Università della Calabria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università della Calabria"

Transcript

1 Unverstà dell Clbr FACOLTA DI IGEGERIA Corso d Lure n Ingegner Cvle CORSO DI IDROLOGIA.O. Prof. Psqule Versce Y 6 ( 6, 6 (, e e 6 6 f( 6 (, e SCHEDA DIDATTICA 6 REGRESSIOE E CORRELAZIOE A.A. -

2 REGRESSIOE E CORRELAZIOE Molto spesso nell prtc s rlev che tr due (o pù vrbl rppresentnt fenomen del mondo rele poss esstere un qulche relone. Per esempo l peso de msch dult dpende n qulche grdo dll loro lte; l crconferen de cerch dpende dl loro rggo. L regressone è l tecnc per ndvdure un equone che descrv n termn mtemtc l legme fr le vrbl, ed n prtcolre tr un o pù vrbl ndpendent ed un vrble dpendente prtre d un cmpone d osservon. Con l termne correlone s ndc, nvece, l grdo d relone esstente tr le vrbl e per meo d ess s cerc d determnre qunto bene un cert equone descrv o spegh tle relone. Qundo s consderno solo due vrbl s prl d regressone e correlone semplce, qundo nvece s consderno pù d due vrbl s prl d regressone e correlone multpl. el seguto verrà consderto solo l cso dell regressone e dell correlone semplce ndcndo con Y l vrble dpendente e con l vrble ndpendente. REGRESSIOE Il prmo psso nell determnone d un legme funonle Yf( che legh le vrbl n esme è l rccolt d dt che mostrno vlor corrspondent delle vrbl consderte. Ad esempo se ed Y ndcno rspettvmente l lte ed l peso d persone dulte, consderndo un cmpone d ndvdu è possble, per cscuno d ess, msurre l copp d vlor (,, con,, che ne rppresentno l lte ed l peso rspettvmente. Il psso seguente consste nel rportre punt determnt dlle coppe d vlor (,, (,,..., (, su un sstem d coordnte crtesne ottenendo l cosddetto dgrmm d dspersone (fg.. e fenomen rel è ltmente mprobble che dt s dspongno perfettmente lungo un curv seguendo un relone estt, è pù corretto qund consderre l espressone Y f( e (

3 n cu e rppresent un termne d errore (o dsturbo che crtter le dfferene tr vlor d Y osservt e quell che s ottengono nvece dll relone funonle con l. In questo modo Y è un vrble csule rsultnte dll somm d un componente determnstc, f(, e d un componente stocstc e. Obettvo dell nls d regressone è quello d esplctre l form funonle dell componente determnstc ndvdundo l curv che meglo nterpol l relone pott tr ed Y secondo crter specfct nel prgrfo successvo. L nls d regressone consente qund d: vsulre l relone tr due vrbl; effetture operon d nterpolone ed estrpolone per rcvre l vlore dell vrble dpendente n cs non osservt per un fssto vlore dell vrble ndpendente. Spesso è possble ndvdure l tpo d legme n grdo d pprossmre dt prtre dll osservone del dgrmm d dspersone: se dt sono bene nterpolt d un rett s dce che esste un relone lnere ltrment è un relone non-lnere. el seguto consdereremo solo l cso d relone lnere. Y Y b Fgur - Dgrmm dspersone e curve nterpolnt. legme lnere; b legme non-lnere

4 LA RETTA DI REGRESSIOE CO IL METODO DEI MIIMI QUADRATI Il tpo pù semplce d curv nterpolnte è l rett. In questo cso l legme funonle tr ed Y (trscurndo l errore e h l espressone generle: Y ( n cu ed che costtuscono rspettvmente l ntercett ed l coeffcente ngolre dell rett d regressone. Coeffcente ngolre: nclnone dell rett Esempo Y.75 Intercett: vlore d Y per Fgur Rett d regressone Per determnre vlor de prmetr ed è necessro defnre l crtero d mglore nterpolnte d un determnto nseme d osservon. Sno le coppe (, con,,, l nseme de dt osservt de qul voglmo descrvere l comportmento mednte un funone lnere. ell fgur 3 per un dto vlore, sono stt evdent gl error e, coè le dfferene tr l vlore osservto ed l corrspondente vlore equone: determnto nvece sull rett d (3

5 Y 6 ( 6, 6 (, e e 6 6 f( 6 (, e Fgur 3 Rppresentone grfc del modello d regressone lnere Un msur dell bontà dell nterpolone effettut per meo dell rett è fornt propro dll somm de qudrt degl error, e e e : qunto pù tle somm è pccol, tnto pù l nterpolone è buon. Tr tutte le rette nterpolnt un dto nseme d punt quell vente l propretà d mnmre l somm S de qudrt degl error S e ( vene defnt come mglore nterpolnte o rett de mnm qudrt. I prmetr ed dell rett de mnm qudrt devono essere tl che: ( ( [ ] mn S (5 S è mnmo qundo le dervte prl d S rspetto d ed vlgono ero. Allor mponendo le condon: S ( (4 (6 S ( (7 e semplfcndo s ottene un sstem d due equon lner nelle due ncognte ed. Le equon precedent semplfcte sono usulmente ndcte come equon norml dell rett de mnm qudrt:

6 (8 (9 Le due equon precedent costtuscono un sstem, lnere che può essere rppresentto n form mtrcle come A Y, dove: A :vettore con prmetr dell rett che rppresentno le ncognte; : mtrce de coeffcent Y : vettore de termn not Uno de mod possbl d rsolvere l problem è l seguente: e Rsolvendo s h: ( ( ( ( ( ( ( ( ( ( ( L rett de mnm qudrt è unc e pss ttrverso l punto determnto dll copp d vlor (, costtut dlle mede delle osservon ed.

7 e Inoltre, l rett de mnm qudrt è tle per cu (tle propretà dscende dll equone (6. Le equon norml, nfne, possono essere rscrtte n modo d determnre prmetr n mner opertvmente pù semplce: ( ( ( ( (3 Le precedent equon (-3 sono stte dervte per l cso n cu è l vrble ndpendente ed Y è l vrble dpendente. In mner del tutto nlog nel cso n cu s consdert vrble dpendente s possono ottenere le relon vlde per l stm de prmetr dell rett d regressone d su Y b b Y (4 In tl cso vengono consderte le devon orontl nvece che vertcl.

8 CORRELAZIOE LIEARE Consdermo due vrbl ed Y le cu osservon rportte n un dgrmm dspersone sembrno dspors ntorno d un rett: n tl cs s è vsto come per gl scop dell regressone s pproprto consderre un relone lnere; n questo cso s prl, qund, d correlone lnere. E possble determnre n modo qulttvo l bontà dell ccostmento dell rett d regressone per meo dell osservone drett del dgrmm dspersone. Se Y tende crescere l crescere d l correlone è dett postv (fg. 4, se Y tende decrescere l crescere d l correlone è dett negtv o nvers (fg. 4b. Se tutt punt del dgrmm s dspongono propro su un rett vuol dre che le vrbl soddsfno esttmente un equone dcmo che le vrbl sono perfettmente correlte ovvero che tr loro esste un correlone perfett (fg. 4c: d esempo l crconferen C ed l rggo r d ogn cercho sono perfettmente correlt dl momento che Cπr. Se nvece non c è lcun relone tr le vrbl s dce che non c è correlone tr esse coè sono ncorrelte (fg. 4d. b c d Fgur 4 correlone lnere postv; b correlone lnere negtv; c correlone perfett; d vrbl ncorrelte.

9 Per vere un vlutone quntttv dell bontà dell ccostmento è però opportuno fre rfermento d ndc sntetc. MISURE DI CORRELAZIOE Devn spegt e resdu S consder l denttà, vld per,,,, llustrt nell fgur 5, ( ( ( e ( (5 Y ( ( ( Fgur 5 L denttà precedente elevt l qudrto e sommt per,,,, dvent: ( ( ( ( ( (6 nell qule è possble defnre: ( ( ( Il doppo prodotto ( ( Dftt: devn totle d Y devn resdu devn spegt nell precedente espressone è nullo.

10 ( ( (7 e qund: ( ( ( ( ( ( ( e (8 per le equon (6-7 rcvte n preceden. Il clcolo dell devn totle d Y, qund, può essere rcondotto ll seguente espressone: ( ( ( (9 ovvero devn totle devn resdu devn spegt. Tle decomposone fferm che l vrbltà totle del fenomeno Y che s cerc d spegre trmte un relone lnere con l fenomeno, è sempre n prte ttrbuble ll rett d regressone (devn spegt ed n prte è dovut gl error e (devn resdu. Tnto mggore srà l contrbuto dell devn spegt tnto pù l relone lnere pott ruscrà spegre l vrbltà d Y (rett pù vcn vlor cmponr. Coeffcente d determnone Un ndce dell bontà d ccostmento dell rett d regressone dt cmponr può essere defnto ttrverso l rpporto tr l devn spegt e devn totle, ndcto come coeffcente d determnone. ( ( devntotle devnspegt r ( Il coeffcente d determnone è un grnde dmensonle e può vrre tr ero ed uno. Se l devn spegt vle ero, coè vlor stmt sono tutt costnt e pr ll med de vlor osservt, tle coeffcente vle ero. Il coeffcente è, nvece, pr d uno qundo l devn resdu vle ero, coè vlor osservt e stmt concdono. e cs rel nturlmente s h un stuone ntermed che ndc l percentule d vrbltà totle spegt dll rett d regressone.

11 Y Y r r Fgur 6- Estrem d vrone dell ndce r Coeffcente d correlone L rdce qudrt del coeffcente d determnone vene ndct come coeffcente d correlone che ssume vlor compres tr ed. devnspegt r ± ( devntotle Il segno o (d determnre n bse d un nls del dgrmm dspersone ndc rspettvmente l cso d correlone lnere postv o negtv. Il coeffcente d correlone può essere clcolto nche ttrverso l seguente espressone, ndct come formul de moment mst: r ( ( ( ( ( In tl cso d r vene utomtcmente ssocto l segno corretto. Le propretà del coeffcente d correlone sono le seguent smmetr r(,y r(y, se ed Y sono ndpendent r(,y 3 r(,y ± Y ± coè tr ed Y esste un perfetto legme lnere. Rscho dell nterpretone on necessrmente un cert correlone mplc un rpporto d cus ed effetto tr le vrbl. Ad esempo c può essere un lt correlone tr l numero d omcd ed l

12 numero d scerdot n un comuntà. In tl cso s prl d rpporto d correlone spuro. Sgrette Urbnone Cncro Rpporto cus-effetto scerdot omcd Correlone spur ESEMPIO (SCHAUM L tbell rport pes ed Y d un cmpone d pdr e de loro rspettv fgl prmogent. Costrure l dgrmm dspersone; Trovre l rett de mnm qudrt d Y su ; 3 Clcolre l coeffcente d correlone ed l coeffcente d determnone. Rsoluone Il lvoro necessro per clcol può essere orgnto come nell tbell che segue. Dt Elboron Y (- (Y-Y (- (Y-Y somm med Il dgrmm dspersone s ottene rportndo punt (,Y su un sstem d coordnte crtesne (fg.7.

13 L rett d regressone d Y su è dt d Y dove ed vengono ottenut prtre dlle equon norml. ( ( ( L rett h pertnto equone Y (fg.7. (, Fgur 7 3 Il clcolo del coeffcente d correlone lnere può essere effettuto ttrverso l formul de moment mst: r ( ( ( ( L correlone è postv, nftt, l stm d Y con l rett d regressone ument ll umentre d. Il coeffcente d determnone pertnto rsult: r.494

14 APPEDICE A. el cso n cu l curv nterpolnte s un prbol d espressone: Y (3 s consderno le coppe (, con,,, e corrspondent vlor teorc : (4 e s defnsce, come nel cso dell regressone lnere, l funone obettvo S come: ( e S (5 I prmetr, ed dell prbol de mnm qudrt devono essere tl che: ( ( [ ] mn S (6 S è mnmo qundo le dervte prl rspetto d, ed vlgono ero. Allor mponendo le condon: ( S (7 ( S (8 ( S (9 s ottene l seguente sstem lnere d rsolvere nelle ncognte, ed : 4 3 3

15 che può essere rscrtto n form mtrcle nel modo seguente: B A M con M A B A. el cso d regressone lnere multpl con vrbl ndpendent e Y e con l vrble dpendente Z, s h l seguente espressone teorc: Z Y (3 S consderno le terne (,, con,,, e corrspondent vlor teorc : (3 S defnsce l funone obettvo S come: ( e S (3 I prmetr, ed devono essere tl che: ( ( [ ] mn S (33 S è mnmo qundo le dervte prl rspetto d, ed vlgono ero. Allor mponendo le condon: ( S (34 ( S (35 ( S (36

16 s ottene l seguente sstem lnere d rsolvere nelle ncognte, ed : (37 che può essere rscrtto n form mtrcle nel modo seguente: B A M (38 con M A B A.3 el cso d regressone semplce non lnere n cu s utl un legge d poten del tpo: Y (39 c s può rcondurre l cso dell regressone semplce lnere pplcndo d mbo membr l logrtmo nturle: ( L A LY Y ln ln ln ln ln ln (4 con ln A, Y LY ln e L ln S consderno dunque le coppe (ln, ln con,,, e s segue l procedur descrtt dlle espresson (-( o (-(3 l fne d stmre A e ; successvmente s porrà A e

17 A.4 el cso d regressone multpl non lnere n cu s utl un legge d poten del tpo: Z Y (4 c s può rcondurre l cso dell regressone multpl lnere, descrtt nell seone A.3 dell presente ppendce, pplcndo d mbo membr l logrtmo nturle: ln ( Y ln Z ln ln ln lny ln lny LZ A L con A ln, LZ ln Z, L ln e LY lny S consderno dunque le terne (ln, ln, ln con,,, e rsolve un sstem lnere nlogo quello descrtto nell seone A.3 l fne d stmre A, e ; A successvmente s porrà e LY (4

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Appunti su. Elementi fondamentali di Algebra Lineare

Appunti su. Elementi fondamentali di Algebra Lineare CORSO DI RICERC OPERTIV ppunt su Element fondmentl d lger Lnere cur del Prof. Guseppe runo Ultmo ggornmento: prle VETTORI, MTRICI E DETERMINNTI. Defnzon generl Un mtrce d dmensone o ordne (m n) è un nseme

Dettagli

INTERPOLAZIONE STATISTICA

INTERPOLAZIONE STATISTICA ITERPOLAZIOE STATISTICA ell esme d fenomen collettv spesso c trovmo confrontre le coppe d vlor tr due vrl potzzndo v s un relzone tr loro; è noto, d esempo, v s relzone tr prezzo e domnd d un ene, reddto

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.uno.t/pers/mstr/ddttc.tm (ersone del 9-3-0) Teorem d Tellegen Ipotes: Crcuto con n nod e l lt ers d rfermento scelt per tutt lt secondo l conenzone dell utlzztore {,..., l } =

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Strutture cristalline 1

Strutture cristalline 1 Chmc fsc de mterl Strutture crstllne Sergo Brutt Impcchettmento comptto n 2D Esstono 2 dfferent mod d rrngre n un pno 2D crconferenze dentche n modo d tssellre n modo comptto lo spzo dmensonle: Impcchettmento

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

Relazioni Input/Output c

Relazioni Input/Output c Relon Input/Output c 44 Vrble d stto L pprocco con le vrbl d stto è un generlone delle equon lle dfferene per fltr cusl che ncludere un descrone dello stto nterno dell rete, usndo relon nloghe lle relon

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015 Leo Sentfo Sttle A. Volt, Torno Anno solsto 0 / 0 Cognome e Nome: LOGARITMI ED ESPONENZIALI Complet on l equone d sun funone: A) B) C) D) 0) Qule funone pss per l punto ( ; ) ed è sempre postv? 0) L funone

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Taratura Statica. Uscita. Uscita Modello (statico) dello. Misurando. misurando. = y 0. Cosa è la taratura statica?

Taratura Statica. Uscita. Uscita Modello (statico) dello. Misurando. misurando. = y 0. Cosa è la taratura statica? Trtur Sttc os è l trtur sttc (RELZIOI DI IGRESSO-USIT, SESIILIT STTI SSOLUT, TIPI DI ERRORI, DIGR DI TRTUR) ome s effettu (mednte cmpon prmr, per confronto) etod d regressone Vldzone mednte nls de resdu

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff A. hoon esercz Fsc II QUINTA LEZIONE: corrente elettrc, legge ohm, crc e scrc un conenstore, legg Krchoff Eserczo Un conuttore clnrco n rme vente sezone re S mm è percorso un corrente ntenstà 8A. lcolre

Dettagli

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H sultt esme scrtto Fsc del //6 orl: //6 lle ore. presso ul H gl student nteresst vsonre lo scrtto sono pregt d presentrs l gorno dell'orle mtrcol voto 98 7 mmesso 8 7 mmesso 7 7 mmesso 6 7 mmesso 9 7 mmesso

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro LABORATORIO II B create un nuovo foglo d lavoro La retta d regressone Eserco. U PRIMO ESEMPIO DI RETTA DI REGRESSIOE LIEARE. Leggere attentamente paragraf.,. e. tutto Costrure la retta d regressone lneare

Dettagli

Integrazione numerica

Integrazione numerica Cludo Esttco cludo.esttco@usur.t Itegrzoe umerc Itegrzoe Numerc Itegrzoe umerc Formule d qudrtur. Grdo d esttezz. 3 Metodo de coecet determt. 4 Formule d Newto-Cotes semplc. Formule d Newto-Cotes composte.

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Clssfczone: domno pubblco Formule d ggudczone Mnule d supporto ll utlzzo d Sntel per stzone ppltnte FOMULE DI AGGIUDICAZIONE Formule d ggudczone 18 Ottobre 2016 Pgn 1 d 29 Indce AZIENDA EGIONALE CENTALE

Dettagli

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno

Dettagli

Quadratura S = S = F (b) F (a).

Quadratura S = S = F (b) F (a). Qudrtur Formule d qudrtur nterpoltore S f un funzone rele defnt su un ntervllo [, b]. studre è quello dell pprossmzone dell ntegrle Il problem che s vuole S = f(x) dx. () Nel cso n cu l f s un funzone

Dettagli

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a,

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a, Relzon bnre Un relzone bnr d un nseme A d un nseme B è un sottonseme R del prodotto crtesno A B Dremo che un elemento A è n relzone con un elemento b B, e scrveremo b se, e solo se, (, b) R Rppresentzone

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Effetti dell implementazione digitale

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Effetti dell implementazione digitale INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Effett dell mplementone dgtle Prof. Crlo Ross DEIS - Unverstà d Bologn Tel: 05 09300 eml: cross@des.unbo.t Implementone dgtle Introduone L mplementone degl

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. ( Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d (n+ punt <

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari REGRESSIONE LINEARE Ha un obettvo mportante: nvestgare sulle relazon emprche tra varabl allo scopo d analzzare le cause che possono spegare un determnato fenomeno È caratterzzata da semplctà: modell utlzzat

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

Circuiti Elettrici Lineari Teoremi delle reti elettriche

Circuiti Elettrici Lineari Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Crcut Elettrc ner Teorem delle ret elettrche Crcut Elettrc ner.. 08/9 Prof. uc Perregrn Teorem delle ret elettrche,

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI METODI PER LO STUDIO DEL LEGAME TRA VARIABILI IN UN RAPPORTO DI CAUSA ED EFFETTO I MODELLI DI REGRESSIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Spettroscopia rotazionale

Spettroscopia rotazionale Spettrosop rotzonle n prm pprossmzone l desrzone dello spettro rotzonle d un moleol tom f rfermento ll trttzone QM del rottore rgdo due msse he ruotno ttorno d un sse perpendolre l legme e pssnte per l

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Ingegneria Energetica, Nucleare e del Controllo Ambientale

Ingegneria Energetica, Nucleare e del Controllo Ambientale Alm Mter Studorum nverstà d ologn DOTTORATO DI RICERCA IN Ingegner Energetc, Nuclere e del Controllo Ambentle Cclo XXII Settore scentfco-dscplnre d fferenz: ING-IND/9 IMPIANTI NCLEARI Tecnche MonteCrlo

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Esempi di programmazione assembly

Esempi di programmazione assembly Corso d Clcoltor Elettronc I Esemp d progrmmzone ssembly ng. Alessndro Clrdo Corso d Lure n Ingegner Bomedc Progrmm con mtrc Scrvere un progrmm che conteng n memor un mtrce d byte d dmensone RG x CL (RG

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Campi Elettromagnetici e Circuiti I Parametri di diffusione

Campi Elettromagnetici e Circuiti I Parametri di diffusione Fcoltà d Ingegner Unverstà degl stud d Pv Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Prmetr d dffusone Cmp Elettromgnetc e Crcut I.. 05/6 Prof. Luc Perregrn Prmetr

Dettagli

materiale didattico I incontro

materiale didattico I incontro Pano Nazonale Lauree Scentfche (PLS 2016-2017) Statstca Laboratoro d Statstca Le relazon tra varabl prof.ssa Angela Mara D'Uggento angelamara.duggento@unba.t materale ddattco I ncontro Dall anals statstca

Dettagli

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni Unverstà d Rom "L Spenz" Fcoltà d Ingegner Corso d Lure n Ingegner Informtc Corso d Clcoltor Elettronc II Tem d'esme (Second prov) Alcun test e reltve soluzon Appello del 23 luglo 2002 Tem n. 2 Un cche

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù crtter qutttv o vrl. L rcerc de legm etet r pù vrl poe come rcerc delle relzo uzol che pogoo come grdezz dpedete d u ere d

Dettagli

Integrazione di funzioni

Integrazione di funzioni tegrzoe d uzo l prolem dell tegrzoe umerc d u uzoe cosste el clcolre l vlore dell tegrle deto d prtre d umeros vlor dell uzoe tegrd l clcolo umerco d u tegrle semplce v sotto l ome d qudrtur meccc quello

Dettagli

Regressione e correlazione

Regressione e correlazione Regressone e correlazone Corso d statstca socale prof. Natale Carra - Unverstà degl Stud d Bergamo a.a. 005-06 Regressone Questo modello d anals bvarata esamna le relazon fra coppe d varabl contnue. Un

Dettagli

Esercizi sul calcolo dei carichi invernali ed estivi di progetto

Esercizi sul calcolo dei carichi invernali ed estivi di progetto Esercz sul clcolo de crch nvernl ed estv d progetto CESARE MARIA JOPPOLO, STEFANO DE ANTONELLIS, LUCA MOLINAROLI DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO C. M. Joppolo, S. De Antonells, L. Molnrol

Dettagli

Problemi Omogenei e Non Omogenei

Problemi Omogenei e Non Omogenei Le Condzon l Contorno Tpo: Tepertur Fsst T = f r, t sul contorno S T = sul contorno S Tpo: Flusso Fssto T n = f rt, sul contorno S T n = sul contorno S 3 Tpo: Sco Convettvo T k + ht = f ( r, t) sul contorno

Dettagli

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt =<

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

UNIVERSITÀ DELLA CALABRIA

UNIVERSITÀ DELLA CALABRIA UNIVERSITÀ DELLA CALABRIA Dprtmento d Ingegner Cvle Are d Ingegner Lure Mgstrle n Ingegner Cvle - Trsport Corso d Pnfczone de Trsport MODELLI DI MOBILITÀ E MODELLI DI SCELTA DI VIAGGIO : APPLICAZIONI AD

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

436 Capitolo 17. Equazioni frazionarie e letterali Equazioni di grado superiore al primo riducibili al primo grado

436 Capitolo 17. Equazioni frazionarie e letterali Equazioni di grado superiore al primo riducibili al primo grado 46 Cpitolo 7 Equzioni frzionrie e letterli 74 Esercizi 74 Esercizi dei singoli prgrfi 7 - Equzioni di grdo superiore l primo riducibili l primo grdo 7 ( ) Risolvere le seguenti equzioni riconducendole

Dettagli

Alcune proprietà dei circuiti lineari

Alcune proprietà dei circuiti lineari Unerstà degl Stud d Cssno lcune propretà de crcut lner ntono Mffucc, Fo Vllone 00/00 er 09/00 IL PINCIPIO DI SOVPPOSIZION DGLI FFTTI Il prncpo d sorpposzone degl effett è forse l pù mportnte conseguenz

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH ESEZO.0: egnto l crcuto d fgur.0, relzzto trmte l collegmento d pol lner, determn l equvlente d Thévenn del polo d morett e pendo che con l retenz L 45 W, conne morett, mur 90, mentre con L non conne mur

Dettagli

VARIABILI ALEATORIE (v.a.) DISCRETE

VARIABILI ALEATORIE (v.a.) DISCRETE Corso d Sttstc, Lure Ecoom Azedle, Uverstà C. Ctteo, Cstellz, 7 Ottobre 008. 008 R. D Agò VARIABILI ALEATORIE: SIMBOLOGIA, DEFINIIONI, PROPRIETA VARIABILI ALEATORIE (v.. DISCRETE pgg. -3 VARIABILI ALEATORIE

Dettagli

Esempi di programmazione assembly

Esempi di programmazione assembly Corso d Clcoltor Elettronc I A.A. 2012-2013 Esemp d progrmmzone ssembly ng. Alessndro Clrdo Accdem Aeronutc d Pozzuol Corso Pegso V GArn Elettronc Progrmm con mtrc Scrvere un progrmm che conteng n memor

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Università della Calabria

Università della Calabria Uverstà dell Clbr FACOLTA DI INGEGNERIA Corso d Lure Igeger Cvle CORSO DI IDROLOGIA N.O. Prof. Psqule Versce SCHEDA DIDATTICA N 0 ISOIETE E TOPOIETI A.A. 200- ISOIETE Il metodo delle soete, o lee d ugule

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Parametri di Impedenza. Parametri di Ammettenza. Parametri Ibridi. Parametri Ibridi inversi. Parametri di Trasmissione

Parametri di Impedenza. Parametri di Ammettenza. Parametri Ibridi. Parametri Ibridi inversi. Parametri di Trasmissione Modello due porte Rete elettrc con due porte e quttro termnl (qudrupolo) quttro rbl,,, 6 possbl mod d relonre le quttro rbl. b b b b f) e) g g g g d) c) b) ) Prmetr d Impeden Prmetr d Ammetten Prmetr Ibrd

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Capitolo 5. Il Sistema Satellitare GPS

Capitolo 5. Il Sistema Satellitare GPS Cptolo 5 Il stem telltre GP 5. Descrzone del sstem L nvgzone stelltre nsce con l lnco dello putn d prte dell U nell ottobre 957; l osservzone dello shft-doppler sull frequenz delle converszon dllo putn

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli