CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A"

Transcript

1 CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A

2 INDICE 1 STIMA DELLA DOMANDA DI TRASPORTO Moello generazone Moello strbuzone Moello scelta moale Stma elle sottomatrc scambo e attraversamento 7 2 ESEMPIO APPLICATIVO Errore. Il segnalbro non è efnto. 2

3 1 STIMA DELLA DOMANDA DI TRASPORTO I moell per la omana spostament smulano la quanttà mea spostament con le loro caratterstche rlevant che vengono effettuat nell area Stuo n un etermnato peroo rfermento. Il sstema moell, escrtto nel seguto, smula l flusso omana a partre alla omana complessva spostament emess a cascuna zona orgne nel peroo rfermento e la rpartsce fra le estnazon, mo e percors possbl (moello a alquote parzal). La sequenza sottomoell usata è: o[s,h,m,k] = o [sh] p [/osh] p [m/osh] p [k/oshm], n cu: o [s,h,m,k] è l numero spostament effettuat agl utent ella categora, avent orgne n o, estnazone n, per l motvo s, nella fasca temporale h, con l moo m lungo l percorso k; o [sh] numero spostament effettuat nel peroo h per l motvo s agl utent ella categora con orgne nella zona o (moello generazone); p [/osh] percentuale spostament effettuat a utent ella categora che, parteno alla zona o per l motvo s nel peroo h, s recano alla estnazone (moello strbuzone); p [m/osh] percentuale spostament utent ella categora che, recanos alla zona o alla zona per l motvo s nella fasca orara h, usa l moo m (moello scelta moale); p [k/oshm] percentuale egl spostament effettuat a utent ella categora, che utlzzano cascun percorso k relatvo al moo m per recars a o a per lo scopo s nella fasca orara h (moello scelta el percorso). 1.1 Moello generazone Il moello generazone utlzzato è el tpo nce per categora. Tale moello fornsce, per cascuna categora utent, l numero meo spostament per lo scopo s nel peroo rfermento h ( ): ove o [sh] = n o [] m [os] f[hs] n o [] è l numero utent ella categora che s trovano nella zona o, 3

4 m [os] numero meo spostament effettuat agl utent ella categora per lo scopo s nel gorno ferale meo con orgne o; f[hs] percentuale spostament, che sono effettuat per l motvo s, nella fasca orara h rspetto al totale egl spostament effettuat per lo stesso motvo nel gorno ferale meo. S potzza che l numero spostament nell ora punta è par al 50% quello ella fasca orara I motv ello spostamento conserat sono: Casa-Lavoro penolare e Casa-Affar professonal. Per tener conto egl altr motv l valore omana è ncrementato el 5%. Tabella 1 Inc emssone egl spostament e coeffcente rpartzone nella fasca orara Motvo m [os] f[hs] Utente Tpo Occupat * Casa-Lavoro penolare Casa-Affar professonal * n mancanza el ato s può potzzare numero occupat = 30% popolazone 1.2 Moello strbuzone Il moello strbuzone fornsce la percentuale spostament effettuat a utent categora che, parteno alla zona o per l motvo s nel peroo h, s reca alla estnazone : n cu p [/osh] = ', V è l utltà sstematca assocata alla estnazone per gl utent ella categora. ' L utltà sstematca V è una combnazone lneare secono parametr elle possbl estnazon n relazone alla zona orgne o: V = X egl attrbut ( X ) Gl attrbut che compaono nell utltà sstematca possono essere stnt n ue grupp: attrbut attrattvtà e attrbut costo fra le zone o e. Gl attrbut attrattvtà sono varabl n grao msurare la capactà attrattva una zona come estnazone, gl attrbut costo sono varabl che msurano l costo generalzzato connesso allo spostamento a o a. L utltà sstematca assocata alla estnazone è espressa alla relazone seguente: 4

5 V = st X + a)tot ( A) tot + a)serv ( A) serv + VO1 VO1 + VO2 VO2 o n cu: X o è la stanza mnma su rete straale fra la coppa o, espressa n km/10; ( A) tot è par al logartmo naturale el numero aett total ella zona, espressa n aett/1000; ( A) serv è par al logartmo naturale el numero aett a servz ella zona, espressa n aett/1000; VO1 è una varable ombra che vale 1 se l orgne è uguale alla estnazone, 0 altrment; VO2 è una varable ombra che vale 1 se la provnca orgne è uguale alla provnca estnazone, 0 altrment. Nel caso n cu è noto soltanto l numero aett total cascuna zona, l numero aett al commerco s potzza par al 30% egl aett total, mentre l numero aett a servz è par al rmanete 70%. Tabella 2 Coeffcent el moello strbuzone Motvo st a)tot a)serv VO 1 VO 2 Lavoro penolare Affar professonal Moello scelta moale Il moello scelta moale fornsce l alquota spostament utent categora che, recanos alla zona o per l motvo s nella fasca orara h, usa l moo m: n cu p [m/osh] = ', V è l utltà sstematca assocata al moo m per gl utent ella categora. m I mo conserat nella moellzzazzone ella omana extraurbana sono: auto, bus e treno. Da notare che, per la rpartzone moale, l nseme elle alternatve scelta sponbl vara con la coppa o conserata. La specfcazone elle utltà sstematche per l moello scelta fra l automoble (a), l bus (b) e l treno (t) è: m m' 5

6 n cu V = a CMA CMA + TVA TVA + APF APF + CPL CPL V = b CMB CMB + TVB TVB + DTB DTB + BUS PB + TB TB V = t CMF CMF + TVF TVF + FF DTF + TRENO TRENO + TF TF o CMA, costo monetaro per l moo auto (n euro) /km; o TVA, tempo vaggo n auto (n ore); o APF, auto posseute n famgla, o CPL, varable ombra par a 1 se la estnazone è un capoluogo, 0 altrment; o CMB, costo monetaro per l moo bus (n Euro); o TVB, tempo vaggo n bus (n ore); o DTB, stanzamento temporale per l moo bus (ntertempo meo alla fermata), n ore; o BUS, attrbuto specfco ell alternatva bus (0/1); o TB, numero meo trasbor per l moo bus; o CMF, costo monetaro per l moo treno (n Euro); o TVF, tempo vaggo n treno (n ore); o DTF, stanzamento temporale (ntertempo meo alla fermata), n ore; o TRENO, attrbuto specfco ell alternatva treno (0/1); o TF, numero meo trasbor per l moo treno. Tabella 3 Coeffcent el moello rpartzone moale per motvo Casa-Lavoro penolare Auto Bus Ferrova CMA CMB CMF TVA -0.5 TVB -0.5 TVF -0.5 APF 0.7 DTB -0.6 DTF -0.6 CPL -2.0 BUS -2.2 TRENO -2.1 TB -0.6 TF -0.6 Tabella 4 Coeffcent el moello rpartzone moale per motvo Casa-Affar professonal Auto Bus Ferrova CMA CMB CMF TVA -0.4 TVB -0.4 TVF -0.4 APF 1.7 DTB -0.5 DTF -0.5 CPL -2.0 BUS -1.3 TRENO TB -0.8 TF

7 1.4 Stma elle sottomatrc scambo e attraversamento Per la stma egl spostament scambo, l orgne e la estnazone sono una all nterno e l altra all esterno ell area stuo e vceversa, e per gl spostament attraversamento, l orgne e la estnazone esterne, ma che attraversano l area stuo s procee come escrtto nel seguto. In partcolare per la sottomatrce B (orgne nterna all area stuo e estnazone esterna) l generco elemento è: con e = p e spostament che hanno orgne n e estnazone n e;.e spostament estnat al centroe esterno e; p è par a: con V = D D e + Att ln(att ), D e stanza su rete tra la zona e la zona e, Att attv ella zona, D par a -1.3, Att par a e exp(v ), Il generco elemento ella sottomatrce C (orgne esterna e estnazone nterna all area stuo) è: con e = p e e spostament che hanno orgne n e e estnazone n ; e. spostament che hanno orgne alla zona esterna e; p è par a: exp(v ), con V = D D + A ln(a ), D e stanza su rete tra la zona e la zona, A aett ella zona, D par a -1.3, 7

8 A par a Infne s procee alla stma ella sottomatrce D che nvua gl spostament attraversamento ell area stuo, spostament che utlzzano l sstema trasporto n esame. Tal valor omana sono fornt alle anals a un lvello superore. 8

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda Corso d TRASPORTI E AMBIENTE ng. Antono Com Ottobre 2012 Modell d domanda 1 Struttura del sstema d modell per la smulazone de sstem d trasporto OFFERTA DI INFRASTRUTTURE E SERVIZI DI TRASPORTO MODELLO

Dettagli

ESERCITAZIONE N 8 VALUTAZIONE DEL LIVELLO DI SERVIZIO DI UNA INTERSEZIONE A T SEMAFORIZZATA

ESERCITAZIONE N 8 VALUTAZIONE DEL LIVELLO DI SERVIZIO DI UNA INTERSEZIONE A T SEMAFORIZZATA ESERITAZIONE N 8 VALUTAZIONE DEL LIVELLO DI SERVIZIO DI UNA INTERSEZIONE A T SEMAFORIZZATA 1. Introuzone Nel presente elaborato c s pone l obettvo etermnare l lvello servzo una ntersezone a tre bracc semaforzzata.

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

MODELLO DI SCELTA MODALE PER LA VALUTAZIONE DELL ESCLUSIONE SOCIALE DALL ALTA VELOCITÀ FERROVIARIA

MODELLO DI SCELTA MODALE PER LA VALUTAZIONE DELL ESCLUSIONE SOCIALE DALL ALTA VELOCITÀ FERROVIARIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE Corso d Laurea n Ingegnera per l Ambente e l Terrtoro Percorso per la magstrale n Dfesa del Suolo MODELLO DI SCELTA

Dettagli

PIANIFICAZIONE DEI TRASPORTI

PIANIFICAZIONE DEI TRASPORTI Unverstà d Caglar DICAAR Dpartmento d Ingegnera Cvle, Ambentale e archtettura Sezone Trasport PIANIFICAZIONE DEI TRASPORTI Eserctazone su modell d generazone A.A. 2016-2017 Ing. Francesco Pras Ing. Govann

Dettagli

L ADOZIONE DI NUOVE TECNOLOGIE (1)

L ADOZIONE DI NUOVE TECNOLOGIE (1) (1) Approcco statco: TIZIO Nuova tecnologa Veccha tecnologa CAIO Nuova tecnologa Veccha tecnologa α; α ; γ Nash E. γ; β; β Nash E. Ipotes base: Presenza esternaltà rete α > β > γ Excess nerta: s verfca

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x)

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x) Qualtà ell aattamento una funzone y=f() a un nseme msure (y n funzone ) Date N msure coppe valor elle granezze e y, legate alla relazone y=f(;a,b), nell potes che le ncertezze sulle sano trascurabl e y

Dettagli

2. La base monetaria e i mercati dei depositi e del credito

2. La base monetaria e i mercati dei depositi e del credito 2. La base monetara e mercat e epost e el creto Esercz svolt Eserczo 2.1 (a) Conserate l moello che rappresenta l equlbro el mercato ella base monetara e el mercato e epost (fate l potes che coe cent c;

Dettagli

Economia del turismo

Economia del turismo Unverstà degl Stud d Caglar Facoltà d Economa Corso d Laurea n Economa e Gest. de Serv. Turstc A.A. 2013-2014 Economa del tursmo Prof.ssa Carla Massdda Sezone 5 ANALISI MICROECONOMICA DEL TURISMO Argoment

Dettagli

Definizione del problema

Definizione del problema Corso d Gestone ed Eserczo de Sstem d Trasporto www.unroma2.t/ddattca/gest t/dd tt /GEST Modell per l assegnazone della domanda alle ret d trasporto aereo Defnzone del problema Modell d domanda segmentazone

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04 UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso d Allocazone de centr d servzo SCG-E04 Le fas del processo d msurazone de cost Fase 1 Rlevazone de cost Fase 2 Assegnazone de cost Cost drett (Drect cost) Attrbuzone

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 11

McGraw-Hill. Tutti i diritti riservati. Caso 11 Caso Copyrght 2005 The Companes srl Stma d un area fabbrcable n zona ndustrale nella cttà d Ferrara. La stma è effettuata con crter della comparazone e quello del valore d trasformazone. Indce Confermento

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

Analisi della domanda di trasporto

Analisi della domanda di trasporto 1 Panfcazone f de Trasport aspot Lezone: Anals della domanda d trasporto Corso IFTS Catana 2010 Guseppe Inturr Unverstà d Catana Dpartmento d Ingegnera Cvle e Ambentale 2 3 La mobltà La mobltà delle persone

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

# STUDIO DELLA FEDELTA DI RISPOSTA

# STUDIO DELLA FEDELTA DI RISPOSTA # STUDIO DELLA FEDELTA DI RISOSTA # er poter formulare n manera approprata problem sntes (progetto) sstem controllo, e necessaro a questo punto nteressarc elle loro propreta n termn feelta rsposta agl

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Il dimensionamento dei sistemi di fabbricazione

Il dimensionamento dei sistemi di fabbricazione Il dmensonamento de sstem d fabbrcazone 1 Processo d progettazone d un sstema produttvo Anals della domanda Industralzzazone d prodotto e processo (dstnte e ccl d lavorazone) Scelta delle soluzon produttve

Dettagli

Schema generale su fenomeni, eventi, misure analitiche e sintetiche

Schema generale su fenomeni, eventi, misure analitiche e sintetiche chema generale su fenomen, event, msure analtche e sntetche Tologa event: - NON rnnovabl negatv (morte, mgrazon) - NON rnnovabl (rmo matrmono, nascte er orne, ecc.) - Rnnovabl (matrmono, nascta fgl, ecc.)

Dettagli

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio Codce d Stoccaggo Captolo 7 Blancamento e rentegrazone dello stoccaggo 7.4 Corrspettv per servz d stoccaggo L UTENTE è tenuto a corrspondere a STOGIT, per la prestazone de servz, gl mport dervant dall

Dettagli

Corso di TEORIA DEI SISTEMI DI TRASPORTO. prof. ing. Umberto Crisalli

Corso di TEORIA DEI SISTEMI DI TRASPORTO. prof. ing. Umberto Crisalli Corso d TEORIA DEI SISTEMI DI TRASPORTO rof. ng. Umberto Crsall Modell d utltà aleatora Iscrzone al corso Modell d offerta Da effettuars anche on lne htt:delh.unroma.t Struttura del sstema d modell er

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI METODI PER LO STUDIO DEL LEGAME TRA VARIABILI IN UN RAPPORTO DI CAUSA ED EFFETTO I MODELLI DI REGRESSIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI

PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI Perequazone eante oell lnear generalzzat Sano PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI qˆ oppure ˆ = a, a +, K, ω le ste nzal una tavola sopravvvenza ottenute n un approcco tpo non paraetrco

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl Le Inferenze sul modello d regressone PREVEDONO: Assunzone d normaltà degl error e nferenza su parametr Anals della Varanza Inferenza per la rsposta meda e la prevsone Anals de resdu Valor anomal Captolo

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

La finanza locale. Corso di Scienza delle Finanze Cleam, classe 3 Università Bocconi a.a Dott.ssa Simona Scabrosetti

La finanza locale. Corso di Scienza delle Finanze Cleam, classe 3 Università Bocconi a.a Dott.ssa Simona Scabrosetti La fnanza locale Corso d Scenza delle Fnanze Cleam, classe 3 Unverstà Boccon a.a. 2011-2012 Dott.ssa Smona Scabrosett Modaltà d fnanzamento degl ent decentrat Gl ent terrtoral possono fnanzars con: - trbut

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

AVVISO PUBBLICO Costituzione di short list: Servizio di pulizie presso l Istituto di Ricerca Biogem s.c.ar.l. Via Camporeale, Ariano Irpino (AV)

AVVISO PUBBLICO Costituzione di short list: Servizio di pulizie presso l Istituto di Ricerca Biogem s.c.ar.l. Via Camporeale, Ariano Irpino (AV) AVVISO PUBBLICO Costtuzone d short lst: Servzo d pulze presso l Isttuto d Rcerca Camporeale, Arano Irpno (AV) In esecuzone della Determna Presdenzale n. 15/103 del 10/09/2015, la Bogem Scarl ntende procedere

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Modelli di simulazione dei sistemi di trasporto collettivo

Modelli di simulazione dei sistemi di trasporto collettivo UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Dpartmento d Ingegnera Cvle Corso d Trasport Urban e Metropoltan Docente: Ing. Perlug Coppola Modell d smulazone de sstem d trasporto collettvo (Bozza n corso

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Verifiche di congruità tecnica delle offerte rispetto ai margini

Verifiche di congruità tecnica delle offerte rispetto ai margini Dsposzone tecnca d funzonaento Pagna 1 d 7 Dsposzone tecnca d funzonaento n. 10 rev.1 MPE (a sens dell artcolo 4 del Testo ntegrato della Dscplna del ercato elettrco, approvato con decreto del Mnstro delle

Dettagli

Appunti di Econometria

Appunti di Econometria Appunt d Econometra ARGOMENTO [4]: VARIABILI DIPENDENTI BINARIE Mara Lusa Mancus Unverstà Boccon Novembre 200 Introduzone Ne modell econometrc studat fno ad ora la varable dpendente, y, è sempre stata

Dettagli

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA Captolo TRV CONTINU. TRV CONTINU FORU PRIINRI RIGURDNTI TRV PPOGGIT Trave appoggata soggetta a: carco () moment, cedment Determnaon delle rotaon,. a) Carco - - d d - d ( ) d 77 Captolo TRV CONTINU b) oment,

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

Realizzazione e studio di un oscillatore a denti di sega

Realizzazione e studio di un oscillatore a denti di sega 1 Realzzazone e stuo un oscllatore a ent sega Cenn teorc Lo scopo quest esperenza è quello stuare la cosetta tensone a ent sega, ovvero una tensone alternata, peroo T, che vara lnearmente con l tempo a

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

d P 1 fig.1 distanza, distanza orizzontale, dislivello

d P 1 fig.1 distanza, distanza orizzontale, dislivello Rlevamento n ambto locale. Ret topografche Una rete topografca è un nseme punt, ett vertc, collegat fra loro a msure topografche. I vertc possono essere punt stazone, oppure semplcemente punt collmat.

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

CASELLI AUTOSTRADALI INTERSEZIONI STRADALI ... per n m. P t P t, P t. P t. m Q. P t. P t CARATTERISTIC HE FUNZIONALI E GEOMETRICHE

CASELLI AUTOSTRADALI INTERSEZIONI STRADALI ... per n m. P t P t, P t. P t. m Q. P t. P t CARATTERISTIC HE FUNZIONALI E GEOMETRICHE Unerstà degl Stud d Roma Tor Vergata INTERSEZIONI STRADALI CASELLI AUTOSTRADALI Argomento: Dmenson casell autostradal La portata n arrvo è par a Q=900 [vec/h]= 0.5 [vec/sec] Tempo medo d servzo E[t]= 0

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

Le decisioni di gruppo in materia di trasporti: teorie, modelli, applicazioni Romeo Danielis e Lucia Rotaris

Le decisioni di gruppo in materia di trasporti: teorie, modelli, applicazioni Romeo Danielis e Lucia Rotaris Le decson d gruppo n matera d trasport: teore, modell, applcazon Romeo Danels e Luca Rotars Unverstà degl Stud d Treste Il decsore ndvduale solato della mcroeconoma neoclassca non è la norma spesso: le

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Complementi sui diodi

Complementi sui diodi Complement su o www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 26-3-2016) Coeffcente emssone L equazone hockley e / V 1 rappresenta correttamente la caratterstca el oo solo se fenomen generazone e rcombnazone

Dettagli

Il diagramma cartesiano

Il diagramma cartesiano Il dagramma cartesano Il pano cartesano Il dagramma cartesano è costtuto da due ass: uno orzzontale, l asse delle ascsse o della varable X, e uno vertcale, l asse delle ordnate o della varable Y. I due

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Imposte sulle vendite

Imposte sulle vendite Imposte sulle vendte e IVA Imposte sulle vendte Le mposte general sulle vendte (IGV) tassano la totaltà delle vendte d ben e servz e sono mposte ad valorem. Esse s artcolano secondo due modaltà: 1) Rfermento

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Radiazioni ionizzanti

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Radiazioni ionizzanti DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplce 21.01 Radazon onzzant TITOLO Interconfronto Consorzo Eraclto Msure d rateo d dose gamma n campo - Cuncolo esploratvo de la Maddalena Allneamento msure

Dettagli

Mobilità per acquisti

Mobilità per acquisti Corso d LOGISTICA TERRITORIALE http://ddattca.unroma2.t/ DOCENTE prof. ng. Agostno Nuzzolo Mobltà per acqust Trasporto merc Defnzon Zona d produzone (f) Produttore Fluss d merce (modell I-O) Vecol commercal

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso d Economa Applcata a.a. 2007-08 II modulo 16 Lezone Programma 16 lezone Democraza rappresentatva e nformazone Rcaptolando L agenza e l mercato (Arrow, 1986) Lezone 16 2 Introduzone Governo e Parlamento

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

L analisi di aggregati edilizi con solai rigidi e flessibili.

L analisi di aggregati edilizi con solai rigidi e flessibili. L anals aggregat elz con sola rg e flessbl. arco Valat, Gorgo ont DISG Dpartmento Ingegnera Strutturale e Geotecnca. Sapenza Unverstà Roma. Va Gramsc 5, 0097 Roma. eywors: aggregat elz; sola flessbl; anals

Dettagli

I metodi misti. Valutazione d impresa a.a Lezioni 18 e 19 aprile 2011

I metodi misti. Valutazione d impresa a.a Lezioni 18 e 19 aprile 2011 I metod mst Valutazone d mpresa a.a. 2010-2011 Lezon 18 e 19 aprle 2011 1 Il metodo msto n passato era l tpco metodo europeo per la stma del valore d captale economco consdera sa l elemento patrmonale

Dettagli

commutazione induttiva (carico induttivo); commutazione capacitiva (carico capacitivo).

commutazione induttiva (carico induttivo); commutazione capacitiva (carico capacitivo). I crcut per la rduzone delle perdte devono essere dmensonat consderando le dverse condzon operatve che possono presentars durante l apertura e la chusura del Transstor. Per caratterzzare queste condzon,

Dettagli

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui:

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui: I IDACATI E LA COTRATTAZIOE COLLETTIVA Il ruolo economco del sndacato n concorrenza mperfetta, n cu: a) le mprese fssano prezz de ben n contest d concorrenza monopolstca (con extra-proftt); b) lavorator

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema B Corso d Laurea n Economa Prof.ssa Gordano Appello del 15/07/011 Cognome Nome Matr. Teora Dmostrare la propretà assocatva della meda artmetca. Eserczo 1 L accesso al credto è sempre

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

PROPRIETA DI TRASPORTO METODI DI CALCOLO TEORICO E CORRELAZIONI. proprietà di trasporto: valori numerici

PROPRIETA DI TRASPORTO METODI DI CALCOLO TEORICO E CORRELAZIONI. proprietà di trasporto: valori numerici MEODI DI CALCOLO EORICO E CORRELAZIONI propretà trasporto: valor numerc at spermental approcc teorc meto prettv equazon correlazone possbltà prevsone teorca legate alla congrutà el moello fsco gas lut

Dettagli