Note U = L + Q. Chimica Fisica I a.a. 2012/2013 Scienza e Tecnologia dei Materiali S. Casassa. April 3, 2013

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Note U = L + Q. Chimica Fisica I a.a. 2012/2013 Scienza e Tecnologia dei Materiali S. Casassa. April 3, 2013"

Transcript

1 1 Note U L + Q Chca Fsca I a.a. 01/013 Scenza e Tecnologa de Materal S. Casassa Aprl 3, 013

2 Contents 1 Cnetca Molecolare La dstrbuzone d Maxwell Cenn d statstca La dstrbuzone d Maxwell La dstrbuzone d Maxwell-Boltzann La pressone Legge de Gas Ideal A Integral Notevol 11

3 3 1 Cnetca Molecolare 1.1 La dstrbuzone d Maxwell La deduzone d Maxwell s basa su due assunt fondaental: () le coponent lungo x, y e z della veloctà d una partcella sono ndpendent tra loro e () l energa cnetca, proporzonale alla veloctà, s equpartsce nelle tre drezon. Dal punto d vsta ateatco questo consente d esprere la dstrbuzone delle veloctà h(v) con v (v x + v y + v z) 1/, coe prodotto delle tre dstrbuzon: da cu h(v) h(v x, v y, v z ) p(v x ) p(v y ) p(v z ) (1) ln h(v) ln p(v x ) + ln p(v y ) + ln p(v z ) Dervando l ntera funzone per una delle coponent della veloctà, per esepo quella lungo x s ha: ln h(v) d ln p(v x) v x dv x d ln p(v x ) ln h(v) v x v x v v ln h(v) v v v x v x v d ln p(v y) v y dv y d ln p(v z) v z dv z γ Ovvero poché cascuna funzone d una delle coponente (p(v ), x, y, z) dervata rspetto alla propra varable è uguale alla dervata d ogn altra coponente, tal dervate non possono che essere ugual ad una costante, arbtraraente posta uguale a γ. La fora funzonale che s ottene dunque per la p(v ) è: d ln p(v x ) γ v x dv x d ln p(v x ) γ v x dv x ln p(v x ) γ v x + A ( p(v x ) A exp γ ) v x () Il valore d γ può essere dedotto dal confronto con la dstrbuzone delle energe secondo Boltzann, che nel caso delle energe cnetche E cn 1 v dventa: ( ) p(e x ) A exp p(e x ) A exp ( Ecn x kt v x kt È possble concludere che la dstrbuzone d cascuna coponente della veloctà d un gas segue l equazone d Maxwell ( ) p(v x ) A exp v x kt n cu l valore del prefattore A verrà deternato ne paragraf successv facendo uso d concett d dstrbuzone e statstca. ) (3) (4)

4 4 1. Cenn d statstca Data una osservable x che può assuere una sere d valor dscret x, è possble assocare a cascun valore una probabltà p data dal nuero d volte n cu l osservable assue l valore -eso, a, fratto l nuero totale d osservazon effettuate, N: p a N La probabltà così defnta deve essere noralzzata a 1, ovvero: (5) p a N 1 N a 1 (6) dove nell ulto passaggo s è sfruttata l ovva equvalenza a N. Il valor edo (ean) d una dstrbuzone d event, o est d una osservazone della varable x, s defnsce coe segue: < x > 1 N a x p x (7) Per analoga, l valor quadratco edo (ean square) rsulta < x > p x (8) e nfne la devazone standard (standard devaton) che fornsce una ndcazone su coe gl est s dstrbuscono ntorno al valore edo, rsulta essere: σ x < x < x >> (x < x >) p (x x < x > + < x > )p x p < x > x p + < x > p < x > < x > (9) Nel dervare la 9 è utle rcordare che < x > è un nuero. Nel caso d una dstrbuzone d est contnua, ovvero se valor assocabl all osservable x varano con contnutà, la probabltà dscreta p dventa una funzone d dstrbuzone p(x); l valor edo e l valore quadratco edo d una dstrbuzone contnua s calcolano facendo tendere ad nfnto la soatora che qund dventa un ntegrale esteso a tutt possbl valor d x: < x > < x > x p(x) dx (10) x p(x) dx (11) La condzone d noralzzazone 6, d cu fareo apo uso ne paragraf successv, rsulta: p(x) dx 1 (1)

5 5 1.3 La dstrbuzone d Maxwell Sao ora n grado d ottenere l valore della costante oltplcatva A ponendo che la dstrbuzone d probabltà 4 sa noralzzata: ( ) p(v x )dv x A exp v x dv x 1 kt e rcordando l ntegrale 40 appendce A, avendo posto α /kt s ottene A ( ) 1/ πkt 1 A ( ) 1/ πkt (13) La 4 dventa qund p(v x ) ( ) ( ) 1/ exp v x πkt kt (14) che è la dstrbuzone d Maxwell d cascuna delle coponent della veloctà d un gas. Pra d procedere, analzao tale dstrbuzone. Il suo valor edo è: < v x > v x p(v x )dv x ( ) 1/ πk T v x exp ( ) v x dv σ x 0 (15) dove nell ulto passaggo s è utlzzato l ntegrale 40, appendce A. Cascuna delle coponent della veloctà è dstrbuta coe una gaussana centrata nell orgne: l fatto che l valor edo sa zero plca che c sono n eda tante partcella con veloctà v( x) quante ce ne sono con veloctà v(x). Inoltre, devazone standard e veloctà quadratca eda concdono e l loro valore è: ( ) 1/ ( ) σ < vx > vx p(v x )dv x vx exp v x dv πk T σ x ( ) ( ) 1/ 1/ kt πkt kt (16) πk T n cu s è utlzzato l ntegrale 41, appendce A. L equvalenza 16 può essere rscrtta nella fora < v > k T (17) con x, y, z, che ette n evdenza coe cascuna coponente della veloctà contrbusca all energa cnetca per una frazone par a 1 k T, da cu s deduce che l energa cnetca d una sngola partcella è uguale a E cn 1 < v > 1 (< v x > + < v y > + < v z >) 3 k T (18) < v > 3k T (19)

6 6 Fgure 1: Dstrbuzone delle veloctà d un gas deale secondo la Maxwell-Boltzann. La probabltà caba n funzone della teperatura, T e della assa delle partcelle coponent l gas, equazone. Da questa relazone s evnce che la teperatura è una sura d una propretà fondaentale della atera, la sua energa cnetca eda. Nel caso d una ole d gas la 18 dventa: E cn 3 k N AT 3 R T (0) con R k N A [JK 1 ] [ol 1 ] [JK 1 ol 1 ] costante de gas. 1.4 La dstrbuzone d Maxwell-Boltzann Le curve che s osservano sperentalente e che rappresentano la dstrbuzone della veloctà d un gas non hanno un andaento a capana, d tpo gaussano, bensì la fora eseplfcata n fgura 1. Tal curve rapprensentano nfatt l valore assoluto della veloctà olecolare e non una delle sue tre coponent: v è una quanttà ntrnsecaente postva la cu fora funzonale può essere dedotta partendo dalla 1. La denstà d probabltà d una certa veloctà v è h(v)d(v) p(v x ) dv x p(v y ) dv y p(v z ) dv z ( ) 3/ [ exp ( v πkt kt x + vy + vz) )] dv x dv y dv z ( ) 3/ ( 4πv exp ) πkt kt v d(v) (1) avendo sosttuto l eleento d volue n coordnate cartesane con l suo analogo n coordnate sferche dv x dv y dv z 4πv d(v). La dstrbuzone della veloctà segue dunque

7 7 b x c c b b x c Fgure : Dstrbuzone delle veloctà d un gas deale secondo la Maxwell-Boltzann l equazone chaata d Maxwell-Boltzann: ( ) 3/ ( h(v) 4πv exp ) πkt kt v Il valor edo d tale dstrbuzone, ovvero l valor edo della veloctà, rsulta essere ( < v > 4π πkt 4π ( πkt ) 3/ 0 ) 3/ 1 ( v 3 exp ( kt ) () ) kt v dv ( ) 1/ 8k T (3) π avendo utlzzato l ntegrale notevole 43, appendce A. Il calcolo della veloctà quadratca eda dovrebbe restturc lo stesso valore gà trovato nel paragrafo precedente, equazone 19; verfchao se è vero: ( < v > 4π πkt 4π 3k T ( πkt ) 3/ ( v 4 exp ) 0 kt v dv ) 3/ 3 4 k T ( ) 1/ πk T 8 È nteressante nonché portante notare l fatto che l valor edo della veloctà < v > non concde con la radce quadrata della veloctà quadratca eda < v > 1/ : (4) ( 3k T ) 1/ ( ) 1/ 8k T (5) π

8 8 1.5 La pressone La pressone che un tale gas esercta sulle paret del recpente ove è contenuto può essere faclente calcolata attraverso l seguente ragonaento, facendo rferento alla fgura. La pressone eserctata sulla parete bc da una partcella d gas è data dalla coponente lungo x della forza dvso la superfce: P bc F x b c v x 1 t b c La varazone d veloctà è v x v x ( v x ) v x poché dopo l urto con la parete, che s suppone copletaente elastco, la partcella nverte la propra drezone. L ntervallo d tepo che ntercorre tra due urt sulla parete bc è par allo spazo percorso a dvso la veloctà v x, da cu: p[bc] v x t 1 b c v x v x a b c v x V a v 1 x b c La pressone eserctata sulla parete bc da tutte le N partcelle è (6) P [bc] N p [bc] V N v,x (7) La pressone eserctata dal gas, n equlbro, sulla parete bc è dentca a quella eserctata su qualsas altra parete ed equvale alla pressone totale per cu è possble scrvere P tot P [bc] V N v,x V N < v x > (8) dove nell ulto passaggo s è utlzzata la defnzone d veloctà quadratca eda < v x > 1 N N v,x. La 8 può essere convenenteente rscrtta n una fora pù falare P V N < v x > (9) Rcordando che < v >< v x > + < v y > + < v z > 3 < v x > la 9 dventa P V N 1 3 < v > (30) n cu è possble sostture l valore della veloctà quadratca eda con l suo equvalente terodnaco < v > 3k T, equazone 19, e ottenere la legge de gas deal: 1.6 Legge de Gas Ideal P V N k T (31) In realtà la legge de gas deal, equazone 31, è stata scoperta sperentalente ettendo nsee le osservazon d: Boyle (1600), a T cost, P V cost ovvero P 1 V 1 P V ;

9 9 Gay-Lussac (1800), a P cost, V V 0 (1 + αt ) oppure, una volta defnta la teperatura assoluta e posta α K, V T ; Avogadro (1860), a P, T cost, V n, ovvero volu ugual d gas dvers contengono lo stesso nuero d ol, oppure l volue olare V V è lo stesso per n qualunque gas deale. Da cu: P V n T P V nrt (3) con R costante de gas. Propro sulla base d questa equazone, utlzzando l ragonaento che ha portato all equazone e svluppando l equvalenza tra pressone e veloctà quadratca eda, equazone 30, Maxwell fu n grado d trovare la relazone tra veloctà quadratca eda e teperatura assoluta. Rpetaone passagg. Per una olecola d gas ettendo nsee la 30 e la 31 s ha: 1 3 < v > kt < v > 3 K T < v x > k T (33) (34) La funzone è una dstrbuzone gaussana centrata sull orgne che può qund essere rscrtta nella fora generale p(v x ) ( ) 1 v π σ exp x σ dopo aver posto senza perdta d generaltà A 1 σ e γ 1 σ, essendo σ la devazone standard, coe defnta nell equazone 9. Per defnzone s ha qund che (35) σ < v x > k T (36) e la 35 assue la fora ora nota p(v x ) ( ) ( 1/ exp ) v x πk T k T Tale dstrbuzone s può anche ottenere (r)partendo dall equazone e () noralzzando la funzone, n odo da ottenere A n funzone d γ: p(v x ) A A p(v x ) ( ) γ 1/ ( exp γ ) v x dv x A π ( ) γ 1/ ( exp γ ) π v x ( ) 1/ π 1 γ (37)

10 10 () calcolando l valor edo quadratco d tale dstrbuzone, coì da ottenere γ n funzone d e T : < vx > k T ( ) γ 1/ ( vx exp γ ) π v x dv x ( ) ( ) γ 1/ 1/ 1 π π γ γ γ k T Sosttuendo l valore della costante γ nella 37, s ottene la nota dstrbuzone: p(v x ) ( ) ( 1/ exp ) v x π k T k T (38)

11 11 A 1. Integral Notevol exp[ αx ]dx ( π α ) 1/ (39). 3. x exp[ αx ]dx 0 (40) x exp[ αx ]dx 1 α ( π α ) 1/ (41) 4. 0 x n+1 exp[ αx ]dx n! α n+1 (4) 5. 0 x n exp[ αx ]dx n 1 n+1 α n ( π α ) 1/ (43)

I gas. Pressione: tendenza del gas ad espandersi. 1 atm = 760 torr (o anche mmhg) = Pa = bar

I gas. Pressione: tendenza del gas ad espandersi. 1 atm = 760 torr (o anche mmhg) = Pa = bar I gas eperatura: è la sura della tendenza del calore ad abbandonare un corpo (ovvero è la sura del contenuto calorco d un corpo S hanno tre scale teroetrche: ressone: tendenza del gas ad espanders densonalente

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

Analisi statistica degli errori casuali

Analisi statistica degli errori casuali Anals statstca degl error casual error casual: dovut a ncertezze spermental non controllabl che comunque spngono l valore msurato con ugual probabltà n alto od n basso rspetto al valore vero. Quest error

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

seconda Prova in Itinere 23 giugno 2006

seconda Prova in Itinere 23 giugno 2006 CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO IDROLOGIA ANNO ACCADEMICO 005-006 seconda Prova n Itnere 3 gugno 006. E dato l capone seguente d ass annual d portata al colo del Tanaro a Montecastello:

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

Esame di Fisica I Corso di Laurea in Chimica 28/06/2013

Esame di Fisica I Corso di Laurea in Chimica 28/06/2013 Esae d Fsca I Corso d Laurea n Chca 8/06/0 ) Un pendolo seplce, costtuto da un lo nestensble d assa trascurable, al quale è appesa una assa 0. kg, è caratterzzato (per pccole oscllazon) da un perodo T.0

Dettagli

Teoria cinetica dei gas

Teoria cinetica dei gas Teora cnetca de gas Fsca de gas n Termodnamca Grandezze macroscopche P, V, T tutte conseguenza del moto delle partcelle Pressone: Urt contro paret Volume: Assenza d legam tra le partcelle Temperatura:

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

TEORIA CINETICA. Ipotesi della teoria cinetica

TEORIA CINETICA. Ipotesi della teoria cinetica TEORIA CIETICA Lo svluppo della Terodnaca ne pr decenn dell 800 avvenne edante l ntegrazone d una sere d osservazon sperental e d un nsee d preesse teorche che condusse ad una teora del calore forulata

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Secondo Principio della Termodinamica

Secondo Principio della Termodinamica Secondo Prncpo della ermodnamca Problema: n che modo s puo pedere se un processo è spontaneo e quale è la drezone d un processo spontaneo Notamo: Il I prncpo della D stablsce che un sstema puo modfcare

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat IX Grandezze fsche dverse Sta dell ncertezza d sure ndrette Msura dretta A Trattazone ateatca Msura ndretta Msura dretta B Anche le sure ndrette

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Statistica Descrittiva

Statistica Descrittiva Statstca Descrttva Corso d Davd Vettur Dat osservat Sano note le seguent msure dello spessore d una lastra d materale polmerco espresse n mllmetr 3.71 3.83 3.85 3.96 3.84 3.8 3.94 3.55 3.76 3.63 3.88 3.86

Dettagli

Appendice 5 Coefficienti di compressibilità in funzione della pressione ridotta e temperatura ridotta

Appendice 5 Coefficienti di compressibilità in funzione della pressione ridotta e temperatura ridotta Appendce 5 oeffcent d copressbltà n funzone della pressone rdotta e teperatura rdotta In questo appendce s rportano tabelle e fgure nerent la deternazone de coeffcent d copressbltà (Z) n funzone della

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Test d potes e soothng Rsultat dell eserctazone Legenda: A = copto eccellente; B = copto buono; C = copto suffcente; D = copto scarso; E = copto nsuffcente.

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

DINAMICA DEI SISTEMI DI PUNTI MATERIALI. Dott.ssa Silvia Rainò

DINAMICA DEI SISTEMI DI PUNTI MATERIALI. Dott.ssa Silvia Rainò DIAMICA DI SISTMI DI PUTI MATRIALI Dott.ssa Slva Ranò Sste d punt ateral Sstea costtuto da punt ateral P, P,, P F rsultante delle forze esterne agent su P F j forza eserctata sul generco punto P del sstea

Dettagli

Variabili casuali. Variabili casuali

Variabili casuali. Variabili casuali Varabl casual Assegnato uno spazo d probabltà (S, A, P[.]) s densce varable casuale una unzone avente come domno lo spazo de campon (S) e come codomno la retta reale. S Le varabl casual s ndcano con lettere

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

* 2. dt dt ħd k dt. v, v, v v. grandezza con 9 componenti: tensore di massa efficace

* 2. dt dt ħd k dt. v, v, v v. grandezza con 9 componenti: tensore di massa efficace Conduttvta': legata al trasporto d carca nel crstallo Elettrone: Pacchetto d'onde Vel. elettrone = Vel. d gruppo 1 v= kω= kε ħ dv dk dε d ħk F= a= = k v = dt dt ħd k dt v, v, v k x k y k z v k p= ħk dε

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

determina rispetto i 2

determina rispetto i 2 Eserczo Parte (, punt): consdera la dstrbuzone d fl seguente: n cu, 8A e, 5A deterna rspetto a quale dstanza s trova l punto tra due fl n cu l capo agnetco è nullo. I cap agnetc sono oppost all nterno

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

L arcobaleno. Giovanni Mancarella. n = n = n = α( o )

L arcobaleno. Giovanni Mancarella. n = n = n = α( o ) Govann Mancarella L arcobaleno I(α) (a.u.) n =.3338 n =.336 39 40 4 4 43 α( o ) In questa nota utlzzeremo l termne dstrbuzone per ndcare la denstà d probabltà d una varable casuale. Il fenomeno dell arcobaleno

Dettagli

Flusso di un vettore v attraverso una superficie S. ( 1 ) v n n

Flusso di un vettore v attraverso una superficie S. ( 1 ) v n n Teorea d Gauss ( I Parte).I INTRODUZIONE. Prelnarente, s ntrodurrà la seguente defnzone: Flusso d un vettore v attraverso una superfce S. ( ) Sa dato un capo vettorale, ovvero una funzone v che ad ogn

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Sistemi Intelligenti Introduzione al calcolo delle probabilità - II

Sistemi Intelligenti Introduzione al calcolo delle probabilità - II Sstem Intellgent Introduzone al calcolo delle probabltà - II Alberto Borghese Unverstà degl Stud d Mlano Laborator of Appled Intellgent Sstems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t A.A. 05-06

Dettagli

P(E i. Il postulato empirico del caso. = I, incompatibili a due a due. . E k

P(E i. Il postulato empirico del caso. = I, incompatibili a due a due. . E k Una sura della robabltà Data una rova che genera k event eleentar,..., k necessar, 2. k I, ncopatbl a due a due O/ per ogn ed equprobabl 2! k Una sura della robabltà Da postulat s deduce unvocaente la

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi Per flud n movmento occorre consderare l campo delle veloctà. Inun sstema cartesano Oxyz l campo è descrtto dal vettore v(x,y,z) che defnsce le component della veloctà del fludo n ogn punto x,y,z : v (x,y,z)

Dettagli

Esercizi di econometria: serie 1

Esercizi di econometria: serie 1 Esercz d econometra: sere Eserczo E data la popolazone dell Abruzzo classcata n se categore d reddto ed n tre class d età come segue: Reddto: () L... 4.. () L. 4.. 8.. () L. 8.... (4) L..... () L.....

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Urti. Abbiamo appena visto che negli urti si conserva la quantità di moto del sistema, in generale però NON si conserva l energia cinetica.

Urti. Abbiamo appena visto che negli urti si conserva la quantità di moto del sistema, in generale però NON si conserva l energia cinetica. Urt Abbao appena sto che negl urt s consera la quanttà d oto del sstea, n generale però NON s consera l energa cnetca. Propro n funzone del coportaento dell energa cnetca gl urt engono dfferenzat n tre

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche Element d teora bayesana della decsone Teora bayesana della decsone: caratterstche La teora bayesana della decsone è un approcco statstco fondamentale al problema del pattern recognton. Il suo obettvo

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Dilatazione termica di solidi e liquidi:

Dilatazione termica di solidi e liquidi: Dlatazone termca d sold e lqud: temperatura aumenta corp s dlatano; es.: bnaro de tren Dlatazone lneare: sbarra spazo tra d loro L L 0 α pù e lunga, pù s dlata coeffcente d dlatazone lneare es: α Fe 12

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (15 gennaio 2016) ( C.d.L. Ing. Energetica - Prof. A. Muracchini)

PROVA SCRITTA DI MECCANICA RAZIONALE (15 gennaio 2016) ( C.d.L. Ing. Energetica - Prof. A. Muracchini) PRV SRITT DI MENI RZINLE (15 gennao 2016) (.d.l. Ing. Energetca - Prof.. Muracchn) Il sstema n fgura, moble n un pano vertcale, è costtuto d un asta omogenea (massa m, lunghezza 2l) l cu estremo è vncolato

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

fluttuazioni siano reciprocamente indipendenti (cioè non correlate fra di loro), si ha 1 :

fluttuazioni siano reciprocamente indipendenti (cioè non correlate fra di loro), si ha 1 : Appendce A luttuazon. A.1 - Generaltà. Le grandezze fsche che caratterzzano corp macroscopc n equlbro non sono costant, ma fluttuano nel tempo attorno al loro valore medo per effetto del moto mcroscopco

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio Cap 5: ANALISI DEI SEGNALI E ARAURA DINAMICA Un segnale è defnto come una qualsas varable fsca che camba nel tempo, nello spazo, o rspetto a altre varabl e che trasporta nformazon segnal determnstc segnal

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 17 30 novembre 2011 Meda e varanza professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Teorema er ogn funzone

Dettagli

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007 Elettronca dello Stato Soldo Prova scrtta del 4 settebre 7 Cognoe e Noe Matrcola Fla Posto Es.) In un esperento d dffrazone d ragg n un crstallo cubco, la cella untara del retcolo recproco s trova ad essere

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): C.d.L. Scenze e ecnologe grare,.. 2015/2016, Fsca Gas deale (perfetto): non esste n realtà drogeno e elo assomglano d pù a un gas deale - le molecole sono puntform; - nteragscono tra loro e con le paret

Dettagli

Carla Seatzu, 18 Marzo Una coda è costituita da 3 componenti fondamentali: i serventi i clienti

Carla Seatzu, 18 Marzo Una coda è costituita da 3 componenti fondamentali: i serventi i clienti 7. Teora delle Code Una coda è costtuta da 3 coponent fondaental: servent clent Carla Seatzu, 8 Marzo 8 uno spazo n cu clent attendono d essere servt (coda d attesa). clent n arrvo coda d attesa serv.

Dettagli

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per l'omogenetà delle relazon avremo [ ] ([ ]

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 15 23 novembre 211 Funzon Eulerane - robabltà professor Danele Rtell www.unbo.t/docent/danele.rtell 1/2? Cambo

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Modello lineare con rumore additivo: stima dei minimi quadrati.

Modello lineare con rumore additivo: stima dei minimi quadrati. Modello lneare con ruore addtvo: sta de n quadrat. ella aggor parte de cas un odello lneare rsulta essere suffcente per rappresentare n odo sgnfcatvo l legae tra la grandezza d sura e le varabl ndpendent

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): Gas deale (erfetto): non esste n realtà drogeno e elo assomglano d ù a un gas deale - le molecole sono untform; - nteragscono tra loro e con le aret del recente medante urt erfettamente elastc (ovvero

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

NATURA ATOMICA DELLA MATERIA

NATURA ATOMICA DELLA MATERIA NATURA ATOMICA DLLA MATRIA Un qualunque fludo è costtuto da un gran numero d partcelle (sa sngol atom che molecole) n un contnuo moto dsordnato defnto agtaone termca. Questo fenomeno sta alla base de cosddett

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella L AALISI MOOVARIATA: Varabltà e mutabltà Prof. Mara Carella Varabltà Le msure d tendenza centrale non sono suffcent alla comprensone de fenomen. Una sntes approprata deve tener conto del modo n cu s dstrbuscono

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): Gas deale (perfetto): non esste n realtà drogeno e elo assomglano d pù a un gas deale - le molecole sono puntform; - nteragscono tra loro e con le paret del recpente medante urt perfettamente elastc (ovvero

Dettagli

La lezione di oggi. Il comportamento microscopico dei gas. Il 1 principio della termodinamica

La lezione di oggi. Il comportamento microscopico dei gas. Il 1 principio della termodinamica 1 La lezione di oggi Il coportaento icroscopico dei gas Il 1 principio della terodinaica ! Equazione di stato dei gas! Applicazioni dell equazione di stato! La teoria cinetica dei gas! Il 1 principio della

Dettagli

Spostamento, velocità, accelerazione

Spostamento, velocità, accelerazione Spostamento, veloctà, acceleraone Posone e spostamento Due stan assegna t 1 e t, con t t 1 >0 Posone al tempo t 1 : r r t ) ( ( t ), ( t ), ( 1 ( 1 1 1 t1 Posone al tempo t : r r t ) ( ( t ), ( t ), (

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

I O R 2 R 1 E O. i 1 I X R 3. (figura - 2.0) (figura - 2.0a)

I O R 2 R 1 E O. i 1 I X R 3. (figura - 2.0) (figura - 2.0a) ESEZO.0: ssegnata la rete lneare d fgura.0, realzzata con l collegamento d generator ndpendent, generator plotat ed element passv, s determn la corrente X che crcola nella resstenza. Sono not: ; O ; b

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2010/2011, Fisica. Diagramma di fase:

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2010/2011, Fisica. Diagramma di fase: Dagramma d fase: Cambament d stato dell acqua: Spazo tra bnar de tren - per far s che la la dlatazone ndotta dalle temperature estve possa avvenre lungo l'asse del bnaro stesso Dlatazone termca d sold

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli