei csi in cui l integrle sinistr non si s fre direttmente m quello destr si s fre. Un esempio è il seguente: xe x dx = xe x e x dx = e x (x 1). Qui si è pplict l (14) prendendo g(x) = x, f (x) = e x. L posizione invers g(x) = e x, f (x) = x conduce invece d un integrle più complicto. 6

7 Integrzione per sostituzione. L regol di derivzione dell funzione compost conduce ll regol di integrzione d dx f(g(x)) = f (g(x)) g (x) f (g(x)) g (x)dx = f(g(x)). Anche qui si pone un problem di interpretzione. Ad esempio nell integrle 2 per pplicre l regol dobbimo scrivere 2 x 1+x2dx (15) x 1+x 2dx = 1 2 2x 2 1+x 2dx e interpretre 2x come l derivt di g(x) = 1+x 2. In questo modo si vede che L integrle (15) è quindi pri 2x 1+x 2 = g (x) g(x) = d dx lng(x). 1 [ ln(1+x 2 ) ] 2 2 = ln5 2 = ln( 5). Bibliogrfi. [1] Cmillo Cmmrot. Elementi di clcolo e di sttistic. Edizioni Libreri Scientific Dis, Rom, 21 7

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca COMPLEMENTI SUGLI INTEGRALI DEFINITI A. Figà Tlmnc 27 ottobre 2010 2 0.1 Introduzione C è un modo pprentemente semplice ed intuitivo per introdurre l integrle (definito) di un funzione f definit su un

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 11 - Integrli Anno Accdemico 2015/2016 M. Tumminello, V. Lcgnin,

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Calcolo integrale. Capitolo Primitive ed integrale inde nito

Calcolo integrale. Capitolo Primitive ed integrale inde nito Cpitolo 9 Clcolo integrle 9.1 Primitive ed integrle inde nito De nizione 9.1 Assegnt un funzione f : A! R, si de nisce primitiv di f un qulunque funzione F : A! R derivbile, tle che F 0 (x) = f(x), per

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

L integrale di Riemann

L integrale di Riemann L integrle di Riemnn Riccrd Rossi Università di Bresci Anlisi B Riccrd Rossi (Università di Bresci) L integrle di Riemnn Anlisi B 1 / 64 Motivzioni: clcolo di un re Si f : [, b] R continu e positiv. Problem

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni Integrle di Riemnn 1 Funzioni integrbili Dto un intervllo non degenere [, b], indichimo con T[, b] l collezione dei sottoinsiemi finiti di [, b] che contengono {, b}. Ogni D T[, b] si chimerà suddivisione

Dettagli

Integrazione definita

Integrazione definita Integrzione definit Si [,b] R un intervllo chiuso e limitto. Si f : [,b] R limitt. Def. Trpezoide di f sull intervllo [,b] è l regione di pino delimitt dll sse =, dlle rette = e = b e dl grfico di f. Viene

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Chapter 1. Integrali doppi

Chapter 1. Integrali doppi Chpter 1 Integrli doppi Nelle presenti note esporremo un pproccio semplificto ll teori degli integrli doppi. efiniremo tli integrli direttmente su domini normli, come limiti di opportune somme integrli.

Dettagli

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri ANALISI 1 1 VENTIDUESIMA LEZIONE Integrli impropri 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Lezione 4: Introduzione al calcolo integrale

Lezione 4: Introduzione al calcolo integrale Lezione 4: Introduzione l clcolo integrle PARTE In quest prim prte si introdurrnno i concetti di integrle indenito, denito e improprio. In prticolre si cercherà di trttre in modo intuitivo l'interpretzione

Dettagli

Capitolo IV Cenni di calcolo integrale

Capitolo IV Cenni di calcolo integrale Liceo Lugno, - 4B (Luc Rovelli) Cpitolo IV Cenni di clcolo integrle. Introduzione: ree e funzioni primitive Il clcolo integrle si occup principlmente di questioni, pprentemente senz relzione tr loro: dti,

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Appunti ad uso degli studenti del Corso di Matematica per CTF

Appunti ad uso degli studenti del Corso di Matematica per CTF Appunti d uso degli studenti del Corso di Mtemtic per CTF Prof. Sergio Steffè, AA2016/17 Sommrio Questi ppunti sono scritti su misur per gli studenti del corso di Mtemtic per CTF dell Anno Accdemico 2016/17,

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se Cpitolo 6 Integrli L opertore derivt D ssoci d un funzione f l su derivt: Df f 0 Ci ciedimo se è possiile invertire quest operzione, vle dire trovre un funzione l cui derivt si un funzione ssegnt Definizione

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.mtefili.it ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si D il dominio di un funzione rele di vribile rele f (x) e si x 0 un elemento di D: definire l continuità e l discontinuità di

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A Prim prov scritt di Anlisi Mtemtic 1 del 10/01/2011 A (1) Fornire l definizione di funzione integrbile secondo Riemnn e di integrle di Riemnn. (2) Enuncire e dimostrre il Teorem di Rolle. (3) Dimostrre

Dettagli

Elenco dei teoremi dimostrati a lezione

Elenco dei teoremi dimostrati a lezione Elenco dei teoremi dimostrti lezione Muro Sit murosit@tisclinet.it In queste pgine si riport l elenco dei teoremi dimostrti lezione. 1 1 Principio di induzione. 1. Utilizzndo il principio di induzione

Dettagli

14 - Integrazione numerica

14 - Integrazione numerica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 4 - Integrzione numeric Anno Accdemico 205/206 M. Tumminello, V.

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Integrali. Alessandro Fallica Liceo Ginnasio Statale G. Verga Adrano. 3 aprile 2014

Integrali. Alessandro Fallica Liceo Ginnasio Statale G. Verga Adrano. 3 aprile 2014 Integrli Alessndro Fllic Liceo Ginnsio Sttle G. Verg Adrno 3 prile 2014 Indice 1 Differenzile di un funzione 2 1.1 Definizione di differenzile.................... 2 1.2 Significto geometrico del differenzile

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

Trasformate di Laplace nel campo reale

Trasformate di Laplace nel campo reale Trsformte di Lplce nel cmpo rele Funzioni generlmente continue Definizione. Un funzione f si dice generlmente continu in (, b) se esistono un numero finito di punti x = < x < < x n = b tli che f è definit

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

II-8 Integrale di Riemann

II-8 Integrale di Riemann II-8 INTEGRALE DI RIEMANN DEFINIZIONE DI INTEGRALE DI RIEMANN II-8 Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle

Dettagli

Calcolo Integrale. Avviso. Integrazione analitica. Proprietà dell integrale

Calcolo Integrale. Avviso. Integrazione analitica. Proprietà dell integrale M. Annunzito, DMI Università di Slerno - documento provvisorio p. 3/18 M. Annunzito, DMI Università di Slerno - documento provvisorio p. 4/18 Avviso I contenuti di queste nnotzioni non sono esustivi i

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Analisi Matematica 1 Venticinquesima lezione[1cm]integrale di Riemann 5 marzo (cont.) / 20

Analisi Matematica 1 Venticinquesima lezione[1cm]integrale di Riemann 5 marzo (cont.) / 20 Anlisi Mtemtic 1 Venticinquesim lezione Integrle di Riemnn (cont.) prof. Cludio Sccon Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Il metodo di esaustione

Il metodo di esaustione Clcolo integrle Il metodo di esustione Il metodo di esustione y= 2 =0 Il metodo di esustione y= 2 k =0= 0 k n n 1 2 = n Il metodo di esustione y= 2 k 0 k n n 1 2 f( ) k n k n 2 Il metodo di esustione y=

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica Corso di lure in Mtemtic SAPIENZA Università di Rom Note del corso di Lbortorio di Progrmmzione e Clcolo: Integrzione numeric Diprtimento di Mtemtic Guido Cstelnuovo SAPIENZA Università di Rom Indice Cpitolo

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

09 IL CALCOLO INTEGRALE

09 IL CALCOLO INTEGRALE 9 IL CALCOLO INTEGRALE Il Clcolo integrle h come fine quello di risolvere due prolemi: Prolem (ntiderivzione) Si I un intervllo; dt f : I R, dire se esiste un funzione G derivile in I tle che G ' f. Prolem

Dettagli

Successioni di Funzioni e Serie di Potenze 1

Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni e Serie di Funzioni 1.1 Successioni di Funzioni Al lettore sono già note le successioni numeriche.

Dettagli

Programma di Matematica a.a. 2018/2019

Programma di Matematica a.a. 2018/2019 Progrmm di Mtemtic.. 2018/2019 LIMITI Concetto di intorno e di limite di un funzione Definizione di limite finito di un funzione in un punto, limite infinito in un punto, limite finito ll infinito e limite

Dettagli

11. I teoremi del calcolo differenziale, I

11. I teoremi del calcolo differenziale, I 11. I teoremi del clcolo differenzile, I 11. Funzioni di clsse C 1 Abbimo visto, cfr Cpitolo 9, che l esistenz delle sole derivte przili non è sufficiente grntire l differenzibilit in un punto dto. Pero

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgebric di monomi. Esempio: b ; y y ; b c sono polinomi. I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

Successioni di Funzioni e Serie di Potenze

Successioni di Funzioni e Serie di Potenze Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Considerimo un successione numeric il cui vlore dipende d un vribile che denotimo con x:

Dettagli

Successioni di Funzioni e Serie di Potenze

Successioni di Funzioni e Serie di Potenze Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Nel corso di nlisi di bse si sono studite le successioni numeriche. Qui considerimo un

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i!

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i! Esercitzioni di Sttistic Mtemtic A Lezione 6 Appliczioni dell legge dei grndi numeri e dell formul di Chebicev 1.1) Si {X i } i N un successione di vribili letorie i.i.d. (indipendenti ed identicmente

Dettagli