Nicola De Rosa, Liceo della comunicazione sessione ordinaria 2010, matematicamente.it

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Nicola De Rosa, Liceo della comunicazione sessione ordinaria 2010, matematicamente.it"

Transcript

1 PROBLEMA Sia la parabola d equazioe f a) Sia F il fuoco di e r la sua direttrice, Si determiio le coordiate di F e l equazioe di r b) Siao A e B i puti di di ordiata 5 e S il segmeto parabolico di base AB. Si determii la retta y k che dimezza l area di S c) Si determii il volume del solido geerato dalla rotazioe di S itoro all asse d) Si calcoli d f e lo si iterpreti geometricamete. Puto RISOLUZIONE La parabola di equazioe y ha l asse di simmetria coicidete co l asse delle ordiate, vertice i V,, fuoco di coordiate 5 F, cioè F,, direttrice di equazioe 4a 4 Puto y. 4a 4 La retta 5 C,5. Le ascisse dei puti A e B si calcolao risolvedo il seguete sistema A y y 5. y 5 B y 5 y iterseca l asse delle ordiate i

2 d. L area di S è pari a AS 5 Itegrado si ha d 8 A S Alterativamete, applicado il teorema di Archimede, l area del segmeto parabolico è pari ai dell area del rettagolo circoscritto; il rettagolo circoscritto ha area pari a AB VC 4 4 6, per cui il segmeto parabolico avrà area. Sia y k ua geerica retta parallela all asse delle ascisse che iterseca il segmeto parabolico ei puti H k, k,k k, k co k 5 e che suddivide il segmeto parabolico i S ed S. Si cosideri la figura sottostate. Sia D,k l itersezioe della retta y k co l asse delle ordiate. L area di S applicado il teorema di Archimede è pari a 4 AS VD HK k k k.

3 Allo stesso modo per via itegrale si ha AS Itegrado si ha k k AS k d k k k k k 4 4 k k k k k Impoedo S 4 A S 6 A otteiamo 6 k 4 k k k Puto Il volume richiesto è V Itegrado pari 4 5 d V Puto k d d La fuzioe g rappreseta la Versiera di Agesi e il f suo grafico può essere costruito a partire da quello della parabola, osservado che, essedo f sempre positiva, cotiua e derivabile su tutto R, lo è ache lim g e ell itervallo u cui f è crescete g ; ioltre g è decrescete e viceversa. Di seguito i due grafici i uo stesso riferimeto cartesiao:

4 L itegrale richiesto è pari a arcta d che coicide 4 co l area raffigurata i grigio ella figura di seguito. 4

5 PROBLEMA 4, co k R. Sia P il puto otteuto dalla itersezioe della retta k co la perpedicolare per B alla retta AB. a) Si provi che il luogo geometrico descritto da P al variare di k ha Nel piao Oy soo dati i puti A, e B,k 8 equazioe: y b) Si disegi c) Si scriva l equazioe della retta r tagete a el puti di ascissa d) Si calcoli l area della parte di piao delimitata da r, da e dalla retta Puto k La retta AB ha coefficiete agolare m per cui la perpedicolare alla retta AB passate per B 4,k ha equazioe y k 4 y 4 k. Itersecado la retta di m k co la retta k 8 y 4. equazioe y 4 k Puto 8 Studiamo la fuzioe y,, ; Domiio: k otteiamo il luogo 5

6 Itersezioe asse ascisse: o ve e soo i quato 8 7 R Itersezioe asse ordiate: o ve e soo perché o appartiee al domiio Positività: + + N : 8 R - + D : y 8 Asitoti verticali: 8 8 lim, lim per cui è asitoto verticale; 8 Asitoti orizzotali: lim per cui o esistoo asitoti orizzotali; Asitoti obliqui: trattadosi di fuzioe razioale fratta co grado del umeratore pari al grado del deomiatore più, l asseza dell asitoto orizzotale implica la preseza di quello obliquo; esso ha equazioe y m q co - + f 8 m lim lim, 8 8 q lim quidi l asitoto obliquo ha equazioe y ; Cresceza e decresceza: la derivata prima è 8 8 y' il cui quadro dei segi è rappresetato a lato; f m lim lim 6

7 N : D : 8 R massimo miimo Quidi la fuzioe è strettamete crescete i,, e strettamete decrescete i,, e preseta u massimo relativo el puto M, 4 i m, 4 ; ed u miimo relativo 6 Cocavità e covessità: la derivata secoda è y'' per cui la fuzioe preseta cocavità verso l alto i, e verso il basso i,; o esistoo flessi. Il grafico è di seguito presetato: 7

8 Alterativamete avremmo potuto trovare il grafico a partire dalla 8 seguete cosiderazioe: la fuzioe y può essere scritta 8 come y da cui deduciamo che il grafico è ua iperbole cetro,, di asitoto verticale ed asitoto obliquo y. Puto Il puto ad ascissa uitaria è P,7 ; la derivata prima i vale y ' 8 7, per cui la tagete alla fuzioe el puto P,7 ha equazioe y. 8

9 Puto 4 L area da calcolare è rappresetata i grigio ella figura seguete: L area richiesta è pari a 8 A S d 4 6 8l 6 8l 4 6 8l 4 d 9

10 QUESTIONARIO Quesito Sia esima è p p u poliomio di grado. Si dimostri che la sua derivata -! a dove a è il coefficiete di. p di grado può essere scritto el seguete U geerico poliomio modo: p a a a a a co a i R, i,,, Calcoliamo le derivate prima, secoda e così via sio all -esima: p ' a a a a p '' a a a p ''' a a 6a 4 p 4 a! a Quesito Siao ABC u triagolo rettagolo i A, r la retta perpedicolare i B al piao del triagolo e P u puto di r distito da B. Si dimostri che i tre triagoli PAB, PBC, PCA soo triagoli rettagoli. Cosideriamo la figura a lato rappresetate la geometria del problema. Poiché la retta PB è ortogoale al piao del triagolo, essa è ortogoale a tutte le rette del piao passati per B, quidi è ortogoale a BA e BC, da cui deduciamo che i triagoli PBC e PBA

11 soo etrambi rettagoli i B. Ci resta da dimostrare che ache PAC è rettagolo; i particolare vogliamo dimostrare che PAC è rettagolo i A. Ciò è vero se, applicado il teorema di Pitagora, si ha PC PA AC. Applicado il teorema di Pitagora ai triagoli PBA, PBC ed ABC otteiamo: PB PC PA PB AB BC BC AB AC Sostituedo le espressioi e i si ha: PA AB AB AC PA AC PC PB BC cioè il triagolo PAC è rettagolo i A. Quesito Sia il grafico di f e a i f. Per quale valore di la retta tagete, ha pedeza uguale a? f è la derivata f. Nel caso i esame la derivata prima di f e è ' e, per cui impoedo f ' e si ricava La pedeza della retta tagete i a ua fuzioe prima di f e Per l l l l si ha Quidi e f ha tagete i. l 5 l f e. 5 l, co pedeza.

12 Quesito 4 Si calcoli: lim 4si Effettuiamo il cambio di variabile y ; se y, per cui si y lim 4si 4 lim 4 y y si y i cui si è sfruttato il limite otevole lim. y y Quesito 5 U serbatoio ha la stessa capacità del massimo coo circolare retto di apotema 8 cm. Quale è la capacità i litri del serbatoio? Cosideriamo la figura a lato i cui è rappresetato i sezioe u coo di apotema a 8cm, altezza h e raggio di base r. C Poiamo CH, 8. Il raggio di base per il teorema di Pitagora misura HB r 64. Il volume del coo è hr V 64. Massimizziamo il volume ricorredo al calcolo differeziale. A H a=8 cm B

13 V ' V ' V ' quidi il volume è 8 strettamete crescete i strettamete decrescete i Ioltre V' ' 8, 8, e V '' + 8 massimo 8 per cui il volume è massimo per e vale VMAX 7 V 64 cm 4 dm 7 Ricordado che litro è uguale a dm, il volume massimo i litri è 4 V MAX litri 6,4 litri. 7-8.

14 Quesito 6. Si determii il domiio della fuzioe f cos Il domiio di f cos disequazioe cos Quesito 7 è l isieme degli R che soddisfao la, cioè k k co k Z. Per quale o quali valori di k la fuzioe 4, 4 h k, 4 è cotiua i = 4? Affiché la fuzioe lim h lim h 4 4 valgoo rispettivamete: lim h lim 4 4 lim h 4 4 h sia cotiua i 4 deve aversi. Per il caso i esame i limiti siistro e destro lim k 6k Impoedoe l uguagliaza si ha 6k 9 k. 6 I 4 la fuzioe è tuttavia o derivabile e preseta u puto agoloso i quato lim h' lim 6 4 lim h' lim

15 5 Quesito 8 Se e,, soo i progressioe aritmetica, qual è il valore di? Ua progressioe aritmetica è ua successioe di umeri tali che la differeza tra ciascu termie e il suo precedete sia ua costate. Tale costate viee detta ragioe della progressioe. I tre umeri,, soo i progressioe aritmetica se. Esplicitiamo i sigoli coefficieti biomiali: 6!6!!!!!!!!!!!!!! Si ha quidi: acc. 7 o acc. o acc

16 I coclusioe il valore accettabile è 7 cui corrispodoo i tre valori 7,, Quesito 9 Si provi che o esiste u triagolo ABC co AB =, AC = e A Bˆ C 45. Si provi altresì che se AB =, AC = e A Bˆ C, allora esistoo due triagoli che soddisfao queste codizioi. Cosideriamo la figura a lato, rappresetate il triagolo ABC co AC,AB,ABˆ C e cosideriamo i casi corrispodeti ad 45 ed. 45 Applicado il teorema dei sei si ha: AB AC AB si ACB ˆ si 4 si ACB ˆ si AC Poiché, u triagolo co 4 esiste. AC,AB,ABˆ C 45 o Applicado acora ua volta il teorema dei sei si ricava AB AC si ACB ˆ AB si si ACB ˆ si AC 4 ˆ ˆ ACB arcsi 48, 6 ACB 8 arcsi, I tal caso esistoo due triagoli che soddisfao le codizioi AC,AB,ABˆ C. 6

17 Per calcolare la misura del terzo lato si può procedere i due modi distiti: Teorema dei sei ˆ ˆ AC BC si CAB si 5-ACB BC AC AC si si CAB ˆ si AC si 5-ACB ˆ 4 si5cosacb ˆ cos 5si ACB ˆ ˆ ˆ si ACB ˆ ˆ cos ACB si ACB si ACB Teorema di Carot Posto BC si ha AC AB 4 9 BC AB cos 5 7 7

18 Quesito Per la ricorreza della festa della mamma, la sig.ra Luisa orgaizza ua cea a casa sua, co le sue amiche che hao almeo ua figlia femmia. La sig.ra Aa è ua delle ivitate e perciò ha almeo ua figlia femmia. Durate la cea, la sig.ra Aa dichiara di avere esattamete due figli. Si chiede: qual è la probabilità che ache l altro figlio della sig.ra Aa sia femmia? Si argometi la risposta. Aa ha due figli F ed F e sappiamo per certo che almeo uo dei due è femmia. Si possoo presetare quidi casi possibili:. F maschio ed F femmia. F femmia ed F maschio. F femmia ed F femmia Ricordado la defiizioe frequetista della probabilità come rapporto tra casi favorevoli sui totali, la probabilità di avere due figlie femmie è pari a p. Il quesito può essere risolto alterativamete el seguete modo. Idichiamo co X la variabile aleatoria idicate il umero di figlie femmie della sigora Aa e idichiamo co p la probabilità che u figlio sia di sesso femmiile. Il quesito ci chiede di calcolare la probabilità che Aa abbia due figlie femmie sapedo che la prima è femmia, cioè P X X. I particolare le probabilità che il umero di figlie femmie sia pari a, o soo: P P P X p, X p, X PX PX p p p p 8

19 La probabilità richiesta è quidi P X X P X P X P X X P X P X P X P X p p p p p p e se assumiamo uguale probabilità per i due sessi si ha p P X X. p 9

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s Corso di ordiameto Liceo della Comuicazioe- Sessioe ordiaria - as 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE Tema di: MATEMATICA a s 9- Corso di ordiameto Liceo

Dettagli

n 2 n n dove a n è il coefficiente di

n 2 n n dove a n è il coefficiente di ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria CORSO DI ORDINAMENTO Questioario Quesito Sia p ( x ) u poliomio di grado. Si dimostri che la sua derivata -esima è p ( x )! a dove a è il coefficiete

Dettagli

Si scriva un espressione analitica di g(x). Vi sono punti in cui g(x) non è derivabile? Se sì, quali sono? E perchè? x 9x y

Si scriva un espressione analitica di g(x). Vi sono punti in cui g(x) non è derivabile? Se sì, quali sono? E perchè? x 9x y PROBLEMA Nella figura che segue è riportato il grafico di g ( ) per - 5 essedo g la derivata di ua fuzioe f. Il grafico cosiste di tre semicircofereze co cetri i (, ), (, ), (9/, ) e raggi rispettivi,,/.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Maturità scientifica Sessione ordinaria 1986/1987

Maturità scientifica Sessione ordinaria 1986/1987 Maturità scietifica Sessioe ordiaria 986/987 I u sistea di assi cartesiai ortogoali è assegata la faiglia di liee di equazioe a a. Si idividuio i tale faiglia la retta r e le due parabole C e C che co

Dettagli

Esame di maturità scientifica, corso sperimentale PNI a. s

Esame di maturità scientifica, corso sperimentale PNI a. s Esame di maturità scietifica, corso sperimetale PNI a. s. 003-004 Prolema 1 Sia γ la curva di equazioe y = ke ove k e λ soo parametri positivi. Puto 1 Si studi e si disegi γ ; Domiio: La fuzioe f ( ) =

Dettagli

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1 Esame di Stato 8 Problema ; y f x x x L equazioe della curva che descrive il profilo sull itera mattoella si ottiee simmetrizzado tale fuzioe rispetto agli assi e all origie (ovviamete o è l equazioe di

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tema di: MATEMATICA Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario.

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1 FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI Agela Doatiello 1 Ua fuzioe del tipo f() = m + q, co m e q umeri reali, è ua FUNZIONE LINEARE. Il umero q è detto INTERCETTA o ORDINATA

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha:

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha: www.matefilia.it Scuole italiae all estero (Caledario australe) 005 QUESITO Prova che fra tutti i cilidri iscritti i u coo circolare retto ha volume massimo quello la cui altezza è la terza parte di quella

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005 ESAME DI STATO DI LICEO SCIENTIFICO 005 CORSO DI ORDINAMENTO Sessioe ordiaria Tema di MATEMATICA - 3 giugo 005 Svolgimeto a cura del prof. Luigi Tomasi (luigi.tomasi@libero.it) RISPOSTE AI QUESITI DEL

Dettagli

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI. Angela Donatiello 1

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI. Angela Donatiello 1 FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI Agela Doatiello 1 Ua fuzioe del tipo f() = m + q, co m e q umeri reali, è ua FUNZIONE LINEARE. Il umero q è detto INTERCETTA o ORDINATA ALL

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

5. Derivate. Derivate. Derivate di funzioni elementari. Regole di derivazione. Derivate di funzioni composte e di funzioni inverse

5. Derivate. Derivate. Derivate di funzioni elementari. Regole di derivazione. Derivate di funzioni composte e di funzioni inverse Di cosa parleremo Le derivate costituiscoo, per la maggioraza degli studeti, l argometo più semplice di questa parte dell aalisi matematica. I questo capitolo e daremo il cocetto assieme al sigificato

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

Prove d'esame a.a

Prove d'esame a.a Prove d'esame aa 22 Adrea Corli 2 settembre 2 Soo qui raccolti i testi delle prove d'esame assegati ell'aa 2, relativi al Corso di Aalisi Matematica I (semestrale, 2 crediti), Laurea i Igegeria Civile

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 008/009 Docete: R Argiolas Cogome Matricola 6 Geaio 009 ore 9 Aula C Nome Corso voto Esercizio Assegata la uzioe a Si determii il suo

Dettagli

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3 SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1 Igegeria per l Ambiete e il Territorio - III appello, 11 luglio 212 Riportiamo lo svolgimeto dei temi 3 e 4 e le sole soluzioi dei temi 1 e 2. I temi pari

Dettagli

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016 omada ) ) 4 cos si = 0 + e 4 C) 0 ) + omada La fuzioe f : (0, + ) R defiita da f() = si ( ) cos ) ha sia massimo che miimo ) è itata ma o ha é massimo é miimo C) o è itata e o ha asitoti ) ha u asitoto

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x).

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x). c Adrea Dall Aglio - Esercizi di Aalisi Matematica - October, 6 Avverteze Questi esercizi soo i gra parte tratti da testi di esame di vari corsi Aalisi Matematica I per Matematica, Fisica, Iformatica,

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 08 Problema Soluzioe a cura di L. Tomasi Soluzioe Puto Co riferimeto all esempio semplice del mauale d uso della macchia che colora

Dettagli

06 LE SUCCESSIONI DI NUMERI REALI

06 LE SUCCESSIONI DI NUMERI REALI 06 LE SUCCESSIONI DI NUMERI REALI Ua successioe è ua fuzioe defiita i. I simboli ua f : A tale che f ( ) è ua successioe di elemeti di A. Se poiamo f ( i) ai co i,...,,..., ua successioe può essere rappresetata

Dettagli

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R Problema PROBLEMA Sia f la fuzioe defiita da f ( ) + + +... + e!! dove è u itero positivo e R. Si verifichi che la derivata di f è: f '( ) e!. Si dica se la fuzioe f ammette massimi e miimi (assoluti e

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

Esercitazioni di Geometria II

Esercitazioni di Geometria II Esercitazioi di Geometria II Letizia Perigotti - perigotti@sciece.uit.it 20 aprile 2012 Esercizio 1. Dimostrare che la famiglia degli itervalli chiusi e limitati B 1 = {[a, b] R : a < b} o è base di alcua

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Il cadidato risolva uo dei due problemi e 5 dei quesiti i cui si articola il questioario. PRLEMA Si cosiderio i triagoli la cui base è A e il cui vertice

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti L.Lecci\Compito D\Veerdì geaio 00 1 Oggetto: compito i Classe D/PNI Liceo Scietifico Statale G. Stampacchia Tricase Tempo di lavoro 10 miuti Argometi: Geometria della circofereza- Operazioi co i radicali

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza (Viee dato u ceo di soluzioe del Tema. I Temi, 3 e 4 possoo essere svolti i modo del tutto simile) TEMA cos(3x) + π cos(3x) + 3. (a) Determiare il domiio di f, evetuali simmetrie, periodicità e sego. (b)

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

Area civile A.A ESERCIZI 1

Area civile A.A ESERCIZI 1 Area civile AA 009-00 ESERCIZI Scrivere i umeri a) 35, 8947 b) 0, 0000 c) 0, 3456789 d), 000 come frazioi Dimostrare che la somma, la differeza, il prodotto ed il quoziete di due umeri, y razioali è sempre

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim Y557 - ESAME DI STATO DI LICEO SCIETIFICO PIAO AZIOALE DI IFORMATICA CORSO SPERIMETALE Tema di: MATEMATICA (Sessioe ordiaria 2002) QUESTIOARIO 1 Se a e b soo umeri positivi assegati quale è la loro media

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a.

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a. Esercizi -. Determiare il domiio di deizioe delle segueti fuzioi a. () = log jj p (jj ) b. () = µ 5 c. d. e. f. g. h. i. j. () =log jj () = 4p j j! Ã () =arcsi () = log 3 + () =log(jj ) p jj () =log(jcos

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

(To) Topologia. (L) Limiti. è: a) 0; b) 1; c) ; d) non è determinato. (ord 2001) al variare di a in R. (P. Diacono 2002) .

(To) Topologia. (L) Limiti. è: a) 0; b) 1; c) ; d) non è determinato. (ord 2001) al variare di a in R. (P. Diacono 2002) . (To) Topologia To) Si determiio gli estremi superiore e iferiore dell isieme, N L) Stabilire se il limite: lim si cos (L) Limiti A (Mar 7) è: a) ; b) ; c) ; d) o è determiato. (ord ) lim / L) Verificare,

Dettagli

SERIE DI POTENZE. n=0 a n z n.

SERIE DI POTENZE. n=0 a n z n. SERIE DI POTENZE 1. Covergeza putuale Data ua successioe di coefficieti (a ) N, a C, e dato u cetro w 0, la relativa serie di poteze è la serie di fuzioi a (z w 0 ) a 0 + a 1 (z w 0 ) + + a (z w 0 ) +.

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2)

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2) ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 009 CORSO DI ORDINAMENTO Questioario Quesito Si trovi la fuzioe ( ) f la cui derivata è se e il cui grafico passa per il puto ( ; ) Ua primitiva della

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

Scritto di Analisi Matematica IV per Matematica Anno Accademico 2016/17 15/02/2018

Scritto di Analisi Matematica IV per Matematica Anno Accademico 2016/17 15/02/2018 o ccademico 2016/17 15/02/2018 COG 1) a) Sia f (x) = x + si(x), e sia g a, (x) = f (x), a > 0. Dire, al variare di a > 0 se a la successioe g,a coverge putualmete per +, e se il limite è uiforme. b) Dire

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

LICEO delle SCIENZE UMANE B. PASCAL

LICEO delle SCIENZE UMANE B. PASCAL LICEO delle SCIENZE UMANE B. PASCAL Prof. Loredaa Maario INDICE 1. Scomposizioe di poliomi 1.1 Raccoglimeto totale a fattor comue..3 1. Raccoglimeto parziale a fattor comue 3 1.3 Triomio scompoibile el

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x.

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x. APPENDICE A. Derivate otevoli k d d d d d m m m d si cos cos si ta d cos cot d si arcsi arccos m d d d d d d si cos d m d m d d d si d d d cos d d cos d d ta cot arcta d arccot d log a l d d arcsi arccos

Dettagli

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x Prova scritta di Aalisi Matematica I () //5 Euciare e dimostrare il teorema della permaeza del sego Fare u esempio Defiizioe di fuzioe ifiitesima per Motivado la risposta, dire qual è l ordie di ifiitesimo

Dettagli

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a.

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a. Facoltà di Architettura Corso di Laurea i Architettura UE Istituzioi di Matematica (Caale A-L) a.a. 200-20 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe al corso.

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE Igegeria Aerospaziale. Corso di Aalisi Matematica. Compito del 3 giugo 8 SOLUZIONE. Se a := 3 + 3 domada. idicare quali delle segueti affermazioi soo vere puti /- a a a è itata; b a ha ite; c a ha ua sottosuccessioe

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

APPUNTI ANALISI MATEMATICA SABO

APPUNTI ANALISI MATEMATICA SABO APPUNTI DI ANALISI MATEMATICA SABO FUNZIONI cocetto: legame tra due (o più) variabili costituito da relazioi matematiche Fuzioe: Razioale: o è sotto radice Algebrica: le operazioi che costituiscoo il legame

Dettagli

Soluzioni prova scritta del

Soluzioni prova scritta del Soluzioi prova scritta del 5.09.07 Esercizio : Calcolare il ite log Ñ 8? plog q? plog q e? plog q? p q log e? e plog q 4? plog q. Soluzioe. Cosideriamo il umeratore. Si ha??? log plog q plog q p plog q

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Disposizioni semplici

Disposizioni semplici Disposizioi semplici Calcolo combiorio D, K ( ) ( )...( K+ ) co 0< K Di elemeti e K (umero urale) si dicoo disposizioi semplici di elemeti di classe K i raggruppameti otteuti scegliedo K elemeti tra gli

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Uiversità degli Studi di Udie Ao Accademico 00/0 Facoltà di Scieze Matematiche Fisiche e Naturali Corso di Laurea i Iformatica Esercizi di Aalisi Matematica Dott. Paolo Baiti Esercizi del 5 Ottobre 00.

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI Esperimetazioi di Fisica 1 Prova scritta del 1 febbraio 2016 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 7 10/09/2015 1. (12 Puti) Quesito. La variabile casuale cotiua x ha ua distribuzioe

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Una raccolta di esercizi

Una raccolta di esercizi Corso di Aalisi matematica per Fisici (aa 007-08) (prof Alfoso Villai) Ua raccolta di esercizi (aggiorameto: maggio 008) Risolvere le segueti equazioi ell icogita : a) ( + ) = ( ); b) ( 8) = 9; c) 4 =

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Miistero dell Istruzioe, dell Uiversità e della Ricerca Istituto d Istruzioe Secodaria Superiore di II^ Grado LICEO ARTISTICO A. FRATTINI Via Valverde, 2-21100 Varese tel: 0332820670 fax: 0332820470 e-mail:

Dettagli