A3 - Coordinate curvilinee, cilindriche, sferiche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "A3 - Coordinate curvilinee, cilindriche, sferiche"

Transcript

1 A - Coonate clnee clnce sfece A. Sstem coonate clnee Un sstema coonate clnee nello spao R è efnto con femento a n sstema catesano a fnon scala el tpo: Le fnon scala sopa sctte o n altenata la fnone ettoale: : ttscono n cambamento coonate. s s s û û û Fga Geneco sstema coonate clnee Cameemo spefc coonate le spefc eqaon: c c c oe c c e c sono elle tant abtae. S osse ce s na spefce coonata aano solo coonate. A esempo slla spefce coonata c aano solo le coonate e mente è fssata. Cameemo lnee coonate le lnee ce s ottengono ntesecano a e a e le spefc coonate. Lngo tal lnee aa solo na coonata. A esempo la lnea coonata assocata alla coonata è efnta all nteseone elle spefc coonate c e c : lngo tale lnea aa solo la coonata mente e sono fssate. S efnscono po eso fonamental e elat al geneco pnto P coonate û û û : ess sono eso tangent alle te lnee coonate passant pe P nel pnto P stesso. P P P

2 I eso nqe sono n geneale fnon el pnto e n patcolae elle coonate clnee coè la loo eone e eso aano a pnto a pnto. S not la ffeena spetto alle coonate catesane oe eso fonamental sono tant coè anno sempe la stessa eone e lo stesso eso. S conse oa la fnone ettoale: ce cameemo cambamento coonate neso. Dffeenano qesta fnone s a: Le ganee ettoal ttscono na base n geneale non otogonale pe l sstema coonate clnee conseato. Tal etto non sono necessaamente a noma ntaa tttaa s pò mostae faclmente ce l geneco ettoe -esma lnea coonata. Pecò etto fonamental a meno n fattoe scala. Rslta petanto: slta essee tangente alla sono paallel a spett eso e qn: oe: Le qanttà sono ette coeffcent metc. Meante tal fomle è possble caae faclmente le espesson e eso fonamental n fnone elle coonate clnee el pnto P. Un sstema coonate clnee s ce otogonale se eso û û e û sono mtamente otogonal n ogn pnto. Se tale conone è efcata eso fonamental ttscono qn na base otonomale pe l sstema coonate clnee conseato Se nolte tal eso fomano nell one na tena otonomale estosa coè slta: s paleà sstema otogonale estoso.

3 In n sstema coonate clnee otogonal l geneco esoe fonamentale û slta essee sempe otogonale alla spefce coonata eqaone tante. In alt temn: c Cò sggesce n metoo altenato pe la etemnaone e eso fonamental. Infatt è noto all anals ce l gaente ella fnone scalae è sempe otogonale pe efnone alla spefce tante. E qn mmeato conclee ce slta: Le fomle possono essee qn mpegate solamente pe sstem coonate clnee otogonal pe la etemnaone e eso fonamental n altenata alle. Il sstema fonamentale eso û û e û è patcolamente mpotante pecé meante esso s possono caae le component n geneco ettoe ello spao spetto al sstema coonate clnee. Le component n ettoe nel femento otogonale efnto a eso s ottengono poettano tale ettoe lngo cascno e eso fonamental: 4 In n sstema otogonale geneco se s ncementa la coonata na qanttà nfntesma sena aae le alte e coonate l pnto P s sposteà n aco elementae lngea s n geneale non gale a come n coonate catesane ma a esso popoonale. Cameemo s s s gl ac elementa lngo le lnee coonate. S pò mostae ce coeffcent popoonaltà sono ancoa na olta coeffcent metc efnt peceentemente: s 5 I ac nano na cella elementae o paalleleppeo elementae s ea la fga c ess fomano spgol. L aco elementae totale nell ntono el pnto P slta qn : s s s s e è pa oamente alla lngea ella agonale el paalleleppeo elementae. Le facce el paalleleppeo ce gaccono slla spefce efnta agl ac s s s anno aea spettamente: S S S s s ss s s 6

4 Infne l olme el paalleleppeo elementae saà: V s 7 ss La fomla 7 è patcolamente tle nella solone ntegal olme come s eà nel segto: f V V S pò mostae ce n espessone pe l olme el paalleleppeo elementae eqalente alla 7 è la segente: V è l etemnante Jacobano assocato alla tasfomaone coonate oe. Pe qanto appena etto ee sltae oamente:. L'elemento olme pò essee qn etemnato n es mo ttt eqalent: Calcolano l pootto e coeffcent metc. Calcolano l pootto ettoale tplo Calcolano l etemnante: J Esemp patcola coonate clnee otogonal estose sono oamente qelle catesane ettangola le coonate clnce e qelle sfece. Tal sstem coonate sono pù sat nelle applcaon. Nel caso elle coonate catesane s a banalmente: ; ; I coeffcent metc sltano oamente ttt nta: A. Sstema coonate clnce ; ; S a e fga : ; ; è l molo ella poeone s n pano t el aggo ettoe ce na l geneco pnto P. φ è l angolo n aant ce tale poeone foma con l asse msato n senso antoao. conce con l omonma coonata catesana.

5 φ è etta amt o longtne è etta qota. Fga Lnee coonate e eso fonamental el sstema coonate clnce Le fomle pe l cambamento coonate sono: actan < < π Valgono nolte le tasfomaon nese: sn Le spefc coonate sono spettamente s ea la fga : e cln a seone ccolae aent pe asse l asse t. e sempan etcal passant pe l asse φ t. e e pan oontal coè otogonal all asse t.. Le lnee coonate sono nell one elle semette sl pano passant pe l ogne e pe l geneco pnto P elle cconfeene sl pano centate nell ogne e passant pe P aent aggo pa a e elle ette paallele all asse. La coonata ene spesso ncata ance con. Le coonate clnce ttscono n sstema coonate clnee otogonal e coeffcent metc assmono alo: ; ; Meante conseaon geometce oppe tlano le fomle e s possono caae le component catesane e eso clnc n fnone elle coonate φ. S a: sn sn

6 Le elaon nese sono: sn - sn In foma matcale: sn sn Inesamente: sn sn - Osseano la fga è facle notae ce eso fonamental sopa efnt sosfano eqst tpc e sstem coonate clnee otogonal. S conse a esempo l esoe : esso è tangente alla secona lnea coonata coè alla cconfeena sl pano centata nell ogne e passante pe P e otogonale alla spefce φt. coè al sempano etcale passante pe l ogne e pe P. L elemento olme n coonate clnce s ea la fga è: V mente l elemento spefce clnca è: s s S S Fga Elemento olme n coonate clnce

7 Sa n geneco ettoe applcato n P espesso meante le se component catesane: Attaeso le 4 s possono ottenee faclmente le component nel sstema femento clnco. In foma ettoale s a: Ttte le opeaon ettoal ntootte ne captol peceent con femento a sstem catesan s possono faclmente estenee a sstem coonate clnee otogonal e n patcolae alle coonate clnce. S conseno nfatt etto e le c component sono espesse nel femento clnco. A esempo pe l pootto scalae slta: e pe l pootto ettoale: A. Sstema coonate sfece o pola nello spao S a e fga 4: ; ; φ In qesto caso è l molo el aggo ettoe ce na l geneco pnto P e non la sa poeone s n pano t come nel caso elle coonate clnce. è etta eleaone o colattne mente φ è ancoa l amt o longtne come n coonate clnce. Fga 4 - Lnee coonate e eso fonamental el sstema coonate sfece

8 Le fomle pe l cambamento coonate sono: actan actan < π < π Valgono po le fomle nese: sn sn sn Le spefc coonate sono spettamente e fga 4: elle sfee centate nell ogne t. e con aent come etce l ogne e pe asse l asse t. e e sempan etcal passant pe l asse φ t.. Le lnee coonate sono nell one elle semette passant pe l ogne e pe l geneco pnto P elle cconfeene centate nell ogne passant pe P e pe l asse aent aggo pa a e elle cconfeene sl pano centate nell ogne e passant pe P aent aggo pa a sn. S osse ce qaloa la coonata slt tante gl nsem cconfeene etcal e oontal ce s ottengono al aae e φ concono con mean e paallel el femento geogafco teeste. Le coonate sfece ttscono n sstema coonate clnee otogonal e coeffcent metc assmono alo: ; ; Meante conseaon geometce o tamte le fomle e s possono caae le component catesane e eso sfec n fnone elle coonate φ. S a: sn sn Relaon nese: sn sn sn sn sn sn sn sn sn sn sn

9 In foma matcale: Inesamente: sn - sn sn sn sn sn sn sn sn - sn - sn - sn Osseano la fga 4 è facle notae ce eso fonamental sopa efnt sosfano eqst tpc e sstem coonate clnee otogonal. S conse a esempo l esoe : esso è tangente alla pma lnea coonata coè al segmento ce congnge l ogne con l pnto P e otogonale alla spefce t. coè alla sfea centata nell ogne passante pe P. L elemento olme n coonate sfece s ea la fga 5 è: mente l elemento spefce sfeca è: V sn S S s s sn Fga 5 Elemento olme n coonate sfece

10 Ance n qesto caso meante la conoscena e eso sfec e le elaon 4 è possble espmee le component el geneco ettoe nel sstema femento sfeco: Pootto scalae: Pootto ettoale: A.4 Conseaon conclse Conclamo qesto captolo con alcne mpotant osseaon: E mpotante non fae confsone fa le coonate n pnto n n sstema femento clneo e le component n ettoe nel meesmo sstema femento pecé s tatta concett completamente es. A ttolo esempo s conse ce le coonate clnee possono essee coonate angola es. e φ e sstem sfeco e clnco mente le component n ettoe pe efnone sono sempe elle lngee. S è etto ce nel sstema catesano eone e eso e eso fonamental non aano con l pnto petanto pe comotà ess possono essee pensat fss e applcat nell ogne. Come consegena cò n geneco ettoe n component catesane pò pensas applcato n n qalnqe pnto ello spao e n patcolae nell ogne pocé le se component non aano con l pnto. Qesto non è eo pe n geneco sstema coonate clnee! In geneale nfatt tanto eso fonamental qanto le component el ettoe sono fnone el pnto applcaone P el ettoe. In fomle: A esempo nel sstema femento clnco s a: e nel sstema femento sfeco:

11 S osse ce sa le coonate clnce sa qelle sfece non sono efnte pe pnt appatenent all asse. In patcolae esse non sono efnte nell ogne pocé gl angol e φ sono netemnat: come consegena nemmeno eso fonamental sono efnt pe c n qest sstem non a senso pensae etto applcat nell ogne come s fa salmente pe le coonate catesane. In qalce caso pò essee comoo espmee n ettoe meante n femento clneo otogonale ance n pnt n c na o pù coonate non sono efnte assegnano a esse e alo abta. S pens a esempo al femento sfeco: se s ole espmee n ettoe n component sfece n ttt pnt na spefce sfeca occoe conseae l fatto ce a pol ella sfea eso non sono efnt pocé φ è netemnato. S pò tttaa oae al poblema assmeno a esempo φ. Meante tale assnone eso e sltano ì efnt a pol φ ella sfea: a. Polo no: ; ; φ b. Polo s: ; ; φ e φ

Sistemi di coordinate curvilinee (1)

Sistemi di coordinate curvilinee (1) Sstem d coodnate clnee ( Un sstema d coodnate clnee ( nello spao R è defnto con femento ad n sstema catesano da fnon del tpo: con femento ad n sstema catesano da fnon del tpo: ( ( : La fnone ettoale: (

Dettagli

LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE

LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE Un alto potente metodo pe deteminae le solioni dell eqaione di Laplace si basa slla teoia delle nioni analitiche Anche in qesto caso si tilieà n appoccio

Dettagli

CAP.1. necessario per definire una sequenza di eventi. L unità di misura è il sec.

CAP.1. necessario per definire una sequenza di eventi. L unità di misura è il sec. CAP. Concett fondamental e pncp della meccanca Gandee fondamental Le gandee fondamental della meccanca sono spao, tempo, massa e foa. Non possono essee completamente defnte, ma accettate slla base dell

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

Dispense di IDRAULICA per gli allievi ingegneri edili specialisti e ingegneri edili-architetti del nuovo ordinamento

Dispense di IDRAULICA per gli allievi ingegneri edili specialisti e ingegneri edili-architetti del nuovo ordinamento Anea Balzano Dspense IDRAULICA pe gl allev ngegne el specalst e ngegne el-achtett el novo onamento 0,5 U /g U L λ gd Ω Ω U g U L λ gd p A γ U /g U /g U /g η U /g U L λ gd U c g h A z A ε ε D D D.. ε p

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

CINEMATICA del corpo rigido

CINEMATICA del corpo rigido SEZINE CINEMAICA del corpo rgdo Le segent note sono na sntes estrema de concett alla base della dnamca de corp rgd. Lo stdente pò consderare d aer appreso realmente tal concett solo se è n grado d rsolere

Dettagli

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI Appnt de cors d Idralca 1 e Idrodnamca 1 Lezone 14 I PRINCIPI DELLA ECCANICA DEI FLUIDI Il moto de fld è controllato da alcn prncp fondamental della fsca. Ennceremo nel segto: - l prncpo d conservazone

Dettagli

Gli urti impulso teorema dell impulso

Gli urti impulso teorema dell impulso Gl ut Spesso abbao bsogno d conoscee coa una oza dpende dal tepo, n quanto solee l poblea utlzzando le eazon enegetche non è possble o sucente. Intoducao alloa la seguente quanttà ettoale chaata pulso.

Dettagli

Si considerino le rette:

Si considerino le rette: Si consideino le ette: Eseciio (tipo tema d esame) : s : + () ) Si dica pe quali valoi del paameto eale le ette e s isultano sghembe, paallele o incidenti. ) Nel caso paallele si emino i paameti diettoi

Dettagli

TEORIA ASSIOMATICA DELLA RADIAZIONE

TEORIA ASSIOMATICA DELLA RADIAZIONE TEORA AOMATCA DELLA RADAZONE ntoduzone alle antenne ed alla adazone elettomagnetca L appocco assomatco-deduttvo allo studo della popagazone elettomagnetca s basa sulla possbltà d pote ndagae ed analzzae

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

r v i i P = m i i dt (M r cm ) = Mv r r i = d avendo definito il concetto di centro di massa (CM) del sistema ( M = m i r r r cm

r v i i P = m i i dt (M r cm ) = Mv r r i = d avendo definito il concetto di centro di massa (CM) del sistema ( M = m i r r r cm 6. Sstem d patcelle Legge della dnamca d taslazone pe un sstema d patcelle È possble scvee una legge pe l moto collettvo d un nseme d patcelle nteagent fa loo e con l esteno. Questo modo d fae pemette

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

IL Potenziale elettrostatico

IL Potenziale elettrostatico Ve.. d 27/5/9 IL Potenzale ettostatco ) La oza ettca è consevatva Patamo col vecae che la oza ettca è consevatva, lmtandoc nzalmente al caso d cache ettche puntom. Posta una caca +Q ema n un punto ogne,

Dettagli

21. COLLEGAMENTI SALDATI

21. COLLEGAMENTI SALDATI . COLLEET SLDT. Petucc Leon d Costuone d acchne La saldatua è un pocesso che consente d collegae element costuttv ta loo o con l esteno. È un collegamento fsso ed namovble. Da un punto d vsta meccanco,

Dettagli

Fisica Generale B. Campo magnetico stazionario. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale B. Campo magnetico stazionario. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini A.A. 14 15 Fsca Geneale Campo magnetco staonao Scuola d Ingegnea e Achtettua UNIO Cesena Anno Accademco 14 15 A.A. 14 15 Il magnetsmo Fenomen magnetc not da lungo tempo (Socate, V secolo a. C.). Popetà

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

Campo magnetico N S N S

Campo magnetico N S N S Foze fa calamte. Campo magnetco Alcun fenomen S S S S S S S S S S Ago magnetco: tende ad allneas con l campo magnetco. Momento delle foze le calamte tendono ad allneas... Ago magnetco Magnete d foma sfeca

Dettagli

32. Significato geometrico della derivata. 32. Significato geometrico della derivata.

32. Significato geometrico della derivata. 32. Significato geometrico della derivata. 32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata

Dettagli

Figura 1 Geometria attuale. Figura 2 Sezione trapezia

Figura 1 Geometria attuale. Figura 2 Sezione trapezia ESERCITAZIONE N. 4 (20 aple 2005) Dmensonamento daulco d un canale apeto PROBLEMA Nel pogetto d ecupeo d un aea s ntende potae alla luce un canale che n passato è stato tombnato con tubazon pefabbcate

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

Equazioni della Fluidodinamica

Equazioni della Fluidodinamica Captolo 3 Eqazon della Fldodnamca Come gà accennato pecedentemente (cap..7) le eqazon d conseazone o d blanco possono essee espesse n foma dffeenzale od ntegale. S tlzza la foma dffeenzale qando samo nteessat

Dettagli

7. Proprietà dei circuiti lineari adinamici

7. Proprietà dei circuiti lineari adinamici A. Moand, Unestà d Bolona Elettotecnca T-A, A.A. 6/7 7. Popetà de ccut lnea adnamc Foma matcale del sstema solente d un ccuto lneae. Ccuto nete. Coeffcent d ete. ecpoctà de ccut lnea. Popetà d soapposzone.

Dettagli

Esercizio 1. Date le rette

Esercizio 1. Date le rette Date le ette Eseciio y : : y a) Scivee le equaioni paametiche delle ette e. b) Dopo ave veificato che le ette ed sono sghembe, tovae l equaione di un piano σ contenente e paallelo a. c) Deteminae le equaioni

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Meccanica dei sistemi

Meccanica dei sistemi Meccanca de sste 1. 1. Moento angolae 2. Moento d una foza 3. Foze cental 4. Sste d punt ateal 5. Foze estene e Foze ntene 6. Cento d assa d un sstea 7. Consevazone della quantta d oto 8. Teoea del oento

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E.

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E. Univesità La Sapienza - Ingegneia Infomatica e Automatica Coso i Fisica Geneale: MOTI RELATIVI A. Bosco, F. Pettazzi e E. Fazio Consieiamo un punto mateiale P che si muove i moto abitaio all inteno i un

Dettagli

Facoltà di Ingegneria Esame scritto di Fisica II

Facoltà di Ingegneria Esame scritto di Fisica II Facoltà ngegnea Eae ctto Fca.9.4 Eeczo n. Un conenatoe, capactà, a facce pane e paallele, aea S c e tanza, è collegato n paallelo a un econo conenatoe clnco capactà nf e a un geneatoe eale foza elettootce

Dettagli

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica Legg d ot-savat e d Ampèe q d q P R dl Ossevazon spemental d Legge d ot-savat ds q espemento: X d d d d d d d ds 1 ds 2 sen q... assumendo n fomula I ds ˆ d k m 2 d Legge d ot-savat ds q X d d k c m pemeabltà

Dettagli

Economia del turismo. Prof.ssa Carla Massidda

Economia del turismo. Prof.ssa Carla Massidda Economa del tusmo Pof.ssa Cala Massdda Pate 2 Agoment Defnzone d domanda tustca Detemnant della domanda tustca L elastctà della domanda tustca La stma della domanda tustca Defnzone d domanda tustca Dato

Dettagli

I vettori. Grandezze scalari e grandezze vettoriali

I vettori. Grandezze scalari e grandezze vettoriali I vetto Gndee sl e gndee vettol Vettoe: ente mtemto tteto d te qunttà modulo deone veso I vetto sono pplt n un punto (esste un numeo nfnto d vetto equpollent, oé on modulo, deone e veso ugul, m pplt n

Dettagli

(5-59) le cui derivate parziali in ogni punto siano uguali alle componenti u, v, w del vettore velocità nello stesso punto: Φ x Φ = Φ

(5-59) le cui derivate parziali in ogni punto siano uguali alle componenti u, v, w del vettore velocità nello stesso punto: Φ x Φ = Φ Inteaon fluo-solo 93 ( V U ) σ Q' (5-58) 5.4. Mot a potenale S ce che un campo vetto veloctà v ammette un potenale, quano esste una funone scalae (, y,, t) Φ Φ (5-59) le cu evate paal n ogn punto sano

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

Economia del turismo

Economia del turismo Unvestà degl Stud d Cagla Facoltà d Economa Coso d Lauea n Economa e Gest. de Sev. Tustc A.A. 2013-2014 Economa del tusmo Pof.ssa Cala Massdda Economa del Tusmo Pof.ssa Cala Massdda Sezone 8 I MODELLI

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

ELETTRONICA CdS Ingegneria Biomedica

ELETTRONICA CdS Ingegneria Biomedica ELETTRONICA CdS Ingegnea Bomedca LEZIONE A.04 Amplfcato Caattestche degl amplfcato Tp d amplfcatoe Relazon ta paamet de modell d amplfcatoe Amplfcatoe cascata Rsposta feqenza degl amplfcato Elettonca pe

Dettagli

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C).

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C). LGG DI COULOMB (3) L unta d msua della caca elettca nel.i. è l coulomb (C). F π o La caca elettca d C è uella caca che posta nel vuoto ad m d dstanza da una caca elettca uguale la espnge con la foza d

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano lettomagnetismo Pof. Fancesco agsa Univesità degli Stdi di Milano Lezione n. 6 4..5 Applicazioni della legge di Gass Anno Accademico 5/6 Campo di n gscio sfeico cavo Abbiamo già calcolato mediante n calcolo

Dettagli

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità SPZIO CRTESINO E (R) Sia [O,B] un ifeimento euclideo nello spaio euclideo E (R). B è una base otonomale. P P e e e P P condiioni di otogonalità ) etta-etta di paameti diettoi [(l,m,n )],[(l,m,n )] (l,m,n

Dettagli

8 GLI URTI. . Posto F 21. la forza esercitata da m 2. , per effetto dell interazione la quantità di moto della particella m. varierà di una quantità p

8 GLI URTI. . Posto F 21. la forza esercitata da m 2. , per effetto dell interazione la quantità di moto della particella m. varierà di una quantità p 8 GLI URTI Pe uto s ntende l nteazone ta due patcelle o due cop estes che s esplca attaeso oze d tpo pulso n un tepo tascuable spetto a tep tpc d osseazone del oto pa e dopo tale nteazone Sebbene l senso

Dettagli

Integrazione indefinita di funzioni irrazionali

Integrazione indefinita di funzioni irrazionali Esecizi di iepilogo e complemento Integazione indefinita di funzioni iazionali 0.5 setgay0 0.5 setgay Denotiamo con R(,,..., n ) una funzione azionale delle vaiabili indicate. Passiamo in assegna alcuni

Dettagli

Lezione 10: Magnetismo

Lezione 10: Magnetismo Leone 1: Magnetsmo Magnette e Magnet (mpegat nella navgaone a pma el sec. XI ) Polo SUD S N Polo NOD I blocchett magnette s attaggono o espngono quano sono uno vcno all alto attaone S N S N epulsone S

Dettagli

RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE

RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE Unestà degl Stud d oma To Vegata Dpatmento d Ing. Elettonca coso d ELETTONIA APPLIATA Ing. Patck E. Longh ISPOSTA IN FEQUENZA DI UN AMPLIFIATOE II / INTODUZIONE Detemnae la sposta n fequenza d un amplfcatoe

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Fisica Generale L-A. 4. Esercizi sui vettori applicati. 4

Fisica Generale L-A. 4. Esercizi sui vettori applicati. 4 Eserco Fsca Generale L- In na prefssata terna cartesana, l vettore: a ˆ ˆj+ kˆ è applcato nel pnto: (,0,) alcolare l so momento rspetto all orgne O(0, 0, 0) e l so momento assale rspetto all asse.. Eserc

Dettagli

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica Legg d Bot-Savat e d Ampèe d P R dl Ossevazon spemental Legge d Bot-Savat db ds espemento: X db... assumendo n fomula Legge d Bot-Savat db ds pemeabltà magnetca X db Il campo magnetco è dstbuto ntono al

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Intodione Una tasfomaione dello spaio è na fnione geneia he tasfoma n pnto p in n alto pnto p : p χ ( p) Essendo p (,,) e p (,, ) Pe il momento non faiamo alna ipotesi slla foma

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Coo 0/0 METODO DEGLI ELEMETI FIITI Element Iopaametc L'dea pncpale della fomulaone paametca degl element fnt è d utlae l tema d coodnate "natual" pe la cttua delle funon d ntepolaone (od ancoa funon d

Dettagli

ELEMENTI DI GEOMETRIA SOLIDA

ELEMENTI DI GEOMETRIA SOLIDA POF. IN CEESO.S. EINSEIN EEMENI DI GEOMEI SOID Postulati: ) pe punti dello spazio, non allineati, passa uno e un solo piano; ) una etta passante pe due punti di un piano giace inteamente in quel piano;

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

CONDUZIONE NON STAZIONARIA

CONDUZIONE NON STAZIONARIA CONDUZIONE NON AZIONARIA Caso geneale de sstem a tempeatua unfome ebbene l pocesso d conduzone non stazonaa n un soldo sa comunemente dovuto allo sco temco convettvo dal fludo ccostante, alt pocess d sco

Dettagli

Lavoro, Energia e stabilità dell equilibrio I parte

Lavoro, Energia e stabilità dell equilibrio I parte Il concetto d Enega e la sua legge d conseaone sono una delle colonne potant della Scena n geneale e della sca n patcolae; n quest appunt ene spegato n odo abbastana gooso coe la conseaone dell Enega,

Dettagli

MODELLO MATEMATICO DELLA MACCHINA AD INDUZIONE A ROTORE AVVOLTO IN REGIME COMUNQUE VARIABILE. Ezio Santini SAPIENZA Università di Roma

MODELLO MATEMATICO DELLA MACCHINA AD INDUZIONE A ROTORE AVVOLTO IN REGIME COMUNQUE VARIABILE. Ezio Santini SAPIENZA Università di Roma ODEO AEAICO DEA ACCHINA AD INDUZIONE A OOE AVVOO IN EGIE COUNQUE VAIABIE Ezo Santn SAPIENZA Unetà oma Equazon namche ella macchna ancona S pena n coneazone una macchna ancona tfae a otoe aolto, a eempo

Dettagli

AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso

AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Modello del motoe ancono tfae ed oeato d fluo S conde la macchna chematzzata con aolgment tatoc pot a π/ ta loo e f nello pazo e aolgment otoc,

Dettagli

Teorema del momento angolare. Momento angolare totale rispetto al polo P che può essere mobile F31 F13 F32. r r r r r F23. r r P1 F21.

Teorema del momento angolare. Momento angolare totale rispetto al polo P che può essere mobile F31 F13 F32. r r r r r F23. r r P1 F21. Teoea del oento angolae F F3 3 Moento angolae totale spetto al polo che può essee oble F3 F3 F3 L ( v ) F O d v + dv + [( ) + ( )] (E) (I) v v v F F Teoea del oento angolae (E) v + + v v v F v v p M (

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto Oggetto: corso chimica-fisica. Esercizi: i Vettori

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto   Oggetto: corso chimica-fisica. Esercizi: i Vettori Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.anre@gmail.com ggetto: corso chimica-fisica Esercii: i Vettori Appnti di leione Indice Somma di vettori 2 Differena di vettori 3

Dettagli

Forza gravitazionale e forza elettrostatica 1.1 (Lezione L13 Prof. Della Valle) 1. La forza gravitazionale

Forza gravitazionale e forza elettrostatica 1.1 (Lezione L13 Prof. Della Valle) 1. La forza gravitazionale Foza gavtazonale e foza elettostatca 1.1 (ezone 13 Pof. Della Valle) 1. a foza gavtazonale 1.1 egge d gavtazone unvesale Possamo così espmee la egge d gavtazone unvesale fomulata da Newton: Due cop qualsas,

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

Potenziali e campi di dipoli elettrici e magnetici

Potenziali e campi di dipoli elettrici e magnetici Potena e camp d dpo eettc e magnetc S vuoe mostae come s puo tovae andamento de campo eettco e d queo magnetco, ne mte d gand dstane, pe caso d un dpoo eettco e d un dpoo magnetco. Dpoo eettco Schematamo

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

Professor Mario Dente, Professoressa Giulia Bozzano

Professor Mario Dente, Professoressa Giulia Bozzano Pofesso Mao ente, Pofessoessa Gula Bozzano patmento d Chmca, Mateal e Ingegnea Chmca "Gulo Natta" Sezone Chmca Industale e Ingegnea Chmca Poltecnco d Mlano Pazza Leonado a Vnc, 3-033 Mlano (MI) Pemessa.

Dettagli

Università degli Studi di Salerno Facoltà di Ingegneria Esame scritto di Fisica II

Università degli Studi di Salerno Facoltà di Ingegneria Esame scritto di Fisica II Unvestà egl Stu Saleno Facoltà Ingegnea Esae sctto Fsca II - 74 Eseczo n Una pallna plastca, assa e enson tascuabl, è sospesa tate una olla costante elastca k = N e lunghezza a poso = 5c a un flo go, ateale

Dettagli

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire La meca ow e la aa geealaa o ahalaob. Noe ay Fae. Rcham eoc S ee ule oae qu eguo, vao a e ecfc ca oa 9 ull agomeo alcu cham ulle ae ow e ahalaob. Coeao ue veo-ga a eleme ua mace a quav, a, R, eemo la eguee

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA TRASMISSIONE DEL CALORE PER CONDUZIONE

TERMODINAMICA E TERMOFLUIDODINAMICA TRASMISSIONE DEL CALORE PER CONDUZIONE EMODINAMICA E EMOFUIDODINAMICA ASMISSIONE DE CAOE PE CONDUZIONE 1 (t) A H ( t ) (x,t) (t) 0 x x e s se w 1 ( x, t ) x ( x, t ) asmssone del caloe pe conduzone Indce 1) Il postulato d Foue pe la conduzone

Dettagli

Note del corso di Geometria

Note del corso di Geometria Giuseppe ccascina Valeio Monti Note del coso di Geometia ppendice nno ccademico 2008-2009 ii apitolo 1 Richiami di geometia del piano 1.1 Intoduzione Richiamiamo alcuni agomenti di geometia euclidea del

Dettagli

Sessione live #1 Settimana #2 dal 10 al 16 marzo. Statistica descrittiva: Indici di posizione, dispersione e forma Istogramma frequenze, box plot

Sessione live #1 Settimana #2 dal 10 al 16 marzo. Statistica descrittiva: Indici di posizione, dispersione e forma Istogramma frequenze, box plot Sessone lve #1 Settmana # dal 10 al 16 mazo Statstca descttva: Indc d poszone, dspesone e foma Istogamma fequenze, box plot Lezon CD: 1 - - 3 Eseczo 1 S consde la seguente dstbuzone delle nduste tessl

Dettagli

CINEMATICA DEI CORPI RIGIDI

CINEMATICA DEI CORPI RIGIDI CINEMTIC EI CORI RIGII La Cinematica ienta in qella pate della Meccanica Classica che si occpa dello stdio della geometia degli spostamenti dei pnti di n sistema mateiale ipotizzato come igido, indipendentemente

Dettagli

CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A

CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A. 2012-2013 1 INDICE 1 STIMA DELLA DOMANDA DI TRASPORTO 3 1.1 Moello generazone 3 1.2 Moello strbuzone 4 1.3 Moello scelta moale 5 1.4 Stma elle sottomatrc scambo

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dnamca del copo gdo Un copo gdo è pe defnzone un copo che non s defoma duante l movmento. Se non s defoma voà de che la dstanza j fa due punt qualsas e j del copo esta costante: j = cost pe ogn e j. Il

Dettagli

Economia del turismo

Economia del turismo Unestà degl Stud d Cagla Facoltà d Economa Coso d Lauea n Economa e Gest. de Se. Tustc A.A. 2014-2015 Economa del tusmo of.ssa Cala Massdda Economa del Tusmo of.ssa Cala Massdda Sezone 3 LA DOMANDA TURISTICA

Dettagli

Momenti d'inerzia di figure geometriche semplici

Momenti d'inerzia di figure geometriche semplici Appofondimento Momenti d'inezia di figue geometice semplici Pidatella, Feai Aggadi, Pidatella, Coso di meccanica, maccine ed enegia Zanicelli 1 Rettangolo Pe un ettangolo di ase e altezza (FGURA 1.a),

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

Campo elettrico e campo magnetico statici

Campo elettrico e campo magnetico statici 1 Campo elettco e campo magnetco statc Flusso d un campo vettoale Consdeamo una zona d spazo n cu sa pesente un ceto campo vettoale v e, n uesto spazo, una ceta supefce (apeta o chusa) Dvdamo l'ntea supefce

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Il formalismo vettoriale della cinematica rotazionale

Il formalismo vettoriale della cinematica rotazionale Il fomalismo ettoiale della cinematica otaionale Le elaioni della cinematica otaionale assumono una foma semplice ed elegante, se sono iscitte in foma ettoiale. E questo l agomento dei paagafi che seguono.

Dettagli

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A.

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A. Insiemistica Se consideiamo un ceto numeo di pesone, cose, animali, piante, mineali, ecc., noi possiamo attibuie loo alcune caatteistiche, che definiamo con il temine di popietà. Le singole entità che

Dettagli

Capitolo III Cenni di cinematica dei fluidi

Capitolo III Cenni di cinematica dei fluidi Capitolo III Cenni di cinematica dei flidi III. Elementi caratteristici del moto. Nella descriione del moto di n flido è tile far riferimento a particolari famiglie di cre, nel segito sinteticamente descritte.

Dettagli

Considerate un economia descritta dalle seguenti equazioni di comportamento: C=c 0 +c 1 (Y-T) per c 0 >0, 0<c 1 <1 I=d 1 Y-d 2 i per d 1 >0, d 2 >0

Considerate un economia descritta dalle seguenti equazioni di comportamento: C=c 0 +c 1 (Y-T) per c 0 >0, 0<c 1 <1 I=d 1 Y-d 2 i per d 1 >0, d 2 >0 Eserczo 9 Consderate la segente versone nmerca del modello -LM: C 400 + 0,5 d I 700-4.000 + 0, G 00 T 00 M d / 0,5-7.500 M s / 500 I valor d eqlbro del reddto e del tasso d nteresse sono: * 00 e * 8%.

Dettagli

1 Il Potenziale elettrostatico

1 Il Potenziale elettrostatico Il Potenzale elettostatco. Il lavoo d una foza non costante Sappamo dallo studo della meccanca che ogn volta che una foza agsce su d un punto mateale e pù n geneale su d un copo esteso - ha nteesse consdeae

Dettagli

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA S ϕ α E h W ψ β ESERCIZIO PIEGMENTI SULLE BRCCI W Un atleta compie una seie di piegamenti sulle baccia, mantenendo il movimento dei segmenti del baccio (omeo ed avambaccio) paalleli al piano sagittale.

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua nduzone Defnzone d mutua nduzone Una nduttanza poduce un campo magnetco popozonale alla coente che v scoe. Se le lnee d foza d questo campo magnetco ntesecano una seconda nduttanza, n questo d poduce

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche unità ostuzioni geometiche ostuzioni di ase nti geometici fondamentali efinizioni Punto nte geometico pivo di dimensioni; è definiile come isultato dell intesezione di due elementi lineai ettilinei o cuvilinei

Dettagli

B raggio. Centro. circonferenza

B raggio. Centro. circonferenza La cicnfeenza è una linea chiusa fmata da tutti i punti del pian che hann la stessa distanza da un punt inten. Quest punt si chiama cent della cicnfeenza e la distanza fa i punti della cicnfeenza e il

Dettagli

Il campo magnetico B 1

Il campo magnetico B 1 Magnetismo natuale l campo magnetico 1 Polo No N S S N Tea Sole Polo Su Alcuni mineali (es. magnetite, a Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Dipoli

Dettagli

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi Le 5 espessioni del Q nel campo dei vapoi satui A C K B Consideiamo la tasfomazione AB che si svolge tutta all inteno della campana dei vapoi satui di una sostanza qualsiasi. Supponiamo quindi di andae

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

1 VETTORI. 1.1 Operazioni tra vettori

1 VETTORI. 1.1 Operazioni tra vettori 1 VETTORI Ttte le gndee pe l ci definiione non concoono lti elementi l di foi dell loo mis engono dette gndee scli; sono esempi di gndee scli l intello di tempo l mss l tempet ecc Esistono ttti delle gndee

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà i Ingegneia Pova scitta i Fisica Cognome: Nome: Data: CL/Maticola: Compito: Aula: Pe annullae la popia pesenza a questa pova scivee ITIATO al igo seguente:.. Moalità i svolgimento:. isolvee i poblemi,

Dettagli

Forza elettrostatica 1.1

Forza elettrostatica 1.1 1. La foza elettostatca 1.1 La legge d Coulomb Foza elettostatca 1.1 S tova spementalmente (ad esempo con una blanca d tosone d Cavendsh) che fa due cache puntfom n uete e nel vuoto s esecta una foza elettca

Dettagli

Origami: Geometria con la carta (I)

Origami: Geometria con la carta (I) Oigami: Geometia con la cata (I) La valenza atistica, ceativa ed estetica dell'oigami, è omai nota a tutti. Il pof. enedetto Scimemi in [ 1] ipota ta l'alto:...l'appoto educativo di giochi e passatempi

Dettagli