Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor"

Transcript

1 Algortm e Strutture d Dat (3 a Ed.) Rcerca tabù Alan Bertoss, Alberto Montresor

2 La tecnca della rcerca locale passa attraverso una sequenza S 0, S 1,..., S m d soluzon, fno ad arrestars su un ottmo locale S m. Nel passaggo da una soluzone S t alla soluzone successva S t+1, è applcata una certa regola d trasformazone. Un modo equvalente d descrvere tale procedmento corrsponde ad effettuare una mossa, tra un certo nseme d mosse possbl, n modo da selezonare S t+1 nell ntorno d S t. Denotato con M = {µ 1,..., µ p } l nseme delle mosse possbl, l ntorno I(S t ) al passo t-esmo è defnto come: I(S t ) = {S : S è ottenble da S t applcando una mossa µ M}. In questo modo, l ntorno I(S t ) dpende dall ultma soluzone S t e dall ntero nseme M delle mosse possbl. In generale, però, s può defnre l ntorno n modo che dpenda dalla sequenza S 0, S 1,..., S t d soluzon e da un sottonseme M d M. In altr termn, alcune delle soluzon n I(S t ) non possono essere selezonate perché le rspettve mosse µ sono probte. Un semplce modo per probre alcune mosse consste nell ntroduzone d un parametro T d probzone, che determna per quanto tempo una mossa µ rmarrà probta dopo la sua esecuzone. La tecnca d rcerca tabù fssa è ottenuta mantenendo costante l parametro T per tutta la durata della rcerca. In questo modo la scelta della soluzone S t+1 è effettuata nell nseme I P (S t ) I(S t ) delle soluzon permesse, che sono ottenbl coè da S t applcando una mossa che non è stata usata durante le ultme T terazon. In dettaglo, sa last [µ ] l terazone t nella quale è stata usata per l ultma volta la mossa µ (con last [µ ] nzalzzato a ) e s ndchno con µ 1 la mossa nversa d µ e con c(s) l costo della soluzone S. Allora, s ha l seguente crtero, detto della mglore mossa permessa : I P (S t ) = {S: S è ottenble da S t con una mossa µ M tale che last [µ 1 ] <, t T } S t+1 = S I P (S t ) tale che c(s) c(s ) per ogn S I P (S t ). S not che, poché c sono mosse probte, non è detto che c(s t+1 ) c(s t ), coè, l costo della soluzone può peggorare ed è così possble sfuggre da un mnmo locale, purché T sa scelto oculatamente. Charamente, se T = 0, allora non c sono ma probzon e s rottene la rcerca locale. In lnea d prncpo, maggore è T, maggore è la dversfcazone, coè maggore l numero d terazon prma che s rvst per la seconda volta la stessa soluzone. Però, T non può essere troppo grande, altrment tutte le mosse dventano presto probte e la rcerca s blocca. In generale, l valore d T deve garantre l esstenza d almeno due mosse permesse per cascuna terazone (altrment la rcerca non è neanche nfluenzata dal costo c(s) delle soluzon). Supponamo che una soluzone S sa ndvduata da una strnga d n bt e che la mossa µ conssta nel complementare l bt -esmo, 1 n. S not che ogn mossa è dempotente, coè l nversa d ogn mossa è uguale a se stessa: µ 1 = µ. Date due strnghe X ed Y, sa H(X, Y ) la loro dstanza d Hammng, ovvero l numero d bt corrspondent che sono dvers nelle due strnghe. In tal caso, T n 2 garantsce che c sano sempre almeno due mosse permesse. Se sono esegute solo mosse permesse, allora è facle dmostrare che l mnmo ntervallo R d rpetzone è 2(T + 1). In altr termn, se S t+r = S t, allora R 2(T +1). La dmostrazone è mmedata poché, quando un bt è complementato, resta congelato per le prossme T terazon. Esempo 1 (Probzon e dversfcazone). Sa la funzone da mnmzzare c(s) uguale al numero ntero la cu rappresentazone bnara è data propro da S (n tal caso, la soluzone ottma S è data dalla c Alan Bertoss, Alberto Montresor. Algortm e Strutture d Dat.

3 terazone t S t T+1 2(T+1) c(s t ) H(S t, S 0 ) Fgura 1: Correlazone tra probzone T e dversfcazone H(S t, S 0 ). Nell esempo, T = 3. strnga nulla). Come llustrato nella Fg. 1 per n = 8, s assuma d partre propro da S e sa T = 3. All terazone 0 la mossa che dà l mnmo valore della funzone c è quella che complementa l bt meno sgnfcatvo. All terazone 1, l bt meno sgnfcatvo è probto (l perodo n cu un bt è congelato, perché la rspettva mossa è probta, è mostrato n nero) e qund la mglore mossa permessa consste nel cambare l penultmo bt meno sgnfcatvo, e così va. S not che la dstanza d Hammng è crescente nelle prme T + 1 terazon e che la massma dstanza d Hammng è raggunta all terazone T + 1. Successvamente, la dstanza decresce ed all terazone 2(T + 1) s rpete la soluzone nzale. S not comunque che le soluzon vstate nelle prme T + 1 terazon (quando la dstanza cresce) sono dverse da quelle vstate nelle successve T + 1 terazon (quando la dstanza decresce). In questo modo, non s perde tempo a rvstare soluzon gà vstate (a parte la soluzone nzale). Vedamo come progettare una semplce eurstca d rcerca tabù fssa per la BISEZIONE, dove l parametro T d probzone è fornto come dato d ngresso alla procedura e rmane nalterato durante la computazone. Probzone fssa Consderamo una eurstca d rcerca tabù fssa per la BISEZIONE dove una soluzone S = (V 0, V 1 ) è ndvduata da una strnga d n bt e la mossa µ consste nel complementare l bt -esmo, 1 n, come nell Esempo 1. In questo modo, V 0 è rappresentato dagl ndc de bt a 0, V 1 dagl ndc de bt ad 1, e la mossa µ può essere ndvduata specfcando semplcemente l ndce. S not che, per defnzone, la soluzone S non è necessaramente ammssble. Infatt, poché una mossa consste d fatto nello spostare un nodo da V 0 ad V 1 o vceversa, non è detto n generale che V 0 ed V 1 abbano la stessa cardnaltà. Solo se cò avvene, coè se V 0 = V 1 = n/2, allora la soluzone S è ammssble. Nel seguto, verrà utlzzato un parametro d probzone frazonale T f tale che T = nt f, n modo da normalzzare la probzone rspetto ad n. Inoltre, vene usata come contatore d terazone una varable globale t accedble e modfcable da tutte le procedure. Analogamente, c mn è una varable globale che ndca l costo c(s mn ) della mglore soluzone ammssble S mn ncontrata durante la rcerca. S assume che tale varable sa nzalzzata dalla procedura mn-max-greedy (). Anche last è un vettore globale, tale che last[] regstra l ultmo valore della varable d terazone t per l quale l nodo è stato spostato da un nseme all altro. Infne, sono usate due varabl n 0 ed n 1 tal che n 0 = V 0 e n 1 = V 1. La seguente procedura bsectonfxed() rceve come parametr la probzone frazonale T f ed l numero d terazon da esegure. S assume che una soluzone ammssble d partenza sa stata ndvduata c Alan Bertoss, Alberto Montresor. Algortm e Strutture d Dat.

4 con mn-max-greedy. La procedura bsectonfxed() sposta un nodo alla volta. L ndce k ndvdua l sottonseme V k nel quale aggungere l nodo tolto da V 1 k. Il nodo è determnato dalla funzone bestmove() n accordo al crtero della mglore mossa permessa, coè n modo che last[] < t T e l costo c sa l pù pccolo possble spostando da V 1 k a V k (cò può essere fatto effcentemente utlzzando una struttura d dat a cestn (bucket). Se la soluzone S = (V 0, V 1 ) è ammssble ed l costo c(s) è mnore del costo c mn della mglore soluzone fnora trovata, allora vene regstrato l costo della nuova soluzone. bsectonfxed(real T f, nteger teratons) T nt f for nteger j 1 to teratons do k f(n 0 > n/2, 1, 0) nteger bestmove(1 k) V k V k {} V 1 k V 1 k {} last[] t t t + 1 f n 0 = n 1 and c(s) < c mn then c mn c(s) A causa della struttura stessa del problema della BISEZIONE, è bene non sceglere valor d T f maggor d 1/4. Infatt una strnga bnara ed l suo complemento (con gl zer e gl uno tra loro scambat) ndcano d fatto la stessa soluzone, con due nsem della partzone scambat. Pertanto, un valore d T f > 1/2 comporterebbe che, dopo essere partt con una soluzone, s raggungerebbe dopo T + 1 terazon una partzone pù vcna al complemento che a quella d partenza. La scelta d T f < 1/4 elmna queste oscllazon tra una soluzone ed l suo complemento. Una scelta ragonevole del parametro teratons è nvece 100n. Prove spermental hanno mostrato come la scelta d T f abba un effetto crucale sulla soluzone trovata: una scelta azzeccata porta a buone bsezon, mentre una scelta sbaglata porta a bsezon scadent. Probzone randomzzata Per evtare d dover provare e rprovare manualmente svarat valor d T f eseguendo rpetutamente la procedura bsectonfxed() fno a selezonare l valore d T f buono, s possono semplcemente effettuare delle scelte casual! S ottene così la procedura probablstca bsectonrandom(). bsectonrandom(nteger teratons, nteger ndvduale) t 0 whle t < teratons do mn-max-greedy t end t + ndvduale whle t < t end do T f random(1, 25)/100 bsectonfxed(t f, n) c Alan Bertoss, Alberto Montresor. Algortm e Strutture d Dat.

5 Il parametro teratons fornsce l numero complessvo d terazon, mentre ndvduale ndca l numero d terazon d ogn sngola fase, che rparte dopo aver rchamato mn-max-greedy (se ndvduale = teratons allora avvene una sola fase). Ogn n terazon vene scelto casualmente un nuovo T f. In questo modo, s evta d sceglere un cattvo valore d T f e mantenerlo per molte terazon. Al contraro, s contnua a sceglere sempre valor dvers d T f, che sono mantenut per poche terazon. Prove spermental hanno mostrato che, sceglendo ndvduale = 10n ed teratons = 100n, le soluzon trovate da questa rcerca tabù randomzzata sono paragonabl a quelle trovate dalla rcerca tabù fssa nella quale s us l mglor valore d T f! In altr termn, molt valor casual usat per poco tempo danno gl stess rsultat del mglor valore possble usato a lungo. Per trovare soluzon ancora mglor del problema della BISEZIONE, s può mpegare una rcerca tabù reattva, dove la messa a punto del parametro T f è effettuata automatcamente dalla procedura stessa, sempre usando la randomzzazone, tenendo conto delle propretà del grafo n ngresso e dello spazo delle soluzon. I dettagl non sono qu rportat e possono essere repert nell artcolo ctato nella bblografa. c Alan Bertoss, Alberto Montresor. Algortm e Strutture d Dat.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Scrivere programmi corretti

Scrivere programmi corretti Scrvere programm corrett L esempo della rcerca bnara o dcotomca J. Bentley, Programmng Pearls, Addson Welsey. 1 Schema processo produzone funzone teratva Algortmo n pseudo-codce Indvduazone nvarante Codfca

Dettagli

Algoritmi euristici: III Ricerca Locale

Algoritmi euristici: III Ricerca Locale Algortm eurstc: III Rcerca Locale Danele Vgo D.E.I.S. - Unverstà d Bologna dvgo@des.unbo.t rev. 1.0 - dcembre 2003 Algortm d Rcerca Locale partono da una soluzone (ammssble) cercano teratvamente d mglorarla

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio Formulazone e Notazon Algortmo d Carler- Pnson er roblem d Job Sho Schedulng: un esemo Notazon o C M ( o r, q -esma oerazone del ob Temo d rocessamento d o Macchna che deve rocessare o Clque (nseme d oerazon

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli Realzzazone d FSM sncrone M. Favall Engneerng Department n Ferrara Realzzazone d FSM Anals e sntes de sstem dgtal / Introduzone Realzzazone d FSM Anals e sntes de sstem dgtal 2 / Una volta ottenuto l automa

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Lezione 2 Codifica della informazione

Lezione 2 Codifica della informazione Lezone Codfca della nformazone Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Organzzazone della lezone La codfca della nformazone Notazone poszonale Rappresentazone

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Algoritmi basati sulla tecnica Divide et Impera

Algoritmi basati sulla tecnica Divide et Impera Qucksort Algortm basat sulla tecnca Dvde et Impera In questo corso: Rcerca bnara Mergesort (ordnamento) Qucksort (ordnamento) Moltplcazone d nter Moltplcazone d matrc (non n programma) NOTA: nonostante

Dettagli

Apprendimento Automatico: Apprendimento Non Supervisionato

Apprendimento Automatico: Apprendimento Non Supervisionato Apprendmento Automatco: Apprendmento Non Supervsonato 1 Supervsone nell Apprendmento (aranco, rotondo, classe= ) (gallo, lungo, classe= ) (gallo, rotondo, classe= ) colore forma (gallo, lungo, classe=

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

Incertezza di sensibilità < fluttuazione intrinseca delle misure.

Incertezza di sensibilità < fluttuazione intrinseca delle misure. Error casual no ad ora abbamo correlato la bontà d una msura alla sensbltà degl strument utlzzat. Samo partt da una stuazone n cu effettuata una sere d msure rpetute, le msure hanno tutte dato lo stesso

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Lezione 3 Codifica della informazione (2)

Lezione 3 Codifica della informazione (2) Lezone Codfca della nformazone () Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Un rpasso Un quadro della stuazone: dove samo, dove stamo andando e perché Una rvstazone:

Dettagli

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri Algortm d Ordnamento Fondament d Informatca Prof. Ing. Salvatore Cavaler 1 Introduzone Ordnare una sequenza d nformazon sgnfca effettuare una permutazone n modo da rspettare una relazone d ordne tra gl

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 gennaio 2009

RICERCA OPERATIVA GRUPPO B prova scritta del 22 gennaio 2009 RICERCA OPERATIVA GRUPPO B prova scrtta del gennao 009. Dte se l vettore (5/4,, ) è combnazone affne, conca o convessa de vettor (/, 0, ), (,, ) e (/, /, ). Il vettore (5/4,, ) è combnazone affne de vettor

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T.

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T. tabelle dnamche Tabelle dnamche Spesso non s conosce a pror quanta memora serve per memorzzare una struttura dat (tabella d dat ~ array, tabella hash, heap, stack, ecc.. Può captare qund d allocare una

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi Unverstà degl Stud d Roma Tor Vergata Facoltà d Ingegnera Corso d Laurea n Ingegnera Medca Algortm Rev.2.2 of 2016-04-20 Elaborazone dat Problem che s presentano spesso sono 1. rcorsvo (es. successone

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Esame del corso di Tecniche Avanzate per il Trattamento delle Immagini

Esame del corso di Tecniche Avanzate per il Trattamento delle Immagini Esame del corso d Tecnche Avanzate per l Trattamento delle Immagn Data: 18 Settembre 2007 1 Es.1 [pt. 5]: Nella fgura (10x10 pxel) rportata a fanco l rettangolo banco è d dmenson 6x4 pxel. Indcando con

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd)

Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd) Specfca, progetto e verfca della correttezza d algortm teratv Il metodo delle asserzon Ragonament su d un algortmo Ragonare sulla specfca d un algortmo data con pre e post-condzon serve a: (a posteror)

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn c (, j) A x s.t. (, j) δ + x ( ) ( j, ) δ x j ( j) = b( ) N x u (, j) A s dce problema d flusso a costo mnmo.

Dettagli

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986 Anals degl error Introduzone J. R. Taylor, Introduzone all anals degl error, Zanchell, Bo 1986 Sstem d untà d msura, rappresentazone numerca delle quanttà fsche e cfre sgnfcatve Resnck, Hallday e Krane

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 03-4, lez.9) Matematca Computazonale, Ottmzzazone,

Dettagli

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto Unverstà degl Stud d Roma Tor vergata partmento d Ingegnera Cvle Corso d Gestone ed eserczo de sstem d trasporto Docente: Ing. Perlug Coppola Lucd proettat a lezone La progettazone degl orar de servz d

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn s.t. c (, j) A x (, j) δ x + x ( ) u ( j, ) δ x j ( ) = b( ) N (, j) A s dce problema d flusso a costo mnmo. Assumamo

Dettagli

Segmentazione di immagini

Segmentazione di immagini Segmentazone d mmagn Introduzone Segmentazone: processo d partzonamento d un mmagne n regon dsgunte e omogenee. Esempo d segmentazone. Tratta da [] Introduzone (def. formale ( Sa R l ntera regone spazale

Dettagli

OPERAZIONI E INSIEMI NUMERICI

OPERAZIONI E INSIEMI NUMERICI OPERAZIONI E INSIEMI NUMERICI Per rcordare H Un'operazone bnara n un nseme non vuoto A eá una legge ce ad ogn coppa d element a,b A assoca un elemento c A. Gl element a e b s camano operand o termn dell'operazone,

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Pattern Recognition. Bayes decision theory

Pattern Recognition. Bayes decision theory Computer Scence Department Unversty of Verona A.A. 015-16 Pattern Recognton Bayes decson theory 1 Rev. Thomas Bayes, F.R.S 170-1761 Introduzone Approcco statstco fondamentale d classfcazone d pattern Ipotes:

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro NUMERI GRANDI DI FIBONACCI come trovare velocemente loro esatt valor numerc Crstano Teodoro crstanoteodoro@vrglo.t Sommaro: n questo artcolo vene proposto, n alternatva al metodo classco per l calcolo

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Sommario. Calcolatori Elettronici Prof. Gian Luca Marcialis

Sommario. Calcolatori Elettronici Prof. Gian Luca Marcialis Calcolator Elettronc Prof. Gan Luca Marcals Corso d Laurea d Ingegnera Elettronca Captolo 6 Untà d Centrale d Elaborazone Artmetca de Calcolator Sommaro L untà artmetco-logca (ALU) Rappresentazone degl

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott.

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott. Lezon d Rcerca Operatva Corso d Laurea n Informatca Unverstà d Salerno Lezone n 18 - Teora de graf: defnzon d base - Problema del flusso a costo mnmo Prof. Cerull Dott.ssa Gentl Dott. Carrabs Teora de

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

3 Partizioni dell unità 6

3 Partizioni dell unità 6 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b)

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Università di Catania Facoltà di Ingegneria Corso di Gestione delle Risorse Idriche. Appunti sulla programmazione dinamica A.

Università di Catania Facoltà di Ingegneria Corso di Gestione delle Risorse Idriche. Appunti sulla programmazione dinamica A. Unverstà d Catana Facoltà d Ingegnera Corso d Gestone delle Rsorse Idrche Appunt sulla programmazone dnamca A. Cancellere A.A. 007-008 Introduzone La programmazone dnamca (PD) è una tecnca che consente

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

Limitazioni di ampiezza negli amplificatori reali

Limitazioni di ampiezza negli amplificatori reali Lmtazon d ampezza negl amplfcator real G. Martnes 1 Lnearzzazone della trans-caratterstca G. Martnes Anals a pccolo segnale e concetto d punto d lavoro IL RUMORE EGLI AMPLIFICATORI Defnzon S defnsce rumore

Dettagli

INDAGINE ESAUSTIVA O CAMPIONARIA?

INDAGINE ESAUSTIVA O CAMPIONARIA? INDAGINE ESAUSTIVA O CAMPIONARIA? S rcorre certamente all ndagne per campone quando la rlevazone completa è mpossble e quando la determnazone delle modaltà possedute dalle untà n esame ne comporta la dstruzone

Dettagli