RICERCA OPERATIVA GRUPPO B prova scritta del 22 gennaio 2009

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RICERCA OPERATIVA GRUPPO B prova scritta del 22 gennaio 2009"

Transcript

1 RICERCA OPERATIVA GRUPPO B prova scrtta del gennao 009. Dte se l vettore (5/4,, ) è combnazone affne, conca o convessa de vettor (/, 0, ), (,, ) e (/, /, ). Il vettore (5/4,, ) è combnazone affne de vettor (/, 0, ), (,, ) e (/, /, ) con coeffcent /, / e 0.. Applcando l metodo d Fourer-Motzkn, rsolvete l seguente problema d programmazone lneare, esbendo la soluzone ottma (qualora essta) e l suo valore, ovvero classfcando l problema come nammssble o llmtato =,, z z z z Dall ultma tabella s ottene z 5. Poché l problema è d mo sarà z = 5. Dalla penultma tabella sosttuendo z = 5 s ottene = 0. Dalla terzultma tabella s ottene = / e dalla prma = 7/.. Dato l seguente problema (P) d programmazone lneare =,, sa y = (5/6, /) una soluzone ammssble per l problema duale assocato a (P). Scrvete l problema duale (D) d (P) e usando le condzon d complementartà dte se y è una soluzone ottma d (D). Il problema duale è: +

2 Le condzon d complementartà sono: ( + ) y = 0 ( + + / ) y = 0 ( y + y ) = 0 ( + y y ) = 0 ( y /y ) = 0 ma y + y y y y + y + y y 0 =, Sosttuendo valor y = 5/6, y = / s ottene = 0, = /6 e = 0/. Essendo una soluzone ammssble per l problema (P) s ha che y è soluzone ottma d (D) Meno tasse per tutt Nel mo paese le mposte s pagano con un mposta progressva, crescente per scaglon d reddto. S nza con una quota esente: se l reddto annuo lordo non supera non s paga nente; su ogn euro d reddto n pù, e fno a un totale d annu, s paga un alquota del 0%; sullo scaglone d reddto successvo, fno a 5.000, s paga l 5%; per ogn euro d reddto oltre s paga l 40%. Per fare un esempo, l mo reddto è d , e su quest pagherò la cfra seguente: 0, , , ,40( ) =.000. Per la vertà n famgla ttolar d reddto sono tre, ma mogle, ma suocera e l sottoscrtto: ma mogle prende.000 annu lord, e la pensone lorda d ma suocera conta per altr Ora l mo commercalsta sostene che le mposte da pagare corrspondono alla soluzone ottma d un problema d flusso a costo mo su un grafo opportuno. Ma o m chedo. Qual è questo grafo, e come s formula l problema?. E non può captare una soluzone nella quale o, ma mogle e ma suocera paghamo l alquota massma del 40% su tutto l nostro reddto? Il mo commercalsta dce che non è mportante, perché con un po d operazon d pvot s arrva sempre alla soluzone gusta. M fate vedere una d queste operazon? E la soluzone che temo o, è d base o no?. Lo stesso metodo, dce l commercalsta, può essere usato per dedurre le spese santare dal reddto d cascuno: nel mo caso, samo lber d decdere a ch attrbure le spese, che nell anno ammontano complessvamente a euro. Per trovare l modo pù convenente d dstrburle, tenuto conto che al massmo s possono dedurre.500 euro per persona fsca, l commercalsta dce che basta modfcare d poco l grafo. Come?. Il grafo ha tre nod sorgente a, b, c: uno per me, uno per ma mogle e uno per ma suocera. In cascuno d quest nod entra un flusso par al reddto corrspondente. V sono po altr quattro nod, corrspondent alla quota esente e alle tre alquote. I prm tre nod sono collegat agl altr quattro con degl arch n tutt mod possbl. V è nfne un nodo pozzo p al quale sono collegat second quattro nod, e dal quale fuoresce un flusso par alla somma de fluss d ngresso. Il generco arco j ha capactà par alla dfferenza tra lo scaglone d reddto assocato al nodo j e quello assocato al nodo j : per esempo, l arco a ha capactà (par al lmte superore del prmo scaglone); l arco a ha capactà par a (lmte superore del terzo scaglone) meno (lmte superore del secondo scaglone), coè 0.000; l arco b4 ha capactà nfnta n quanto non v è lmte superore al reddto del quarto e ultmo scaglone. Passare attraverso quest arch non comporta cost. Tutto l flusso che passa nvece per gl arch d tpo jp ha un costo c j corrspondente all alquota applcata allo scaglone j: ad esempo l arco 4p ha costo c 4 = 0,40. Quest quattro arch hanno capactà nfnta. Il problema s formula qund 0,0 p + 0,5 p + 0,40 4p a + a + a + a4 =

3 b + b + b + 4 =.000 c + c + c + 4 =.000 a + b + c = p a + b + c = p a + b + c = p a4 + b4 + c4 = 4p p + p + p = < 5.000, < 0.000, < j > 0 = a, b, c per ogn arco j. Effettvamente quella descrtta è una soluzone ammssble, corrspondente a a4 = , b4 =.000, c4 =.000, 4p = e j = 0 per tutt gl altr arch j. È anche una soluzone d base (degenere), n quanto le j non fssate alla sogla o alla capactà dell arco j non superano le n = 7 (n = numero d nod del grafo). Per verfcarne la non ottmaltà basta calcolarne l costo rdotto. S procede qund al calcolo de potenzal assocat a nod n una base assocata alla soluzone data. Sccome una base corrsponde a un albero rcoprente, essa deve contenere 7 arch. Bsogna qund aggungere tre nuov arch agl arch con flusso postvo n modo da non formare ccl: ad esempo a, a, a. In generale potenzal y devono soddsfare le equazon y j y = c j per gl arch j appartenent alla base, coè y y a = 0 y y a = 0 y y a = 0 y 4 y a = 0 y 4 y b = 0 y 4 y c = 0 y p y 4 = 0,4 Ponendo arbtraramente a 0 l potenzale y 4 del nodo 4 s ha n sequenza: y p = 0,4, y = y = y = y a = y b = y c = 0. Con quest valor s verfca ad esempo che l costo rdotto c è par c + y y p = 0,4. Inserendo l arco p n base s forma l cclo {a, p, 4p, a4}. Sommando alla soluzone corrente la crcolazone a = p = 5.000, 4p = a4 = s ha che la varable a esce dalla base n quanto l flusso corrspondente satura la capactà dell arco. La nuova soluzone mglora evdentemente quella precedente d 0, Semplcemente aggungendo un nuovo nodo pozzo q dove confluscono tre arch uscent da nod a, b e c. La domanda nel nodo q è fssata a (par alla somma da dedurre per le spese medche), e ogn arco q ha capactà.500, sogla 0 e costo d attraversamento nullo. È evdente che ogn flusso che pass attraverso l arco q verrà dedotto, a fn dell mposta, dal reddto complessvo della persona fsca. 5. Cronache marzane Alfa, Beta e Gamma sono tre mercant marzan che, per rfornre propr negoz, s sono ncontrat a fare affar su un paneta nterno d Betelgeuse. Alfa ha un bel carco d lofon, Beta un astronave pena d ysotop e Gamma può fornre un gran numero d zbaldon. Dopo lunga contrattazone tre s accordano come rportato nella tabella seguente, dove l ncroco tra la rga e la colonna j fornsce l numero d oggett che deve fornre a j n cambo d un oggetto fornto da j a : ad esempo, n cambo d un ysotopo fornto da Beta, Alfa deve dargl,5 lofon (ncroco tra rga e colonna ), e n cambo d uno zbaldone fornto da Gamma, Alfa gl dovrà dare 0,4 lofon (ncroco tra rga e colonna ). La rga sotto la tabella ndca l numero d lofon, ysotop e zbaldon stvat da tre marzan nelle rspettve astronav. Alfa Beta Gamma Alfa,5 0,4 Beta 0,8,4 Gamma, 0,5 dsponbltà Xlofon Ysotop Zbaldon Cascun marzano può ovvamente fornre agl altr due un quanttatvo d oggett non superore alla propra dsponbltà. Alfa s chede se ruscrà a scambare tutta la propra merce. Formulate l problema come programmazone lneare usando varabl j che ndcano l numero d oggett che fornsce a j e

4 mostrate come portarlo n forma canonca medante l smplesso, avvando l calcolo d una prma soluzone d base. Con la notazone suggerta è mmedato scrvere ma αβ + αγ αβ + αγ =,5 βα + 0,4 γα < 000 βα + βγ = 0,8 αβ +,4 γβ < 000 γα + γβ =, αγ + 0,5 βγ < 000 αβ, αγ, βα, βγ, γα, γβ > 0 Il problema s pone faclmente n forma standard aggungendo 6 varabl d slack w,, w 6 > 0 e rsolvendo un problema auslaro nel quale s mzza w 4 + w 5 + w 6 : αβ αγ βα βγ γα γβ w w w w 4 w 5 w La base nzale è degenere. Eseguendo un operazone d pvot n qunta colonna s fa uscre w 6 dalla base: αβ αγ βα βγ γα γβ w w w w 4 w 5 w 6 4, , , , , , , 0 0, , 0 Un analoga operazone n prma colonna fa uscre w 4 : αβ αγ βα βγ γα γβ w w w w 4 w 5 w 6 0,76,4 0 0, , 0 0, , , ,6,6 0 0, ,8 0 0, ,5,5 0, 0 0, , 0 0,04 0 0,6 8,4 0 0, ,8 0, 0 0, 0 0, , 0 Infne eseguendo un pvot n quarta colonna s può far uscre dalla base la varable w 4 ottenendo una prma soluzone d base per l problema orgnale ( calcol sono puttosto complcat e non vengono rprodott). A partre dalla base ottenuta s può ottenere la soluzone ottma renserendo la funzone obettvo nzale con coeffcent nelle prme due colonne e 0 altrove. Rsolvendo s vene a sapere che Alfa potrebbe pazzare tutt e 000 suo lofon vendendone 500 a Beta e rmanent a Gamma. In questo modo anche Beta ruscrebbe a dsfars d tutt suo ysotop: 800 andrebbero ad Alfa e gl altr 00 a Gamma. Quest ultmo nvece ruscrebbe a vendere solo 750 de suo 000 zbaldon: tutt ad Alfa e nessuno a Beta. 6. Due ret Due dtte devono costrure una rete raccoglendo un nseme N d nod n due sottoret complete. Per ogn coppa d nod, j è noto l costo c j sostenuto per congungerl con un lnk. Formulare come programmazone lneare 0- l problema d assegnare a cascuna dtta la realzzazone d una sottorete n modo che la dfferenza tra le lunghezze complessve de lnk usat nelle due sottoret sa ore possble.

5 S possono usare le seguent varabl d decsone 0-: = se e solo se l nodo è assegnato alla dtta j = se e solo se l lnk j è realzzato dalla dtta y j = se e solo se l lnk j è realzzato dalla dtta Con questa notazone vncol s scrvono: j < ( + j )/ j > + j se non s assegnano entramb nod alla dtta, questa non l collega se s assegnano entramb nod alla dtta, questa l deve collegare y j < ( + j )/ se l nodo (o j) è assegnato alla dtta, la dtta non lo collega a j (a ) y j > j se nessuno de due nod è assegnato alla dtta, la dtta l deve collegare S not che la seconda coppa d vncol s ottene dalla prma sosttuendo ( ) a e ( j ) a j. La dfferenza tra cost d collegamento, n valore assoluto, è par a D = Σ,j N c j j Σ,j N c j y j Mnmzzare tale valore corrsponde a mzzare la varable reale D con gl ulteror vncol D > Σ,j N c j j Σ,j N c j y j D = Σ,j N c j y j Σ,j N c j j

RICERCA OPERATIVA GRUPPO A prova scritta del 12 febbraio 2009

RICERCA OPERATIVA GRUPPO A prova scritta del 12 febbraio 2009 RICERCA OPERATIVA GRUPPO A prova scrtta del febbrao 009. Dte se l vettore (, /4, /4) è combnazone affne, conca o convessa de vettor (, 0, ), (, ½, ½) e ( ½,, ). Il vettore (, /4, /4) è combnazone convessa

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 12 febbraio x2

RICERCA OPERATIVA GRUPPO B prova scritta del 12 febbraio x2 RICERCA OPERATIVA GRUPPO B prova scrtta del febbrao 009. Dte se l vettore (,, ) è combnazone affne, conca o convessa de vettor ( ½,, ), (0, 5, 0) e (,, ). Il vettore (,, ) è combnazone affne de vettor

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1.

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1. PROGRAMMAZIONE LINEARE Una pccola ntroduzone R. Tade R. Tade 2 LA PROGRAMMAZIONE LINEARE L obettvo del captolo consste nel fornre lo scheletro d un problema d programmazone lneare e gl strument concettual

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 7/0/006 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 0 soggett. Soggetto Sesso Età Reddto

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott.

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott. Lezon d Rcerca Operatva Corso d Laurea n Informatca Unverstà d Salerno Lezone n 18 - Teora de graf: defnzon d base - Problema del flusso a costo mnmo Prof. Cerull Dott.ssa Gentl Dott. Carrabs Teora de

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Verifica reti con più serbatoi (II)

Verifica reti con più serbatoi (II) Verfca ret con pù serbato (I) Condzon al contorno per gl N nod della rete e corrspondent ncognte: Condzone mposta Incognta A) carco pezometrco portata concentrata B) portata concentrata carco pezometrco

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercz: lezone 17/10/2018 Rendmento d un B.O.T. Eserczo 1. Un captale C vene chesto n prestto alla banca

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor Algortm e Strutture d Dat (3 a Ed.) Rcerca tabù Alan Bertoss, Alberto Montresor La tecnca della rcerca locale passa attraverso una sequenza S 0, S 1,..., S m d soluzon, fno ad arrestars su un ottmo locale

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 9--) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Hartree-Fock 10/19/12 HF.DOC 0

Hartree-Fock 10/19/12 HF.DOC 0 Hartree-Fock 0/9/ HF.DO 0 Hamltonano per elettr. per elettron e M nucle H Ψ = EΨ H = M Z A µ A R A 44444 3 µ µ op. mono elettronco µ < ν µν M A B Z Z A B AB { r < 4 R43 op. b elettronco repulsone nucleare

Dettagli

Università di Catania Facoltà di Ingegneria Corso di Gestione delle Risorse Idriche. Appunti sulla programmazione dinamica A.

Università di Catania Facoltà di Ingegneria Corso di Gestione delle Risorse Idriche. Appunti sulla programmazione dinamica A. Unverstà d Catana Facoltà d Ingegnera Corso d Gestone delle Rsorse Idrche Appunt sulla programmazone dnamca A. Cancellere A.A. 007-008 Introduzone La programmazone dnamca (PD) è una tecnca che consente

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche

Elementi di teoria bayesiana della decisione Teoria bayesiana della decisione: caratteristiche Element d teora bayesana della decsone Teora bayesana della decsone: caratterstche La teora bayesana della decsone è un approcco statstco fondamentale al problema del pattern recognton. Il suo obettvo

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn c (, j) A x s.t. (, j) δ + x ( ) ( j, ) δ x j ( j) = b( ) N x u (, j) A s dce problema d flusso a costo mnmo.

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn s.t. c (, j) A x (, j) δ x + x ( ) u ( j, ) δ x j ( ) = b( ) N (, j) A s dce problema d flusso a costo mnmo. Assumamo

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 16: 13 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Eserczo Nell ammortamento d un prestto

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3 serctazone 4 Dcembre 0 Sstem trfase e potenze serczo L L L 00 f 50 Hz smmetrco Fg : Sstema trfase a stella S consder l crcuto d Fg e s calcolno le tre corrent d fase e le potenze attve, reattve ed apparent

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA CAPITOLO 33 LA CORRENTE ELETTRICA CONTINUA 1 L INTENSITÀ DELLA CORRENTE ELETTRICA 1! v! a t! F m e! E m t v! e t m! E Fssato l ntervallo d tempo t, s può scrvere! v! E 2 Q t 4,0 10 2 A 5,0 s 0,20 C 3 t

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017 Matematca Fnanzara aa 2016-17 Prof Ragn Ferrara 05 luglo 2017 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo d

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

i 1 i 2 2 A 18 V 2.8 (a) Applicando la LKT alla maglia si ricava la corrente: i =. Imponendo i = 5 A si ricava R

i 1 i 2 2 A 18 V 2.8 (a) Applicando la LKT alla maglia si ricava la corrente: i =. Imponendo i = 5 A si ricava R . Le lampade sono collegate n parallelo. Il modello è rportato nella fgura seguente. La potenza assorbta da cascuna lampada è /6 W, qund la potenza complessa è d 8 W. V 6 Ω 6 Ω. Applcando la LKT alla magla

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Lezione 5 - Analisi cinematica

Lezione 5 - Analisi cinematica eone 5 - nals cnematca [Ultmarevsone: revsone:25 25novembre 28] S consder ora una struttura bdmensonale, ossa un nseme d trav collegate tra loro ed al suolo da opportun vncol. In questa leone s voglono

Dettagli

Sorgenti Numeriche - Soluzioni

Sorgenti Numeriche - Soluzioni Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

(figura - 4.1a) Eseguendo i passaggi matematici richiesti si ottengono le relazioni seguenti:

(figura - 4.1a) Eseguendo i passaggi matematici richiesti si ottengono le relazioni seguenti: SCZO.: Data la rete lneare mostrata n fgura., ottenuta con l collegamento d generator ndpendent d corrente e resstenze, s desdera determnare la tensone d cascun nodo applcando l prncpo de Potenzal d Nodo.

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Esame di metodi matematici per le decisioni economiche e aziendali

Esame di metodi matematici per le decisioni economiche e aziendali UNIVERSITÀ DEGLI STUDI ROMA TRE Esame d metod matematc per le decson economche e aendal 9-02-209 Canddato (cognome e nome)......... Matrcola...... ) Data la matrce 200 00 80 200 200 250 400 300 50 50 00

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi Unverstà degl Stud d Roma Tor Vergata Facoltà d Ingegnera Corso d Laurea n Ingegnera Medca Algortm Rev.2.2 of 2016-04-20 Elaborazone dat Problem che s presentano spesso sono 1. rcorsvo (es. successone

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Metodi di analisi per circuiti resistivi

Metodi di analisi per circuiti resistivi Metod d anals per crcut resst www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del 7-0-07 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato dalle equazon

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

PROBLEMI DI ALLOCAZIONE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Trasporti / 1.

PROBLEMI DI ALLOCAZIONE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Trasporti / 1. PROBLEMI DI ALLOCAZIONE Una pccola ntroduzone R. Tade R. Tade PROBLEMI DI ALLOCAZIONE I problem d allocazone rchedono d mnmzzare l costo (o massmzzare l guadagno) dell'attrbuzone d rsorse che non sono

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA Captolo TRV CONTINU. TRV CONTINU FORU PRIINRI RIGURDNTI TRV PPOGGIT Trave appoggata soggetta a: carco () moment, cedment Determnaon delle rotaon,. a) Carco - - d d - d ( ) d 77 Captolo TRV CONTINU b) oment,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 16: 9 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? 2/25? Caso partcolare, ma molto mportante α

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 03-4, lez.9) Matematca Computazonale, Ottmzzazone,

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Elementi di strutturistica cristallina I

Elementi di strutturistica cristallina I Chmca fsca superore Modulo 1 Element d strutturstca crstallna I Sergo Brutt Impacchettamento compatto n 2D Esstono 2 dfferent mod d arrangare n un pano 2D crconferenze dentche n modo da tassellare n modo

Dettagli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli Realzzazone d FSM sncrone M. Favall Engneerng Department n Ferrara Realzzazone d FSM Anals e sntes de sstem dgtal / Introduzone Realzzazone d FSM Anals e sntes de sstem dgtal 2 / Una volta ottenuto l automa

Dettagli

Corso di. Gasdinamica II Tommaso Astarita

Corso di. Gasdinamica II Tommaso Astarita Corso d Gasdnamca II Tommaso Astarta astarta@unna.t www.docent.unna.t Gasdnamca II Tommaso Astarta 5.0.008 Metodo d Eulero S supponga d avere una equazone dfferenzale del prmo ordne: f ( x, ) x xo o Defnendo

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nformate per la mca Dr. Sergo Brutt Eserctazone d anals de dat II INERCALAIN GRAPHIE ANDE Eserctazone - galvanometra Cclazon galvanostate d una cella elettromca In questa eserctazone studeremo

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli