Soluzioni A - Test d ingresso alla Prova Scritta di Controlli Automatici A del 8 Maggio 2004

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni A - Test d ingresso alla Prova Scritta di Controlli Automatici A del 8 Maggio 2004"

Transcript

1 Soluzioni A - Tet d ingreo ll Prov Sritt di Controlli Automtii A del 8 Mggio 004 ) Srivere l funzione di trferimento di un item dinmio vente i modi{ t in(4 t e t ϕ), te in(4 t ϕ) } T() ( ) 6 ( ) ) Dto un item dinmio Σ on funzione di trferimento T() tbilire: 4 ( 5) ( ) ٱx flo ٱ Σ è intotimente tbile: vero ٱflo ٱx Σ è empliemente tbile vero ٱx flo ٱ Σ è intbile: vero ٱflo ٱx Σ è fe minim: vero ٱx flo ٱ Σ è tbile ingreo-limitto uit limitt: vero 4 ) Un item dinmio Σ h il polinomio rtteritio 4 5 tbilire: ٱx flo ٱ Σ è empliemente tbile vero ٱx flo ٱ Σ è tbile ingreo-limitto uit limitt: vero Σ è fe minim: vero flo x non è poibile tbilirlo 4) Ad un item dinmio in quiete on funzione di trferimento viene pplito l ingreo 4 4t ut () = 8() t (egnle grdino). L uit orripondente h l truttur yt () = A Be per t > 0. Determinre le otnti A = e B = ) Il digrmm polre oito ll funzione di trferimento L () = preent un intoto vertile ( ) prllelo ll e immginrio. Determinre l i rele σ di tle intoto: σ = 5 6) Un item retrozionto è intotimente tbile. Il digrmm polre del gudgno di nello oito h inque interezioni on l e rele negtivo in 0, 0,5 5. Determinre il mrgine di mpiezz M A = 7) Determinre l trformt di Lple del egnle f () t = t () t : F () = 8) Un item dinmio Σ è rppreentto dll funzione di trferimento uoi poli: { poli di Σ } = {, 4}. Determinre i ( )( )( 4) 9) Dto il egnle definito d f ( t) = 0 per t < 0 e f( t) = 4 t per t 0 determinrne l derivt eond generlizzt: * () D f t = δ t δ t () 4 () () 0) Dto un item rppreentto dll eq. differenzile ( ) yt () è l uit tbilire: 0 vero x flo Se 5 vero flo x Se D D 4D 8 y = u dove ut () è l ingreo e 0 vero x flo 5 vero x flo

2 B - Tet d ingreo ll Prov Sritt di Controlli Automtii A del 8 Mggio 004 ( ) ) Dto un item dinmio Σ on funzione di trferimento T() 4 ( ) ( ) tbilire: ٱx flo ٱ Σ è intotimente tbile: vero ٱx flo ٱ Σ è empliemente tbile vero ٱ flo ٱx Σ è intbile: vero ٱ flo ٱx Σ è fe minim: vero ٱx flo ٱ Σ è tbile ingreo-limitto uit limitt: vero ) Un item dinmio Σ h il polinomio rtteritio tbilire: ٱx flo ٱ Σ è tbile ingreo-limitto uit limitt: vero ٱ flo ٱx Σ è empliemente tbile vero Σ è fe minim: vero flo non è poibile tbilirlo x ) Ad un item dinmio in quiete on funzione di trferimento viene pplito l ingreo t ut () = 4() t (egnle grdino). L uit orripondente h l truttur yt () = A Be per t > 0. Determinre le otnti A = e B =. 4) Srivere l funzione di trferimento di un item dinmio vente i modi{ t in( t e t ϕ), te in( t ϕ) } T() ( ) ) Il digrmm polre oito ll funzione di trferimento L () = preent un intoto ( ) ( ) vertile prllelo ll e immginrio. Determinre l i rele σ di tle intoto: σ = 0 6) Un item retrozionto è intotimente tbile. Il digrmm polre del gudgno di nello oito h inque interezioni on l e rele negtivo in 0, 0, 4. Determinre il mrgine di mpiezz M A = 7) Dto un item rppreentto dll eq. differenzile ( ) e yt ( ) è l uit tbilire: 0 vero x flo Se 5 vero flo x Se D D 7D y = (D ) u dove ut ( ) è l ingreo 0 vero flo x 5 vero x flo 8) Determinre l trformt di Lple del egnle 6 f () t = t () t : F () = 9) Un item dinmio Σ è rppreentto dll funzione di trferimento uoi poli: { poli di Σ } = {, 4}. Determinre i ( )( )( 4) 0) Dto il egnle definito d f ( t) = 0 per t < 0 e f( t) = 5 t per t 0 determinrne l derivt eond generlizzt: () * D f t = δ t δ t () () 5 ()

3 Soluzione Prte A A ) T = =.5 j ) P( j) =.9e, d ui, regime, yt ( ) 8. en(t.5). A Dll equzione dell dinmi linere poimo rivere MD yt () = Kut ( () yt ()) LDut ( () Dyt ()) d ui ottenimo L K Y() U() M L K L pulzione delle oillzioni e pri ll prte immginri dei poli, d ui l frequenz 4MK L e f = = 0.5hertz, π M per qunto rigurd l elerzione inizile, derivimo l equzione dell dinmi MD yt ( ) = KDut ( ( ) Dyt ( )) LDut ( ( ) Dyt ( )) pplindo le relzioni ulle ondizioni inizili ottenimo l equzione y = y M 0 Dy Dy L 0 u u L M = Dy Dy K L Du Du Lv Lv vito he u = u e Du Du = v, ottenimo Dy = Dy e Dy = Dy = =.78 m/, M M dove Dy = 0, vito he prim dell frent il item è regime. In lterntiv poimo fre l otituzione α = Dy, β = Du e ottenimo MD α() t = K( β() t α()) t L( Dβ() t Dα()) t, interpretndo l derivt ome derivt generlizzt ottenimo M( Α( ) ( α Dα)) = K( Β( ) Α ( )) L( Β( ) β Α ( ) α), on l derivt ordinri M( Α( ) ( α Dα )) = K( Β( ) Α ( )) L( Β( ) β Α ( ) α ), dll uguglinz dei termini di grdo 0 ottenimo M( Dα Dα ) = L( α α β β ), d ui, vito he α α = 0 (perhe il item h grdo reltivo ), β = v, β = 0, Dα = 0, i ottiene lo teo riultto di prim. Lo teo riultto i puo ottenere in modo più emplie rgionndo fiimente e lolndo direttmente l forz eeritt ul vgone l momento dell rreto.

4 B. ) L( ) ( ) ( 5) 0 = Soluzione Prte B L funzione di ripot rmoni è L( jω ) Si trtt di un item di tipo. ( ω) 0 ω L j = ω ω 5 rg L( jω ) =π rtg ω rtgω 5 = 0( jω ) ( jω) ( jω 5) Comportmento per ω 0 : Il digrmm polre prte d un punto ll infinito, eendo lim L jω = ω 0 ω 0 ( ) lim rg L j ( ω) = π. Comportmento per ω : Il digrmm termin nell origine tngente uno degli i oordinti, eendo lim L jω = 0 ω ( ) lim rg L j ω ( ω) = π Rotzione ompleiv ttorno ll origine per ω vribile d 0 : rg L( jω ) = 0 Il digrmm polre riult quindi del tipo: Nyquit Digrm w Si noti he l interezione del d.p.. on l e rele vviene olo nell origine del pino ompleo. Rel Axi

5 ) Il digrmm polre ompleto riult del tipo: 6 Nyquit Digrm Rel Axi Dll eme del digrmm polre ompleto i dedue ubito he i h tbilità intoti, poihé eo non irond né to il punto ritio -. ) Clolo dei mrgini di tbilità. Mrgine di mpiezz: M = A Mrgine di fe: M F = π ϕ ϕ rg L jω on = ( ) dove ω L ( jω ) =. 0 ω ω è dto dll oluzione dell equzione =. ω ω 5 L equzione preedente può eere riritt ome 00( ω ) =, ioè 00 4 ( ω ) ( ) ω ( ω 5) = ω 4 ω 5, l ui oluzione (per tenttivi) fornie un vlore di ω pri : ω.06 rd / e. ω ϕ =π rtg rtg ( ω) =.4rd 5 Si onlude he il mrgine di fe è: M = π ϕ = 0.7rd = 4.8 F B. D k = 0 l equzione rtteriti riult 0 ( )( ) ( ) 9 0 = 0 k k

6 L orripondente tbell di Routh è: k 0 9 k 7k k Per l tbilità intoti i deduono le ondizioni 7k 90> 0 90 k > 7 k > 0 k > 0 i onlude he il item retrozionto è intotimente tbile per k 90, 7

7 Soluzione PARTE C C) Vedi A.P. Controlli Automtii A: luidi delle lezioni, pgine C) Si interpret l eq. diff. on le derivte generlizzte: * * * 7D y 4D y y = D u u i ppli l trformt di Lple: 7 Y( ) y(0 ) Dy(0 ) D y(0 ) 4 Y( ) y(0 ) Y( ) = U( ) u(0 ) U( ) { } { } { } d ui i riv oniderndo he U( ) = 0 (l trformt di Lple dell ingreo è null): Y() Il item dinmio è in evoluzione liber. 7 y(0 ) 7 Dy(0 ) 7 D y(0 ) 4 y(0 ) u(0 ) 7 4

A - Test d ingresso alla Prova Scritta di Controlli Automatici A del 22 giugno stabilire: Σ è semplicemente stabile vero

A - Test d ingresso alla Prova Scritta di Controlli Automatici A del 22 giugno stabilire: Σ è semplicemente stabile vero A - Test d ingresso ll Prov Scritt di Controlli Automtici A del giugno 004 ) Scrivere l funzione di trsferimento di un sistem dinmico vente i modi { t e sin(3 t+ ϕ ),, t, t } T() s ) Dto un sistem dinmico

Dettagli

1 = (parabola unitaria) si determini l errore di regolazione a regime:

1 = (parabola unitaria) si determini l errore di regolazione a regime: A - Tet d ingreo alla Prova Scritta di Controlli Automatici A del Ottobre 00 ( + ) ( ) + ) Dato un itema dinamico Σ con funzione di traferimento T() crivere i modi di Σ : ( + ) + 9 t { modi di Σ } {, tt,,

Dettagli

indicando chiaramente tutti i passaggi da eseguire per ottenere tale espressione:

indicando chiaramente tutti i passaggi da eseguire per ottenere tale espressione: SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Bittnti, BIO A-K) Settembre 7 Si conideri il eguente item dinmico linere coefficienti cotnti tempo continuo: ut () G () y (t) ( )( 7 ) ove G () = e con e b

Dettagli

Problema Q & SOLUZIONE

Problema Q & SOLUZIONE Problem 2..2.2 Un portt di,00 0 4 m / di ri umid, inizilmente ll tempertur di 2,0 C con umidità reltiv del 60% viene rffreddt e deumidifict. L tempertur in ucit è di 0,0 C ed il grdo igrometrico del 00%

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

Simulazione seconda prova parziale

Simulazione seconda prova parziale Simulzione seond prov przile Test. x + dx = x () {( ) + ln [( ) ( + )]} {( ) [( ) ( )]} () + ln + (b) {( ) + ln [( + ) ( + )]} (d) {( + ) + ln [( + ) ( )]}. Si f(x) = x + x. Allor 0 f (y)dy = () (b) ()

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 27 Politecnico di Torino Stbilità dell cten chius

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2 858874 - ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M-2527 - ELETTRONICA 2 M-2529 - BIOFISICA APPLICATA M-2528 - INFORMATICA 2 Lezione n. 2i Derivt Integrle Numeri complessi Fsore Rppresentzione

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 27 Gennaio 2009

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 27 Gennaio 2009 SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 7 Gennaio 9. Si onideri il eguente itema dinamio lineare a tempo ontinuo: x () t = x() t 5 x() t u() t x () t = x() t x() t x 3() t = x()

Dettagli

Nome: Cognome: Data: 19/01/2017

Nome: Cognome: Data: 19/01/2017 Nome: Cognome: Dt: 9//7 Eerizio N. Vlutzione 5 fuolier di un eliolo fermo in pit, ome riportto in figur, iene emtizzt ome un tre di lungezz =8m ppoggit u due rrelli poti d un ditnz =8m e b=5m dll pru.

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Prova Scritta di di Meccanica Analitica. 22 gennaio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = 1 3 x + 2 x 2 x > 0

Prova Scritta di di Meccanica Analitica. 22 gennaio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = 1 3 x + 2 x 2 x > 0 Prov Scritt di di Meccnic Anlitic gennio 016 Problem 1 Un punto di mss unitri si muove soggetto l potenzile V (x) = 1 3 x + x x > 0 ) Disegnre lo spzio delle fsi. b)clcolre l frequenz delle piccole oscillzioni

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

Formulario di Analisi Matematica 1

Formulario di Analisi Matematica 1 Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

ESAME DI STATO 2015 INDIRIZZO ELETTRONICA ED ELETTROTECNICA ARTICOLAZIONE ELETTRONICA. TEMA DI SISTEMI AUTOMATICI - Soluzione

ESAME DI STATO 2015 INDIRIZZO ELETTRONICA ED ELETTROTECNICA ARTICOLAZIONE ELETTRONICA. TEMA DI SISTEMI AUTOMATICI - Soluzione ESAME DI STATO 20 INDIRIZZO ELETTRONICA ED ELETTROTECNICA ARTICOLAZIONE ELETTRONICA TEMA DI SISTEMI AUTOMATICI - Soluzione PRIMA PARTE Il teto non preci il tempo necerio ll erogzione dei regenti; poimo

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Funzioni reali di variabile reale Esercizi su integrali e integrali generalizzati. Mauro Saita

Funzioni reali di variabile reale Esercizi su integrali e integrali generalizzati. Mauro Saita Funzioni reli di vribile rele su integrli e integrli generlizzti Per commenti o segnlzioni di errori scrivere, per fvore, : murosit@tisclinet.it Dicembre 5 Indice Integrli. Primitive e integrli definiti.............................

Dettagli

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia.

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia. . Dt l'equzione: rppresentt in un sistem di oordinte rtesine ortogonli d prbole on sse prllelo ll'sse, determinre -in funzione del oeffiiente - i oeffiienti b e he individuno l fmigli delle prbole pssnti

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Con riferimento ad un sistema di assi cartesiani ortogonali Oxy, si trattino le seguenti questioni.

Con riferimento ad un sistema di assi cartesiani ortogonali Oxy, si trattino le seguenti questioni. www.mtefili.it PNI 008 SESSIONE STRAORDINARIA - PROBLEMA Con riferimento d un sistem di ssi crtesini ortogonli Oxy, si trttino le seguenti questioni. ) Si costruisc il grfico γ dell funzione f(x) = ( x)

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

Analisi Parametrica della Stabilità

Analisi Parametrica della Stabilità Prof. Crlo Coetio Fodmeti di Automtic A.A. 6/7 Coro di Fodmeti di Automtic A.A. 6/7 Alii Prmetric dell Stbilità Prof. Crlo Coetio Diprtimeto di Medici Sperimetle e Cliic Uiverità degli Studi Mg Greci di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti];

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti]; 1 Esercizio (trtto dl problem 7.5 del Mzzoldi ) Sul doppio pino inclinto ( = 0 o ) sono posizionti un disco di mss m 1 = 8 Kg e rggio R = 1 cm e un blocco di mss m = 4 Kg. I due oggetti sono collegti d

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x)

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x) Sessione ordinri LS_ORD Soluzione di De Ros Niol Soluzione Studimo l unzione Dominio: l unzione è deinit in tutto R; ; Intersezione sse sisse: Intersezioni sse delle ordinte: y ; Prità o disprità: l unzione

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017 SIMULAZIONE DELLA II PROVA SCRITTA[ ] 0 mggio 07 Nome del cndidto _ Clsse Il cndidto risolv uno dei due problemi; il problem d correggere è il numero Problem Il direttore dello zoo di Berlino desider fr

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha 1 Esercizio (trtto dl problem 7.52 del Mzzoldi 2) Sul doppio pino inclinto di un ngolo sono posizionti un disco di mss m 1 e rggio R e un blocco di mss m 2. I due oggetti sono collegti d un filo inestensibile;

Dettagli

Integrali impropri fondamentali

Integrali impropri fondamentali Integrli impropri fondmentli ) Studimo il rttere dell integrle improprio dx () x dove > è un numero ssegnto e è un rbitrrio numero rele. Notimo, nzitutto, he l funzione f(x) = è lolmente integrbile in

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2015/2016 Prof. C. Presilla. Prova B1 9 giugno 2016

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2015/2016 Prof. C. Presilla. Prova B1 9 giugno 2016 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2015/2016 Prof. C. Presill Prov B1 9 giugno 2016 Cognome Nome Mtricol iscritto l secondo nno iscritto l terzo nno fuoricorso o con più di 155 CFU penlità esercizio

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L.

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L. Anlisi Mtemtic II, Anno Accdemico 7-8. Ingegneri Edile e Architettur Vincenzo M. Tortorelli 5 Settembre 7: prim prov in itinere. N. mtr./nno iscr. Cognome docente/ crediti Nome Istruzioni l fine dell vlutzione:

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

STABILITA DEI SISTEMI IN RETROAZIONE CRITERIO DI ROUTH ESERCIZI

STABILITA DEI SISTEMI IN RETROAZIONE CRITERIO DI ROUTH ESERCIZI STABILITA DEI SISTEMI IN RETROAZIONE CRITERIO DI ROUTH ESERCIZI U( ) + Stilità dei itemi in retrozione G( ) Y ( ) G( ) N ( ) G DG ( ) W ( ) G( ) NG ( ) 1 + G( ) D ( ) + N ( ) G G Nel co di un itemi G()

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

] a; b [, esiste almeno un punto x 0

] a; b [, esiste almeno un punto x 0 Anlisi Limiti notevoli sen lim = ( lim + = e Un funzione si die ontinu in qundo, + lim f( = lim f(. + sintoti vertili: se lim f ( = ± oppure lim f ( = ± sintoti orizzontli: se sintoti oliqui: l'equzione

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Regime permanente e transitorio

Regime permanente e transitorio Regime permnente e trnsitorio Rispost trnsitori e rispost in frequenz Anlisi dell dipendenz W G Dinmic in t e in ω dei sistemi del ordine Crtterizzzione di W con dinmic dominnte del ordine Relzioni fr

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

Mat-Es3.Doc: Stabilità via Luogo Radici

Mat-Es3.Doc: Stabilità via Luogo Radici Mt-E.Doc: Stbilità vi Luogo Rdici Luogo delle Rdici (Rlocu, Rlocfind) Definizione del proceo g()» n=;t=;t=/;t=/;» d=[t ];d=[t ];d=[t ];» g=tf(n,d);g=tf(n,d);g=tf(n,d);» gtc=g*g*g Trnfer function (otto

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Sia data una macchina rotante isotropa, dotata di un solo avvolgimento rotorico.

Sia data una macchina rotante isotropa, dotata di un solo avvolgimento rotorico. ommrio. FAORI PAZIALI... 1.1 I FAORI PAZIALI ED IL GIUTO ELETTROMAGETICO... 1. Fori pzili.1 I fori pzili ed il giunto elettromgnetico i dt un mcchin rotnte iotrop, dott di un olo vvolgimento rotorico.

Dettagli

Capitolo 6. Integrali. Dal Coroll. 1 di Cap. 5.1 segue che g 1

Capitolo 6. Integrali. Dal Coroll. 1 di Cap. 5.1 segue che g 1 Cpitolo 6 Integrli 6.. Primitive di un funzione ontinu Si = f() un funzione ontinu definit su un intervllo I. Chimeremo primitiv di f ogni funzione = g() ontinu su I e derivile internmente d I, tle he

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 9. Controllo degli azionamenti elettrici con motore in corrente alternata

Controllo di Azionamenti Elettrici. Lezione n 9. Controllo degli azionamenti elettrici con motore in corrente alternata Controllo di Azionmenti Elettrici Lezione n 9 Coro di Lure in Ingegneri dell Automzione Fcoltà di Ingegneri Univerità degli Studi di Plermo Controllo degli zionmenti elettrici con motore in corrente lternt

Dettagli

INTEGRAZIONE NUMERICA DI UNA FUNZIONE

INTEGRAZIONE NUMERICA DI UNA FUNZIONE INTEGRAZIONE NUMERICA DI UNA FUNZIONE Pro.Dniele Attmpto L vlutzione di integrli deiniti qundo non è not l primitiv dell unzione integrnd o qundo il procedimento nlitico riult compleo richiede l ppliczione

Dettagli

Relazione di Fondamenti di automatica

Relazione di Fondamenti di automatica Università degli studi di Cassino relazione finale orso di fondamenti di automatia Elaborato J Relazione di Fondamenti di automatia Doente del orso: Stefano Chiaverini Riardo Galletti Matr. 65 - - Relazione

Dettagli