f x x kx 9, con k Z. f x, determinandone i punti stazionari e di flesso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "f x x kx 9, con k Z. f x, determinandone i punti stazionari e di flesso"

Transcript

1 I4-Esame di Stato di Istruzioe secodaria superiore Idirizzi:LI, EA-Scietifico LI-Scietifico Opzioe scieze applicate LI5-Scietifico-Sezioe ad idirizzo sportivo. (Testo valido ache per le corrispodeti sperimetazioi quadrieali) roblema () Cosideriamo la fuzioe f : così defiita: f x x x 9, co Z.. Detto il grafico della fuzioe, verifica che per qualsiasi valore del parametro la retta r, tagete a el puto di ascissa e la retta s, tagete a el puto di ascissa, si icotrao i u puto M di ascissa.. Dopo aver verificato che = è il massimo itero positivo per cui lordiata del puto M è miore di f x, determiadoe i puti stazioari e di flesso, studia ladameto della fuzioe tracciadoe il grafico.. Detto T il triagolo delimitato dalle rette r, s e dallasse delle ascisse, determia la probabilità che, x ; y allitero di T, questo si trovi al di sopra di (cioè si abbia preso a caso u puto y f x per tale puto ). 4. Nella figura è evideziato u puto N e u tratto del grafico di. La retta ormale a i N (vale a dire la perpedicolare alla retta tagete i quel puto) passa per lorigie degli assi O. Figura Il grafico di possiede tre puti co questa proprietà. Dimostra, più i geerale, che il grafico di u qualsiasi poliomio di grado > o può possedere più di - puti ei quali la retta ormale al grafico passa per lorigie. () La figura è tratta dal testo miisteriale pubblicato all idirizzo e resta duque di proprietà itellettuale dell autore del testo. Luigi Lecci: agia

2 Risoluzioe. Idichiamo co A il puto del grafico di ascissa. oiché f ()= 9 risulta A(;9). Aalogamete, detto B il puto del grafico di ascissa risulta B(; f ())= B(;8+). Ricordiamo che lequazioe della retta tagete al diagramma della fuzioe y=f(x) el puto ( x ; f(x )), co x apparteete al domiio di defiizioe, se la fuzioe è derivabile i x è y- f(x )= f(x )(x-x ). Nel caso i esame la fuzioe è u poliomio ed è defiita e derivabile su tutto R, calcoliamo duque la fuzioe derivata prima e i rispettivi coefficieti agolari delle due rette tageti richieste. f, f f x x : r y f f x r : y x 9, per il puto A; s : y f f x. er le equazioi delle rette tageti si ha: s : y x, per il puto B. Si determiao le coordiate del puto M di itersezioe tra r ed s risolvedo il sistema formato dalle equazioi delle due rette: r : y x 9 x x 9 x, duque risulta s : y x y x 9 y 9 M ; 9.. er rispodere alla prima parte del quesito si deve risolvere la disequazioe ym, cioè 9 ellicogita ed avere presete che Z. La disequazioe è soddisfatta per i valori di tali che ed evidetemete il più grade umero itero che soddisfa la disuguagliaza è =. f x x x. rocediamo co lo studio della fuzioe 9 Della fuzioe si devoo determiare i puti stazioari, il flesso e tracciare il grafico. I puti stazioari soo quelli i cui si aulla la derivata prima. oiché la fuzioe derivata prima è f x x, i suoi zeri soo x, x. Soo questi i soli puti stazioari della fuzioe. ossiamo classificarli studiado il sego della derivata prima el domiio. Risulta f x per i valori x, quidi x è puto di miimo relativo e x puto di massimo relativo e i valori soo f 8 8, , f 8 9, er quato cocere il puto di flesso, ricordiamo che ogi cubica ha u solo puto di flesso e la sua ascissa è il puto i cui si aulla la derivata secoda. Nel ostro caso, poiché la fuzioe derivata secoda è f x x, si deduce che il puto di flesso è x=, co f()=9; duque F(;9). 6 Questo puto coicide co il puto A(;9) idividuato prima. recisiamo che trattasi di u flesso discedete perché la derivata secoda è positiva per x< e egativa per x>. Luigi Lecci: agia

3 er quato cocere il sego della fuzioe, avedo precisato il valore del miimo e quello del massimo relativi e otato che la fuzioe è strettamete decrescete i ciascuo degli itervalli ;, ;, oché strettamete crescete ellitervallo ;, possiamo affermare che la fuzioe ammette u solo zero x= e che risulta f x f x x e x. ossiamo altresì affermare che il umero è irrazioale perché le evetuali radici razioali dellequazioe f x, cioè dellequazioe x x9 vao ricercate tra i divisori del termie oto e quidi ellisieme ;; ;; 9;9, ma essuo degli elemeti di questo isieme soddisfa lequazioe. ossiamo forire u primo valore approssimato del puto osservado che f, f 5 e ivocado il teorema di esisteza degli zeri per ua fuzioe reale di variabile reale f:[a;b]r, defiita i u itervallo chiuso e limitato, che assuma agli estremi dellitervallo valori discordi. Il teorema di esisteza degli zeri afferma che ua tale fuzioe ammette iteramete allitervallo almeo uo zero. Nel caso i oggetto la fuzioe, avedo derivata prima egativa ellitervallo cosiderato, è strettamete decrescete e quidi lo zero è uico. Scriviamo duque che <<. er completezza di iformazioi precisiamo che lim x f x e lim x f x, quidi la fuzioe o ammette massimo, é miimo assoluti e il diagramma o ammette alcua retta asitotica (). Nel corso dello sviluppo del quesito. avremo modo di ritorare sul valore di e forire ulteriori iformazioi. recisiamo che le due rette tageti r, s hao equazioi r :y=x+9, s :y=-x+. I Figura è riportato parzialmete il diagramma della fuzioe co i puti particolari fi qui determiati e le due rette tageti r, s.. Il Triagolo T ha come vertici il puto M, di itersezioe delle due tageti, le cui coordiate soo (/;9/), i puti C(-9;) e D(/;), rispettivamete itersezioi delle rette r, s co lasse delle ascisse. Calcolo della probabilità richiesta Figura Dove si deve trovare il puto da predere a caso el triagolo CDM? Defiiamo leveto: E="Il puto ; x y del piao cartesiao preso iteramete al triagolo CDM ha coordiate tali che y f x Si deve calcolare la probabilità (E). ". () Ricordiamo che ogi fuzioe poliomiale y= (x), co >, è defiita su tutto lasse reale e il suo diagramma o ammette alcua retta asitotica per x. Luigi Lecci: agia

4 Strategia risolutiva Osservado la Figura si evice che deve essere itero al triagolo mistilieo MAB delimitato dai segmeti MA, MB e dallarco di curva AB, oppure itero al triagolo mistilieo BQD delimitato dallarco di curva BQ, dal segmeto QD e dal segmeto BD. La probabilità delleveto E è data dal rapporto () E Area BQD Area MAB Area MCD mistil. mistil. triag. er il calcolo della probabilità idicata soo ecessari i segueti elemeti: a) Larea S del triagolo CDM; b) Larea S del triagolo MAB; c) Larea S della regioe fiita di piao delimitata dallarco di e dalla retta t:y=9, co x; d) Larea S del triagolo BBD, dove B(;) è la proiezioe ortogoale di B sullasse x; e) Larea del sottografico S 4 della fuzioe relativa allitervallo [x B ;]. Ua volta trovati gli elemeti idicati la probabilità cercata sarà E Elaborazioi per determiare gli elemeti idicati 9 S xd xc ym 9 a) b) S x x y y 84 B A M A 9 9 c) S x x 99dx x 4 x x x dx 4 4 S S S S 4. 8 d) S xd xb yb 9 4 e) (Aalisi umerica) er il calcolo di S 4 abbiamo bisogo di cooscere il valore dellascissa del puto Q. ossiamo determiare il valore co la precisioe desiderata applicado il metodo di bisezioe. Nella tabella riportata di seguito soo idicate le elaborazioi ecessarie eseguite co Excel. Come si opera? a. Si sa che <<, co f ()>, f ()<. oiamo x =, x = b. Si sceglie il puto medio x m =(x + x )/ e si calcola f (x m ). Se f (x m )> allora vuol dire che x m << e si cotiua poedo x = x m, x =, altrimeti sarà << x m e si cotiua poedo x =, x = x m. Si determia il uovo puto medio x m =( x + x )/ Figura c. Si calcola f (x m ) e si osserva il S () La formula che segue si ispira al calcolo della probabilità delleveto co il metodo Mote Carlo. Luigi Lecci: agia 4

5 suo sego per stabilire i quale dei due itervalli ]x ; x m [, ] x m ; x [ ricade. Deciso i quale dei due itervalli idicati si trova si procede iterativamete co lalgoritmo di ricerca per defiire itervalli sempre più ristretti coteeti. Quado arrestare la ricerca? d. I due estremi x, x co laumetare di si avviciao tra loro sempre di più e da u certo puto i poi si oterà che essi avrao la stessa parte itera e le prime cifre della parte decimale coicideti. Il umero di cifre decimali coicideti per i due estremi permette di stabilire la precisioe del valore di. er esempio, suppoiamo che si sia deciso di determiare u valore approssimato per affetto da errore iferiore a -,co aturale positivo. Che fare? e. Sia l= x - x =-= lampiezza dellitervallo di ricerca iiziale. Dopo passaggi si sarà determiato litervallo] x ; x [ coteete il puto e lampiezza di questo itervallo sarà x ; x x x l Osserviamo che tutti i puti estremi degli itervalli coteeti che via via si determiao soo umeri razioali perché lo soo i due puti iiziali x =, x = e quidi soo razioali tutti i puti medi che si determiao ellapplicazioe x x dellalgoritmo di ricerca, quidi è razioale ache il puto medio xm x x dellultimo itervallo, pertato il valore cercato è diverso da xm. Al termie della ricerca oi vogliamo predere come valore rappresetativo di quello del puto medio dellultimo itervallo determiato coteete ; questa decisioe permette di affermare che lerrore di cui sarà affetto il valore approssimato x di sarà miore della semiampiezza dellultimo itervallo, quidi m err xm l l (4) (el caso specifico è l=) l Impoedo che sia soddisfatta la disuguagliaza e risolvedola ellicogita si stabilisce dopo quati passaggi il processo iterativo avrà termie. Risoluzioe della disequazioe l l l log l log (*) Duque sarà il più piccolo umero aturale verificate la (*). er essere cocreti, el caso i esame, suppoiamo di voler forire uapprossimazioe di co errore iferiore a,= -. Dovrà risultare log 9, , ; il primo valore utile per sarà 9, duque occorrerao 9 passaggi. (4) Nel caso specifico è l=, ma se litervallo iiziale compredete fosse ]a;b[, co a<b la maggiorazioe per letità dellerrore sarebbe quella idicata. Luigi Lecci: agia 5

6 Nella tabella che segue soo riportate le elaborazioi della ricerca effettuata co il foglio elettroico Excel, avedo effettuato 6 passaggi. Osserviamo che al oo passaggio litervallo coteete lo zero è ],88;,444[ e la sua semiampiezza è /=(,444-,88)/=9, <,, come apputo ci si aspettava. Chiudiamo queste cosiderazioi facedo otare che dal 5 passaggio gli estremi dellitervallo coteete hao coicidete la parte itera e le prime quattro cifre decimali. Assumedo =,4 possiamo affermare che le quattro cifre decimali soo esatte. Ebbee, questo sarà il valore che oi assumeremo come approssimazioe dellascissa del puto Q del grafico: Q(,4;) per i calcoli ecessari che ci permetterao di calcolare la probabilità richiesta. Ricerca del valore approssimato di co il metodo di bisezioe f x x x ( ) 9 a= b= = x m x x x m =(x +x )/ f(x m ) l=x -x,,,5-4,5,,,5,5 -,465,5,,5,5,5997,5,5,5,875,7997,5 4,875,5,875,967,65 5,875,5,475,794,5 6,475,5,4875 -,97,565 7,475,4875,88,479,785 8,88,4875,444 -,78,96 9,88,444,9578,,95,9578,444,9746,444,9766,9746,444,999,7,488,999,444,4 -,,44,999,4,45 -,44, 4,999,45,48,84,6 5,48,45,46,7,5 6,46,45,446 -,7,5 ossiamo procedere ora co il calcolo dellarea del sottografico della fuzioe idicato co S 4.,4 4,4 x x S4 x x 9dx 9 x 4 7,47 Calcolo della probabilità richiesta 6, 9477,588,6, 5,5 9 E S S S S 4 S 8 7, :,8847 8,847% Luigi Lecci: agia 6

7 4. Cosideriamo il poliomio di grado x a x a x a x... a x a. Comè oto i poliomi soo fuzioi cotiue e dotate di derivata di qualsiasi ordie su tutto R e quidi il corrispodete diagramma ammette retta tagete i u qualsiasi puto (x ; (x )). Lequazioe della tagete è, essedo x il valore della derivata prima del poliomio i x. t : y x x x x o La ormale al diagramma della fuzioe poliomio el puto (x ; (x )) esiste per ogi puto del diagramma stesso, perché come precisato esiste la derivata prima i ogi puto x R e se risulta x la retta ormale avrà equazioe : y x x x (*) x Evidetemete se x è u puto stazioario, poiché la derivata prima si aulla, la retta tagete al diagramma della fuzioe x ello stesso puto è parallela allasse delle ascisse e quidi la corrispodete ormale sarà ua retta parallela allasse delle ordiate che avrà equazioe x=x, che o si può porre ella forma esplicita (*). er altro, ua tale ormale passa per lorigie degli assi solo se coicide co lasse y, quidi solo se il puto x =. er tutti gli altri evetuali puti stazioari le corrispodeti ormali al diagramma o passerao certamete dallorigie O degli assi cartesiai. E appea il caso di precisare che i poliomi x i cui diagrammi avrao come ormale el puto x= proprio lasse y soo quelli la cui derivata prima si aulla i x=, per i quali cioè risulta, e quidi soo solo i poliomi di grado maggiore o uguale a macati del termie di primo grado (a - =). Cosideriamo duque lisieme dei puti (x ; (x )) del diagramma della fuzioe, co x e per i quali si abbia x. Affiché la ormale el puto passi dallorigie degli assi la sua equazioe deve essere soddisfatta dalla coppia (;), quidi deve sussistere luguagliaza x x x, che diveta x x, si trasforma ellequazioe equivalete x x x (*) x, che acora, per lipotesi x Lequazioe (*) otteuta ellicogita x ha grado pari alla somma dei gradi dei due x, che soo rispettivamete e -, quidi il grado dellequazioe -. poliomi x, Dal teorema fodametale dellalgebra si sa che u poliomio a coefficieti reali di grado ammette el campo complesso esattamete radici e le radici complesse o reali soo preseti a coppie (se z =a+ib è radice lo è ache il umero coiugato z =a-ib), pertato lequazioe (*) ammette certamete - radici el campo complesso e se di esse essua è complessa allora ammetterà - radici reali. Questa coclusioe è quato el quesito 4 della prova si pretedeva di dimostrare. E bee precisare che i -evetuali puti o è detto che siao distiti, alcue radici dellequazioe (*) potrebbero avere molteplicità maggiore di ; i questo caso, il umero massimo di puti aveti la proprietà dichiarata sarebbe miore di -. Luigi Lecci: agia 7

8 Osservazioe particolarmete importate Abbiamo dedotto la (*) ricercado puti (x ; (x )) del diagramma della fuzioe, co x e per i quali si abbia x. ossiamo però otare che se il puto x= è stazioario, quidi se risulta allora lequazioe (*) è soddisfatta ache da x =, quidi el umero massimo -di puti è compreso ache il puto (; ()). Nota aggiutiva Nel testo si afferma che "il grafico possiede tre puti co questa proprietà". No si tratta di ua proprietà che il Cadidato deve dimostrare; si tratta semplicemete di uiformazioe sulle proprietà specifiche del poliomio x x x 9. roviamo i questa parte che laffermazioe è vera. Omettiamo i calcoli ecessari per otteere la forma fiale dellequazioe (*) corrispodete. Lequazioe è la seguete x 4x 7x x 9 5 Si può ricooscere agevolmete la proprietà rappresetado il diagramma della fuzioe poliomiale e "osservare" che iterseca lasse delle ascisse i tre puti distiti. Il diagramma è riportato i Figura Le ascisse dei puti A, B, C soo rispettivamete x A -,558, x B,5954, x C,86. Figura Luigi Lecci: -giu-8 Luigi Lecci: agia 8

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1 Esame di Stato 8 Problema ; y f x x x L equazioe della curva che descrive il profilo sull itera mattoella si ottiee simmetrizzado tale fuzioe rispetto agli assi e all origie (ovviamete o è l equazioe di

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Esame di maturità scientifica, corso sperimentale PNI a. s

Esame di maturità scientifica, corso sperimentale PNI a. s Esame di maturità scietifica, corso sperimetale PNI a. s. 003-004 Prolema 1 Sia γ la curva di equazioe y = ke ove k e λ soo parametri positivi. Puto 1 Si studi e si disegi γ ; Domiio: La fuzioe f ( ) =

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Nicola De Rosa, Liceo della comunicazione sessione ordinaria 2010, matematicamente.it

Nicola De Rosa, Liceo della comunicazione sessione ordinaria 2010, matematicamente.it PROBLEMA Sia la parabola d equazioe f a) Sia F il fuoco di e r la sua direttrice, Si determiio le coordiate di F e l equazioe di r b) Siao A e B i puti di di ordiata 5 e S il segmeto parabolico di base

Dettagli

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s Corso di ordiameto Liceo della Comuicazioe- Sessioe ordiaria - as 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE Tema di: MATEMATICA a s 9- Corso di ordiameto Liceo

Dettagli

Problema 1 (1) Sessione Ordinaria

Problema 1 (1) Sessione Ordinaria I43-Esame di Stato di Istruzioe secodaria superiore Idirizzi:LI, EA-Scietifico LI3-Scietifico Opzioe scieze applicate LI-Scietifico-Sezioe ad idirizzo sportivo. (Testo valido ache per le corrispodeti sperimetazioi

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti L.Lecci\Compito D\Veerdì geaio 00 1 Oggetto: compito i Classe D/PNI Liceo Scietifico Statale G. Stampacchia Tricase Tempo di lavoro 10 miuti Argometi: Geometria della circofereza- Operazioi co i radicali

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Uiversità degli Studi di Udie Ao Accademico 00/0 Facoltà di Scieze Matematiche Fisiche e Naturali Corso di Laurea i Iformatica Esercizi di Aalisi Matematica Dott. Paolo Baiti Esercizi del 5 Ottobre 00.

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 08 Problema Soluzioe a cura di L. Tomasi Soluzioe Puto Co riferimeto all esempio semplice del mauale d uso della macchia che colora

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioi differeziali Defiizioe 1 Si chiama equazioe differeziale u tipo particolare di equazioe fuzioale, ella quale la fuzioe icogita compare isieme ad alcue sue derivate, ossia u equazioe ella quale,

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim Y557 - ESAME DI STATO DI LICEO SCIETIFICO PIAO AZIOALE DI IFORMATICA CORSO SPERIMETALE Tema di: MATEMATICA (Sessioe ordiaria 2002) QUESTIOARIO 1 Se a e b soo umeri positivi assegati quale è la loro media

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Maturità scientifica Sessione ordinaria 1986/1987

Maturità scientifica Sessione ordinaria 1986/1987 Maturità scietifica Sessioe ordiaria 986/987 I u sistea di assi cartesiai ortogoali è assegata la faiglia di liee di equazioe a a. Si idividuio i tale faiglia la retta r e le due parabole C e C che co

Dettagli

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a.

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a. Esercizi -. Determiare il domiio di deizioe delle segueti fuzioi a. () = log jj p (jj ) b. () = µ 5 c. d. e. f. g. h. i. j. () =log jj () = 4p j j! Ã () =arcsi () = log 3 + () =log(jj ) p jj () =log(jcos

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni.

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni. Lezioe del 26 settembre. 1. Successioi. Defiizioe 1 Ua successioe di umeri reali e ua legge che associa a ogi umero aturale = 0, 1, 2,... u umero reale - i breve: e ua fuzioe N R; si scrive ella forma

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Prove d'esame a.a

Prove d'esame a.a Prove d'esame aa 22 Adrea Corli 2 settembre 2 Soo qui raccolti i testi delle prove d'esame assegati ell'aa 2, relativi al Corso di Aalisi Matematica I (semestrale, 2 crediti), Laurea i Igegeria Civile

Dettagli

Esercizi: lezione I.

Esercizi: lezione I. Aalisi matematica I, ICI Esercizi: lezioe I. Federica Dragoi Massimi e miimi di isiemi umerici. Esercizio 1. Calcolare l estremo superiore e l estremo iferiore dei segueti isiemi e dire i quali casi esistoo

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 008/009 Docete: R Argiolas Cogome Matricola 6 Geaio 009 ore 9 Aula C Nome Corso voto Esercizio Assegata la uzioe a Si determii il suo

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tema di: MATEMATICA Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario.

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x Prova scritta di Aalisi Matematica I () //5 Euciare e dimostrare il teorema della permaeza del sego Fare u esempio Defiizioe di fuzioe ifiitesima per Motivado la risposta, dire qual è l ordie di ifiitesimo

Dettagli

Si scriva un espressione analitica di g(x). Vi sono punti in cui g(x) non è derivabile? Se sì, quali sono? E perchè? x 9x y

Si scriva un espressione analitica di g(x). Vi sono punti in cui g(x) non è derivabile? Se sì, quali sono? E perchè? x 9x y PROBLEMA Nella figura che segue è riportato il grafico di g ( ) per - 5 essedo g la derivata di ua fuzioe f. Il grafico cosiste di tre semicircofereze co cetri i (, ), (, ), (9/, ) e raggi rispettivi,,/.

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Esercitazioni di Geometria II

Esercitazioni di Geometria II Esercitazioi di Geometria II Letizia Perigotti - perigotti@sciece.uit.it 20 aprile 2012 Esercizio 1. Dimostrare che la famiglia degli itervalli chiusi e limitati B 1 = {[a, b] R : a < b} o è base di alcua

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

U.D. N 05 La fattorizzazione dei polinomi

U.D. N 05 La fattorizzazione dei polinomi Uità Didattica N 05 La fattorizzazioe dei poliomi 1 U.D. N 05 La fattorizzazioe dei poliomi 01) La messa i evideza totale 0) La messa i evideza parziale 03) La differeza di due quadrati 04) Somma e differeza

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

RICERCA NUMERICA DELLE RADICI DI UNA EQUAZIONE

RICERCA NUMERICA DELLE RADICI DI UNA EQUAZIONE RICERCA NUMERICA DELLE RADICI DI UNA EQUAZIONE N elle applicazioi pratiche è assolutamete ecessario trovare gli zeri di equazioi ache o risolubili elemetarmete sia di tipo poliomiale che di tipo trascedete.

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Prove d'esame a.a

Prove d'esame a.a Prove d'esame aa Adrea Corli dicembre Soo qui raccolti i testi delle prove d'esame assegati ell'aa, relativi al Corso di Aalisi Matematica I (semestrale, crediti), Laurea i Igegeria Civile e Ambietale,

Dettagli

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore.

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore. Le equazioi differeziali lieari di ordie > a coefficieti costati. No preseta difficoltà cocettuali il passaggio dalle equazioi lieari a coefficieti costati del secodo ordie a quelle di ordie maggiore.

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

n 2 n n dove a n è il coefficiente di

n 2 n n dove a n è il coefficiente di ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria CORSO DI ORDINAMENTO Questioario Quesito Sia p ( x ) u poliomio di grado. Si dimostri che la sua derivata -esima è p ( x )! a dove a è il coefficiete

Dettagli

n + 1 n + 2 = 1 n + 1 n n n Esercizio. Verificare il seguente limite a partire dalla definizione: n n 2 + n + 1 = 0 lim

n + 1 n + 2 = 1 n + 1 n n n Esercizio. Verificare il seguente limite a partire dalla definizione: n n 2 + n + 1 = 0 lim 3.. Esercizio. Ricoosciuto che determiare i valori ε tali che ε : ANALISI Soluzioi del Foglio 3 + = + ε essedo ε ua prima volta e ua secoda 0.5 ε = 9 ottobre 009 + + disuguagliaza soddisfatta da ogi N,

Dettagli

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R Problema PROBLEMA Sia f la fuzioe defiita da f ( ) + + +... + e!! dove è u itero positivo e R. Si verifichi che la derivata di f è: f '( ) e!. Si dica se la fuzioe f ammette massimi e miimi (assoluti e

Dettagli

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3 Fuzioi cotiue Defiizioe di limite e di fuzioe cotiua Esercizio. Dire quali delle segueti fuzioi soo cotiue. f : 0,, 3, f 0,, 3 Plot Piecewise,,,,, 0, 3.0 0.8 0.6 0.4 0. f è cotiua. Ifatti, fissiamo y [0,].

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

4 - Le serie. a k = a k. S = k=1

4 - Le serie. a k = a k. S = k=1 4 - Le serie E veiamo ad uo degli argometi più ostici (ma ache più iteressati) dell aalisi: le serie. Ricordiamo brevemete cos è ua serie e cosa vuol dire covergeza per ua serie. Defiizioe 1. Data ua successioe

Dettagli

Formulazione del problema - 1

Formulazione del problema - 1 Formulazioe del problema - Date due variabili aleatorie X e Y si tratta di cercare ua relazioe lieare tra esse. Sappiamo già che se il modulo del coefficiete di correlazioe o vale esattamete, le determiazioi

Dettagli

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1 FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI Agela Doatiello 1 Ua fuzioe del tipo f() = m + q, co m e q umeri reali, è ua FUNZIONE LINEARE. Il umero q è detto INTERCETTA o ORDINATA

Dettagli

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS)

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS) Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema - soluzioe a cura di E. Castagola e L. Tomasi, co l uso della calcolatrice grafica TI-Nspire CX (o CAS) Soluzioe ) Co riferimeto

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2)

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2) ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 009 CORSO DI ORDINAMENTO Questioario Quesito Si trovi la fuzioe ( ) f la cui derivata è se e il cui grafico passa per il puto ( ; ) Ua primitiva della

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

APPUNTI ANALISI MATEMATICA SABO

APPUNTI ANALISI MATEMATICA SABO APPUNTI DI ANALISI MATEMATICA SABO FUNZIONI cocetto: legame tra due (o più) variabili costituito da relazioi matematiche Fuzioe: Razioale: o è sotto radice Algebrica: le operazioi che costituiscoo il legame

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO 1. I sistemi di equazioi di primo grado U problema può coivolgere più icogite, ma soprattutto può coivolgere più codizioi riferite ad esse, che

Dettagli

Facoltà di Architettura CORSO DI LAUREA MAGISTRALE IN ARCHITETTURA 1 I NUMERI E LE FUNZIONI REALI

Facoltà di Architettura CORSO DI LAUREA MAGISTRALE IN ARCHITETTURA 1 I NUMERI E LE FUNZIONI REALI Facoltà di Architettura CORSO DI LAUREA MAGISTRALE IN ARCHITETTURA Istituzioi di Matematica (Caale Pe-Z) a.a. 204-205 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe

Dettagli

Esercitazione 2 Soluzione di equazioni non lineari

Esercitazione 2 Soluzione di equazioni non lineari Esercitazioe 2 Soluzioe di equazioi o lieari Scopo di questa serie di esercizi è quella di trovare ove possibile gli zeri di fuzioe di equazioi o lieari utilizzado i vari metodi spiegati a lezioe. I metodi

Dettagli

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a.

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a. Facoltà di Architettura Corso di Laurea i Architettura UE Istituzioi di Matematica (Caale A-L) a.a. 200-20 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe al corso.

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x).

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x). c Adrea Dall Aglio - Esercizi di Aalisi Matematica - October, 6 Avverteze Questi esercizi soo i gra parte tratti da testi di esame di vari corsi Aalisi Matematica I per Matematica, Fisica, Iformatica,

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia PROVA SCRIA DI ANALISI MAMAICA Corso di laurea i Matematica 6 Settembre 6 Risoluzioe a cura di N. Fusco & G. Floridia ) Discutere la covergeza putuale e uiforme della serie π arctg )). ) Svolgimeto ):

Dettagli