Serie e trasformate di Fourier brevi richiami

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Serie e trasformate di Fourier brevi richiami"

Transcript

1 UNIVERSIÀ DEGLI SUDI DI FIRENZE DIPARIMENO DI INGEGNERIA CIVILE e AMBIENALE Sezioe Geoecica Serie e rasformae di Fourier brevi richiami Do. Ig. Albero Pulii

2 eorema di Fourier U qualsiasi segale periodico x(), co periodo, soo alcue codizioi maemaiche (x limiaa e moooa a rai), può essere rappreseao dalla somma di fuzioi siusoidali pure di opporuaampiezzaedifrequezamulipladif/(seriedi Fourier). I paricolare, la serie di Fourier può essere espressa i re diverse forme, ra loro equivalei: Forma rigoomerica base (i sei e cosei); Forma rigoomerica i ampiezza e fase; Forma espoeziale complessa.

3 Serie di Fourier FORMA RIGONOMERICA BASE x ( ) a + ( a cosω + b siω ) o co a o 0 x( ) d a x( )cos( ω ) d b x( )si( ω ) 0 0 d ω π,,3... 3

4 Serie di Fourier FORMA RIGONOMERICA IN AMPIEZZA E FASE x ( ) c + [ c si( ω + ϕ )] o ampiezza fase iiziale fase co c o a 0 a b b c + ϕ a a 4

5 Serie di Fourier FORMA ESPONENZIALE COMPLESSA x ( ) ( * iω ) c e + co c * i ω 0 x( ) e d Z :... 3,,,0,,,3... 5

6 Serie di Fourier FORMA ESPONENZIALE COMPLESSA La scriura ella forma espoeziale complessa, molo compaa, è uile perché semplifica oevolmee i calcoli. Essa deriva dalla formula di Eulero, che correla la rappreseazioe espoeziale e rigoomerica dei umeri complessi: α e i cosα + i siα da cui cosα e iα + e iα siα i e iα e iα 6

7 FORMA ESPONENZIALE COMPLESSA Serie di Fourier Sosiuedo ell espressioe rigoomerica base : ) ( i i e ib a e ib a a x ω ω poso: * a 0 c * ib a c * ib a c c c c ( ) + + * * * 0 ) ( i i e c e c c x ω ω si può scrivere: e, raccogliedo: + i e c x ω * ) ( i d e x c 0 * ) ( ω co (di uovo sosiuedo la formula di Eulero elle espressioi di a 0, a e b, e quidi di c 0, c e c )

8 Speri di Fourier Il coefficiee c * è u umero complesso, e, come ui i umeri complessi, è doao di u modulo e di u argomeo. Facedo riferimeo alla rappreseazioe grafica dei umeri complessi (i cui la pare reale è rappreseaa sull asse delle ascisse e quella immagiaria sull asse delle ordiae), il modulo di u umero za+ib, z, è la disaza della coppia (a,b) dall origie, l argomeo arg(z)θ è l agolo che la cogiugee il puo (a,b) co l origie fa co l asse delle ascisse posiive, misurao i seso aiorario. 8

9 Speri di Fourier c * (e quidi il suo modulo e il suo argomeo) può essere viso come ua fuzioe di ω : al variare di, e quidi di ω, esso assume valore diverso. Il grafico che descrive il valore di c * al variare di ω è deo spero di Fourier delle ampiezze, il grafico che descrive il valore di arg(c * ) al variare di ω è deo spero di Fourier delle fasi. Il primo dei due è quello che i geere ha il maggior ieresse dal puo di visa applicaivo, e ad esso si farà d ora i poi riferimeo quado si parlerà di spero. 9

10 Speri di Fourier Se la fuzioe x() è u armoica, la corrispodee serie di Fourier ha u solo ermie diverso da 0, ed allo sesso modo il suo spero è composo da u solo elemeo. Se la fuzioe x() è la somma di u umero fiio di armoiche, la corrispodee serie di Fourier ha u umero fiio di ermii diverso da 0, ed allo sesso modo il suo spero è composo da u umero fiio di elemei. 0

11 Speri di Fourier Se la fuzioe x() o è ua fuzioe rigoomerica, ma è periodica di periodo, la corrispodee serie di Fourier ha u umero ifiio di ermii diverso da 0, ed allo sesso modo il suo spero è composo da u umero ifiio di elemei. Si raa però di u ifiià umerabile, che dà luogo ad ua spezzaa. Spero di Fourier di u oda quadra

12 rasformaa di Fourier Se la fuzioe x() o è ua fuzioe rigoomerica, e o è eache periodica, ma è solao defiia su uo l asse reale (eveualmee co valore ullo al di fuori di u cero iervallo), si defiisce rasformaa di Fourier la fuzioe: + iω x( e d ) x( ω ) ) Quesa fuzioe ha forma aaloga a quella dei coefficiei c * *, ed ache lo sesso sigificao maemaico. I queso caso, però, il paramero di frequeza ω o assume ua ifiià umerabile di valori, ma u ifiià coiua. Di cosegueza, ache gli speri di Fourier delle ampiezze e delle fasi (rispeivamee x ) (ω) e arg( x ) ( ω) ) ) o soo più fuzioi discree, ma coiue, defiie su uo l asse reale. Si può passare, co procedimeo opposo, da l airasformaa di Fourier: x ) (ω) a x(), eseguedo x( ) + i ω e ω xˆ( ) dω

13 rasformaa di Fourier Spero di Fourier di u segale irregolare aperiodico 3

14 rasformaa di Fourier discrea U erremoo è u segale o periodico. Se e può duque defiire la rasformaa di Fourier. uavia, per la sua elaborazioe, il segale, che è coiuo, viee discreizzao, perché viee campioao i u umero fiio di pui (di isai emporali), k, ra loro disai. L operazioe di iegrale si rasforma così i u operazioe di sommaoria. N ) iωk x( ω ) x( k ) e rasformaa di k x( k ) ω N x( ω ) e iω k Fourier discrea Airasformaa di Fourier discrea ω ω π N Il fao che i pui di campioameo siao i umero fiio (N) fa sì che si possa aalizzare solao u iervallo limiao di frequeze. D alra pare, è sufficiee fare riferimeo al campo di ieresse (sia per quao riguarda la frequeza fodameale del erremoo sia per quao riguarda la frequeza propria degli edifici). Geeralmee, la frequeza massima cosideraa è f5 Hz, mere la miima è u valore comuque piccolo (ma ovviamee diverso da 0), ad esempio f0.05 Hz. 4

15 rasformaa Veloce di Fourier (FF) Eseguire la rasformaa di Fourier discrea applicado le formule precedei compora u coso compuazioale elevao. Per queso, si uilizza u algorimo diverso, deo rasformaa Veloce di Fourier (FF Fas Fourier rasform; Cooley & uckey, 965). Per applicarla è ecessario che i pui campioai siao i umero pari ad ua poeza di. Per queso moivo, occorre, dopo il ermie del segale, aggiugere, co passo aalogo a quello di campioameo, pui co ordiaa ulla, fio ad oeere ua quaià oale pari alla prima poeza di superiore al umero di pui campioai del segale. Queso rumore biaco serve ache per ridurre al miimo l approssimazioe idoa dalla discreizzazioe. 5

16 Frequeza di Nyquis Per quao riguarda il passo di campioameo, esso deve essere scelo co aezioe. Il eorema di Nyquis sabilisce ifai che ogi compoee i frequeza del segale che sia sigificaiva deve essere campioaa da almeo due pui per periodo. I caso corario, si può avere ua perdia e ua alerazioe delle iformazioi coeue el segale. I paricolare, se il passo di campioameo emporale o è sufficiee per ua descrizioe correa delle frequeze più elevae, quese subiscoo il cosiddeo feomeo di aliasig, ovvero vegoo scambiae co frequeze più basse. Di cosegueza, dea f c la massima frequeza sigificaiva coeua el segale, quesa deve essere legaa al passo di campioameo dalla disequazioe: La frequeza f N sempre risulare f. N f c f c è dea frequeza di Nyquis. Deve duque 6

17 Frequeza di Nyquis Campioameo isufficiee del segale origiario (a rao coiuo) e coseguee aliasig co u segale a frequeza iferiore (a raeggio) Campioameo adeguao del segale (3 pui per periodo) 7

Marco Listanti. Parte 2 Rappresentazione dei segnali e teorema del campionamento. DIET Dept

Marco Listanti. Parte 2 Rappresentazione dei segnali e teorema del campionamento. DIET Dept 1 Marco Lisai Lo srao Fisico Pare Rappreseazioe dei segali e eorema del campioameo elecomuicazioi (Caale - Prof. Marco Lisai - A.A. 017/018 DIE Dep Segale aalogico Segale empo-coiuo adameo el empo di ua

Dettagli

TRASFORMATA DI FOURIER. A.1 Segnali analogici, deterministici ed aleatori. A p p e n d i c e A

TRASFORMATA DI FOURIER. A.1 Segnali analogici, deterministici ed aleatori. A p p e n d i c e A A p p e d i c e A RASFORMAA DI FOURIER Uo degli aspei più imporai di uo il seore dell igegeria è sicuramee l aalisi di segali el domiio del empo e della frequeza. I segali aalogici si disiguoo i segali

Dettagli

Teoria delle distribuzioni Parte quinta Limiti nel senso delle distribuzioni

Teoria delle distribuzioni Parte quinta Limiti nel senso delle distribuzioni ezioi di Maemaica e disribuzioi pare 5 Teoria delle disribuzioi Pare quia imii el seso delle disribuzioi operazioe di limie i seso disribuzioale Passiamo a raare, araverso ua serie di esempi precedui da

Dettagli

I appello - 8 Gennaio 2019

I appello - 8 Gennaio 2019 Aalisi Maemaica - A.A. 08/9 Prove scrie di Aalisi Maemaica - A.A. 08/09 Corso di Laurea i Igegeria Civile Corso di Laurea i Igegeria Iformaica ed Eleroica I appello - 8 Geaio 09 Svolgere i seguei esercizi,

Dettagli

Sforzo all interfaccia fra due regioni con differente permeabilità magnetica

Sforzo all interfaccia fra due regioni con differente permeabilità magnetica Sforzo all ierfaccia fra due regioi co differee permeabilià mageica Si cosideri l ierfaccia fra due regioi, Ω e Ω, avei diversa permeabilià mageica, rispeivamee e. Si limii ora lo sudio ad ua porzioe ifiiesima

Dettagli

OPERAZIONI SUI SEGNALI DETERMINISTICI, ENERGIA, VALOR MEDIO, POTENZA, ANALISI DI FOURIER, CONVOLUZIONE. A cos 2 / 2

OPERAZIONI SUI SEGNALI DETERMINISTICI, ENERGIA, VALOR MEDIO, POTENZA, ANALISI DI FOURIER, CONVOLUZIONE. A cos 2 / 2 OPERAZIONI SUI SEGNALI DEERMINISICI, ENERGIA, VALOR MEDIO, POENZA, ANALISI DI FOURIER, CONVOLUZIONE Esercizio Calcolare la poeza, l eergia e il valor medio dei seguei segali a) x()a; b) x()u() ; c) x()acos(oφ)

Dettagli

TEST #1 Corso di Telecomunicazioni C. Prati. Operazioni elementari sui segnali, impulsi, esponenziali complessi e serie di Fourier

TEST #1 Corso di Telecomunicazioni C. Prati. Operazioni elementari sui segnali, impulsi, esponenziali complessi e serie di Fourier ES # Corso di elecomuicazioi C. Prai Operazioi elemeari sui segali, impulsi, espoeziali complessi e serie di Fourier Esercizi di veriica degli argomei svoli el primo capiolo del eso Segali e Sisemi per

Dettagli

Lezione 3 Proprietà statistiche degli stimatori OLS - 1. Anche in questo capitolo si considera il modello di regressione lineare.

Lezione 3 Proprietà statistiche degli stimatori OLS - 1. Anche in questo capitolo si considera il modello di regressione lineare. Lezioe 3 Proprieà saisiche degli simaori OLS - Ache i queso capiolo si cosidera il modello di regressioe lieare y x β + u co E( u Ω ) 0, x appariee a Ω per,,, e si assume che sia assegao il processo (fiio)

Dettagli

Fondamenti Segnali e Trasmissione IOL Prova in presenza 23/02/2006

Fondamenti Segnali e Trasmissione IOL Prova in presenza 23/02/2006 Fodamei Segali e rasmissioe IOL Prova i preseza 0006 è l igresso di u sisema lieare empo ivariae caraerizzao dalla risposa all impulso h () rec 0. 5. Disegare ale risposa all impulso e valuare quale y

Dettagli

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Adolfo Scimoe FORMULE INTEGRAZIONE Pag INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Iegrazioe delle fuzioi razioali frae Se la frazioe è impropria, cioè il grado del umeraore è maggiore o uguale

Dettagli

Il logaritmo e l esponenziale

Il logaritmo e l esponenziale Il logarimo e l espoeziale 6 marzo 2009 La defiizioe di logarimo che si impara ella scuola secodaria è la seguee: Defiizioe Il logarimo i base b di x è l espoee cui si deve elevare b per oeere x. I formule:

Dettagli

Tecnica delle misurazioni applicate Esame del 7 gennaio 2008

Tecnica delle misurazioni applicate Esame del 7 gennaio 2008 Tecica delle misurazioi applicae Esame del 7 geaio 008 Problema 1. La Beloiglio rl è u impresa che alleva idusrialmee coigli e da lugo empo uilizza il magime ProRabbi 10% che ha sempre garaio, i u presabilio

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

ELENCO TESTI DELLE PROVE SCRITTE

ELENCO TESTI DELLE PROVE SCRITTE ELENCO ESI DELLE PROVE SCRIE 1/1/ 1) Descrivere le caraerisiche fodameali che differeziao i dai, segali emporali e le immagii biomediche. Spiegare quali di quese soo i grado di descrivere feomei diamici.

Dettagli

Convertitoriditipospot (convertono, idealmente, il valore istantaneo del segnale); V ts

Convertitoriditipospot (convertono, idealmente, il valore istantaneo del segnale); V ts Pare II (Coversioe D/A e A/D) La coversioe A/D I coveriori A/D si dividoo i: Coverioridiipospo (coveroo, idealmee, il valore isaaeo del segale); s s Si raa di disposiivi veloci ma sesibili al rumore di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 23 giugno 2005

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 23 giugno 2005 ESAME DI STATO DI LICEO SCIENTIFICO -5 Corso Sperimeale PNI Tema di MATEMATICA - giugo 5 Svolgimeo a cura della profssa Sadra Berecoli e del prof Luigi Tomasi (luigiomasi@liberoi) RISPOSTE AI QUESITI DEL

Dettagli

Il modello di Black e Scholes come limite del modello binomiale multiperiodale

Il modello di Black e Scholes come limite del modello binomiale multiperiodale Capiolo Il modello di Blac e Scholes come limie del modello biomiale muliperiodale. Il Modello Biomiale Muliperiodale Ricordiamo brevemee il Modello Biomiale Muliperiodale o Cox-Ross-Rubisei IPOTESI e

Dettagli

Si dice che f è infinitesima o che è un infinitesimo per x x0 Un infinitesimo, quindi è una variabile che tende a zero.

Si dice che f è infinitesima o che è un infinitesimo per x x0 Un infinitesimo, quindi è una variabile che tende a zero. pag Appui elaborai dal collega Prof. Vicezo De Pasquale Ifiiesimi Si dice che f è ifiiesima o che è u ifiiesimo per se f ( ) U ifiiesimo, quidi è ua variabile che ede a zero. Es. - π y cos è u ifiiesimo

Dettagli

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi Esercizi sui umeri complessi per il dodicesimo foglio di esercizi 6 dicembre 2010 1 Numeri complessi radici ed equazioi Ricordiamo iazitutto che dato u umero complesso z = x + iy, il suo coiugato, idicato

Dettagli

2. Fondamenti sui segnali analogici

2. Fondamenti sui segnali analogici INFO-COM Dp. Diparimeo di Scieza e ecica dell Iormazioe e della Comuicazioe Uiversià degli Sudi di Roma La Sapieza. Fodamei sui segali aalogici ELECOMUNICAZIONI per Igegeria Iormaica (secodo ao caale A-LA

Dettagli

Il logaritmo e l esponenziale

Il logaritmo e l esponenziale Il logarimo e l espoeziale 2 geaio 202 La defiizioe di logarimo che si impara ella scuola secodaria è la seguee: Defiizioe Il logarimo i base b di x è l espoee cui si deve elevare b per oeere x. I formule:

Dettagli

Università di Camerino Corso di Laurea in Fisica: indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea in Fisica: indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Iegrali idefiii Geeralià Si è viso come, daa ua fuzioe di equazioe y = f(), si possa rovare la sua derivaa prima f (). Si è ache osservao che esise ua codizioe ecessaria, ma o sufficiee, affiché ua fuzioe

Dettagli

(x + 1) α (1 x) 3 α per x ( 1, 1) 0 per x / [ 1, 1]

(x + 1) α (1 x) 3 α per x ( 1, 1) 0 per x / [ 1, 1] Corsi di Probabilià, Saisica e Processi socasici per Ig dell Auomazioe, Iformaica e If Ges Azieda // Esercizio Si osserva l iesià del veo el poro di Maria regisrado uo ogi gioro i cui il veo o supera ua

Dettagli

Equazioni differenziali: formule

Equazioni differenziali: formule Equazioi differeziali: formule Equazioi a variabili separabili y ' A B y Vale eorema esiseza e uicià locale y ' dy Ad B y y y ' A B y y Si applicao le codizioi alla fie dei due iegrali idefiii, oppure

Dettagli

Ammortamento di un debito

Ammortamento di un debito Ammorameo di u debio /35 Ammorameo di u debio Che cosa si iede per ammorameo? Ammorameo coabile La quoa di ammorameo cosiuisce la pare del coso di u bee maeriale o immaeriale di ivesimeo da aribuire all

Dettagli

0 per x / ( 1, ). i) (4 p) Trovare per quali valori di α la funzione f è una densità di probabilità (non si chiede di calcolare C α ).

0 per x / ( 1, ). i) (4 p) Trovare per quali valori di α la funzione f è una densità di probabilità (non si chiede di calcolare C α ). Corsi di Probabilià, Saisica e Processi socasici per Ig dell Auomazioe, Iformaica e If Ges Azieda /5/ Esercizio U sisema di preallarme su u velivolo segala ua A allarme oppure ua N o allarme ogi dieci

Dettagli

4: Strato fisico: i segnali nel tempo e nella frequenza

4: Strato fisico: i segnali nel tempo e nella frequenza 1 1 4: Strato fisico: i segali el tempo e ella frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche dei coettori) tra il mezzo trasmissivo

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO Simulazioe 14/15 ANNO SCOLASTICO 14/15 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Risoluzioe Problema 1 - Trekkig i moaga a) Disegiamo il grafico b) Calcoliamo la

Dettagli

Esercizio 1. Sia N un processo di Poisson di parametro λ. Dimostrare che, per ogni t > 0,

Esercizio 1. Sia N un processo di Poisson di parametro λ. Dimostrare che, per ogni t > 0, Esercizi di Calcolo delle Probabilià della 9 a seimaa Corso di Laurea i Maemaica, Uiversià degli Sudi di Padova. Esercizio 1. Sia N u processo di Poisso di paramero λ. Dimosrare che, per ogi > 0, N P oλ.

Dettagli

D.F.T. Discrete Fourier Transform Trasformata discreta di Fourier

D.F.T. Discrete Fourier Transform Trasformata discreta di Fourier D.F.. Discrete Fourier rasform rasformata discreta di Fourier Si cosideri ua fuzioe tempo-discreta periodica, cioè che esista solo i determiati istati di tempo *c co umero itero variabile da a - i u periodo

Dettagli

Impianti Industriali. La previsione della domanda. Metodi di estrapolazione. Ing. Lorenzo Tiacci

Impianti Industriali. La previsione della domanda. Metodi di estrapolazione. Ing. Lorenzo Tiacci Impiai Idusriali a previsioe della domada Meodi di esrapolazioe Ig. orezo Tiacci e compoei della domada Tred Cogiuurale Sagioale Casuale Tedeziali (red) a caraere geeralmee crescee e decrescee Sisemaiche

Dettagli

y(t) o complesse non tutte nulle, fa corrispondere un'uscita data dalla:

y(t) o complesse non tutte nulle, fa corrispondere un'uscita data dalla: Capiolo V TRASFORMAZIOI LIEARI DEI SEGALI V. - Defiizioi. Proprieà geerali. x( ) S y() Fig. VI. Trasformazioe di segali S ed è simbolicamee rappreseaa dalla relazioe: y () = S x () I (V..) { } U sisema

Dettagli

Tab. 1 - Studenti presenti alla lezione di statistica del per voto alla maturità

Tab. 1 - Studenti presenti alla lezione di statistica del per voto alla maturità 53 Idici di variabilià 531 Iervalli di variazioe Sosiuire ua disribuzioe co u valore medio, per quao esso possa essere rappreseaivo, causa comuque ua fore perdia di iformazioe Divea perciò ecessario rovare

Dettagli

CAPITOLO V MODELLO MATEMATICO E FUNZIONAMENTO IN REGIME PERMANENTE DEGLI IMPIANTI DI DISTRIBUZIONE SU LINEA L C

CAPITOLO V MODELLO MATEMATICO E FUNZIONAMENTO IN REGIME PERMANENTE DEGLI IMPIANTI DI DISTRIBUZIONE SU LINEA L C CTOLO V MODELLO MTEMTCO E FUNZONMENTO N REGME ERMNENTE DEGL MNT D DSTRBUZONE SU LNE Sebbee, come descrio precedeemee, a disribuzioe de eergia eerica ae ueze fiai avvega, praicamee sempre, su rei di disribuzioe

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fodmei di elecomuiczioi - SEGNALI E SPERI Prof. Mrio Brber [pre ] 1 Fodmei di LC - Prof. M. Brber - Segli e speri [pre ] Covoluzioe Defiizioe: w 3( = ( w1 * w ( w1 ( w ( d L covoluzioe è oeu:

Dettagli

ESERCITAZIONE: FEM. Consideriamo un elemento triangolare. y 3

ESERCITAZIONE: FEM. Consideriamo un elemento triangolare. y 3 ESERCITAZIONE: FEM L aalisi agli elemei fiii è u ipo di aalisi che si rifà alla meccaica dei solidi e rasforma il coiuo i u discreo composo da umerosi elemei dei quali se e cooscoo le proprieà. Le relazioi

Dettagli

Istituzioni di Analisi Superiore, secondo modulo

Istituzioni di Analisi Superiore, secondo modulo Uiversià degli Sudi di Udie Ao Accademico 997/98 Facolà di Scieze aemaiche, Fisiche e Naurali Corso di Laurea i aemaica Isiuzioi di Aalisi Superiore, secodo modulo Cogome e Nome: Prova Scria del 4 giugo

Dettagli

Forza dell oscillatore

Forza dell oscillatore (lez 6, A) Forza dell oscillaore roduciamo ua uova gradezza. La forza dell oscillaore. Quesa quaià sosazialmee è proprozioale all elemeo di marice del momeo di dipolo ra lo sao iiziale e fiale. Nella descrizioe

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 20/02/ P1 pag.1

Sensori Segnali Rumore - Prof. S. Cova - appello 20/02/ P1 pag.1 Sesori Segali Rumore - ro. S. Cova - appello //3 - pag. ROBLEMA Quadro dei dai Segale a impulso reagolare Ampiezza: Duraa: µs Rumore c S variabile, da misurare S Hz desià eicace di poeza (uilaera) limiaa

Dettagli

NATURA DELLE VIBRAZIONI

NATURA DELLE VIBRAZIONI NAURA DELLE VIBRAZIONI de. le vibrazioi soo perurbazioi idoe da ua sorgee i u dao mezzo isico (erreo, acqua, aria, ecc.) e a secoda del ipo di sorgee possoo essere di aura meccaica, eleromageica, ecc.

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

R chi h ami m sul u cana n le di d com o u m n u i n cazion o e n radi d o

R chi h ami m sul u cana n le di d com o u m n u i n cazion o e n radi d o Richiami sul caale di comuicazioe radio 1 Fadig leo shadowig è causao da osacoli di gradi dimesioi palazzi ra TX e RX Il pah loss è proporzioale a r α, dove α è i geere ra 2.5 e 5 i ambiee urbao Erambi

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Fondamenti di Internet e Reti

Fondamenti di Internet e Reti . sui riardi commuazioe di paccheo -.o U sisema rasmissivo della velocià di 00 [kb/s] presea ua lughezza di 500[km]. Si calcoli il empo che iercorre fra la rasmissioe del primo bi e la ricezioe dell'ulimo

Dettagli

Classificazione dei Segnali

Classificazione dei Segnali Classificazioe dei Segali Segali Determiati: Si dice di u segale del quale coosciamo esattamete l adameto el tempo. Del segale sappiamo tutto. Ad esempio s(t)si(4πt) è u segale determiato u segale biomedico

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

ANALISI DI FOURIER. Analisi di Fourier di sequenze bidimensionali o Immagini

ANALISI DI FOURIER. Analisi di Fourier di sequenze bidimensionali o Immagini AALISI DI FOURIER Aalisi di Fourier di sequeze bidimesioali o Immagii -Defiizioi di Sequeze Bidimesioali o Immagii -Trasformata Discreta di Fourier D -Iterpretazioe Piao di Fourier -Esempi I seguito prederemo

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

Di fatto potremo rappresentare analiticamente le correnti magnetizzanti che operano in ciascuna delle colonne del TRS con espressioni del tipo:

Di fatto potremo rappresentare analiticamente le correnti magnetizzanti che operano in ciascuna delle colonne del TRS con espressioni del tipo: Correi a vuoo el rasformaore rifase Il problema delle correi a vuoo el rasformaore rifase è imporae i quao, a secoda dei collegamei delle fasi, si avrà o meo la deformazioe dei flussi o della corree mageizzae.

Dettagli

ELEMENTI DI TEORIA DELLE PROBABILITA

ELEMENTI DI TEORIA DELLE PROBABILITA ELEMENTI DI TEORIA DELLE PROBABILITA Nozioi base Spazio S S è l isieme di ui i possibili esii di u esperimeo. Esempio 1. Nel lacio di u dado abbiamo S{1,2,3,4,5,6}. Esempio 2. La duraa di ua lampadia S{x

Dettagli

SEGNALI, SISTEMI E OPERATORI

SEGNALI, SISTEMI E OPERATORI SEGNALI, SISEMI E OPERAORI Alla base dell eleroica c è lo sudio dei segal dei sisemi e del modo come i segali si propagao ei sisemi. Per redere più agevole la raazioe è ecessario irodurre dei meodi maemaici...

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Controlli Automatici L

Controlli Automatici L Segnali e rasformae - Corso di Laurea in Ingegneria Meccanica Segnali e rasformae DEIS-Universià di Bologna el. 5 93 Email: crossi@deis.unibo.i URL: www-lar.deis.unibo.i/~crossi Segnali e rasformae - Segnali

Dettagli

Rischio di interesse: Il modello del clumping. Prof. Ugo Pomante Università di Roma Tor Vergata

Rischio di interesse: Il modello del clumping. Prof. Ugo Pomante Università di Roma Tor Vergata Rischio di ieresse: Il modello del clumpig Prof. Ugo Pomae Uiversià di Roma Tor Vergaa Problemi dei modelli precedei Repricig gap e duraio gap Ipoesi variazioe uiforme dei assi di ieresse delle diverse

Dettagli

AFFIDABILITA DEI SISTEMI STOCASTICI (complessi)

AFFIDABILITA DEI SISTEMI STOCASTICI (complessi) AFFIDABILITA DEI SISTEMI STOCASTICI (complessi) 1 No ecessariamee il verificarsi di u guaso provoca la more del sisema. A vole soo ecessari più guasi el empo, affiché il sisema collassi. Fissao u empo

Dettagli

Il modello di Black e Scholes come limite del modello binomiale multiperiodale

Il modello di Black e Scholes come limite del modello binomiale multiperiodale Capiolo Il modello di Blac e Scholes come limie del modello biomiale muliperiodale. Il Modello Biomiale Muliperiodale Ricordiamo brevemee il Modello Biomiale Muliperiodale o Cox-Ross-Rubisei.. Ipoesi e

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Fourier Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Fourier

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 30 Gennaio 2019

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 30 Gennaio 2019 Uiversià di Roma Tor Vergaa - Corso di Laurea i Igegeria Aalisi Maemaica I - Prova scria del 3 Geaio 9 Esercizio. [5 pui] Calcolare lo sviluppo di Taylor dell ordie = 5 el puo x = per la seguee fuzioe:

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

2. Moto browniano: prime proprietà Il moto browniano Processi stocastici gaussiani

2. Moto browniano: prime proprietà Il moto browniano Processi stocastici gaussiani 6. MOTO BROWNIANO: PRIME PROPRIETÀ. Moo browiao: prime proprieà I queso capiolo sviluppiamo la raazioe maemaica del moo browiao. Queso processo prede il ome dal boaico scozzese Rober Brow, che el 87 descrisse

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

SMSMW#300#130#1#220#210W#300#130#1#140#130W#220#13

SMSMW#300#130#1#220#210W#300#130#1#140#130W#220#13 Marice icideza La marice d'icideza complea A c di u grafo orieao G co N odi ed R rami, è ua marice reagolare di N righe ed R coloe che si cosruisce come segue: si umerao co =1,2,...,N ui i odi e co r=1,2,...,r

Dettagli

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012.

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012. NUMERI REALI Mauro Saita maurosaita@tiscaliet.it Versioe provvisoria. Settembre 2012. Idice 1 Numeri reali. 1 1.1 Numeri aturali, iteri, razioali......................... 1 1.2 La scoperta dei umeri irrazioali.........................

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

Capitolo 2 - Serie di Fourier

Capitolo 2 - Serie di Fourier Apputi di eoria dei Segali Capitolo - Serie di Fourier Defiizioe di serie di Fourier di u segale periodico... Esempio: sviluppo di Fourier della fuzioe coseo... Proprietà dello sviluppo i serie di Fourier...3

Dettagli

GESTIONE DELLA PRODUZIONE

GESTIONE DELLA PRODUZIONE GESTIONE EA PROUZIONE 5.2.3 Teciche di Previsioe della domada Meodi esrapolaivi Gesioe della Produzioe iparimeo di Igegeria omada e compoei della domada Tedeziali (red) a caraere geeralmee crescee e decrescee

Dettagli

Laboratorio di onde II anno CdL in Fisica

Laboratorio di onde II anno CdL in Fisica Laboratorio di ode II ao CdL i Fisica Itroduzioe Oda stazioaria di spostameto Quado u oda soora stazioaria si stabilisce i u tubo a fodo chiuso i cui la lughezza del tubo è molto maggiore del suo diametro,

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

CAPITOLO IX FONDAMENTI DI MECCANICA DELLE VIBRAZIONI

CAPITOLO IX FONDAMENTI DI MECCANICA DELLE VIBRAZIONI CAPITOLO IX FONDAMENTI DI MECCANICA DELLE VIBRAZIONI R. BARBONI COSTRUZIONI AEROSPAZIALI 3. Geeralià Lo sudio del comporameo saico o esaurisce l aalisi di ua sruura elasica ed i paricolare di ua sruura

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

Detta H(ω) la funzione di trasferimento del filtro a parametri costanti, per sbiancare il rumore occorre un filtro che abbia

Detta H(ω) la funzione di trasferimento del filtro a parametri costanti, per sbiancare il rumore occorre un filtro che abbia esori egali Rumore - Prof.. Cova - aello 4/0/0 - P ag. PROBLEMA uadro dei dai Imulso di corree del rivelaore I s ( s / s ) () ex(-/ s ) s µs Preamlificaore Limie di bada Resiseza di igresso Caacià all

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Modelli'di'Variabili'Aleatorie'

Modelli'di'Variabili'Aleatorie' ModellidiVariabiliAleaorie! VariabilialeaoriediBeroulli: " X èdiberoullidiparamero p (,) se P( X ) p e P( X ) p. " Proprieà: # E X # Var X : p X ( ) + p X ( ) p. E( X ) E( X) masiccome X X $ E( X) E( X)

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Uiversità di Roma La Sapieza Laurea specialistica i Igegeria Elettroica Circuiti a tempo discreto Raffaele Parisi : Esempi di Sequeze e di Circuiti TD Sequeze otevoli, periodicità delle sequeze, esempi

Dettagli

2. FUNZIONE D ONDA, OSSERVABILI QUANTISTICHE ED EQUAZIONE DI SCHROEDINGER Ovvero: Gli strumenti della Meccanica Quantistica

2. FUNZIONE D ONDA, OSSERVABILI QUANTISTICHE ED EQUAZIONE DI SCHROEDINGER Ovvero: Gli strumenti della Meccanica Quantistica . FUNZIONE D ONDA OSSERVABILI QUANTISTICHE ED EQUAZIONE DI SCHROEDINGER Ovvero: Gli srumei della Meccaica Quaisica Sisema di ieresse (cosiderao come isolao: aomo/molecola Cofigurazioe del sisema: isieme

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Richiami di segnali aleatori

Richiami di segnali aleatori Richiami di segali aleatori Processi aleatori discreti (t): processo aleatorio tempo cotiuo: è ua v.a. fuzioe del tempo (T) è ua v.a. al variare di si ha processo aleatorio discreto: è dato da ua sequeza

Dettagli

Architettura degli elaboratori

Architettura degli elaboratori iversità degli Studi dell Isubria Dipartimeto di Scieze Teoriche e pplicate rchitettura degli elaboratori Registri e Marco Tarii Dipartimeto di Scieze Teoriche e pplicate marco.tarii@uisubria.it Register

Dettagli

Grandezze significative (dinamiche e cinematiche)

Grandezze significative (dinamiche e cinematiche) Gradezze sigificaie diamiche e ciemaiche Romao Lapasi DMRN - Uiersià di Triese Corso di Reologia Uiersià di Triese Obieio geerale defiire u equazioe cosiuia adaa a descriere il comporameo meccaico del

Dettagli

Soluzione. La curva di equazione y = 6 x è una parabola con vertice in V = (0,6)

Soluzione. La curva di equazione y = 6 x è una parabola con vertice in V = (0,6) Sessioe ordiaria LS_ORD 5 Soluzioe ) La curva di equazioe y è ua parabola co verice i (,) e cocavià rivola verso il basso, ed ierseca l asse delle ascisse ei pui (,), B (,) come soo rappreseao: La figura

Dettagli

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado.

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado. Capitolo 3 3.1 Defiizioi e proprietà La comparsa dei umeri complessi è legata, da u puto di vista storico, alla risoluzioe delle equazioi di secodo grado. L equazioe ammette le soluzioi x 2 + 2px + q =

Dettagli

11 IL CALCOLO DEI LIMITI

11 IL CALCOLO DEI LIMITI IL CALCOLO DEI LIMITI Il calcolo di u ite spesso si ricodurrà a trattare separatamete iti più semplici, su cui poi si farao operazioi algebriche. Dato che uo o più di questi iti possoo essere ±, bisoga

Dettagli

Matematica & Realtà I Fase Gara di Modellizzazione - Test finale Tempo massimo per lo svolgimento: 90 min. Nome... Cognome...

Matematica & Realtà I Fase Gara di Modellizzazione - Test finale Tempo massimo per lo svolgimento: 90 min. Nome... Cognome... Maemaica & Realà I Fase Gara di Modellizzazioe - Tes fiale 2017-2018 Tempo massimo per lo svolgimeo: 90 mi Nome... Cogome... Tempo impiegao per lo svolgimeo.. (i miui, da rascrivere a cura del uore di

Dettagli

1 ANALISI MATEMATICA A - Esercizi della settimana 2

1 ANALISI MATEMATICA A - Esercizi della settimana 2 ANALISI MATEMATICA A - Esercizi della settimaa. Esercizio Determiate gli isiemi segueti, evetualmete i fuzioe del parametro:. A c := x x : x + c < }, c R. B := x : + + x < } x 3. Le fuzioi coseo iperbolico

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti IGEGERIA E ECOLOGIE DEI SISEMI DI COROLLO su sistemi lieari discreti Prof. Carlo Rossi DEIS - Uiversità di Bologa el: 5 93 email: crossi@deis.uio.it Sistemi empo-discreti I questi sistemi i segali hao

Dettagli

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni.

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni. Lezioe del 26 settembre. 1. Successioi. Defiizioe 1 Ua successioe di umeri reali e ua legge che associa a ogi umero aturale = 0, 1, 2,... u umero reale - i breve: e ua fuzioe N R; si scrive ella forma

Dettagli

= = 32

= = 32 Algabra lieare (Matematica CI) - 9 Algebra delle matrici - Moltiplicazioe Euple, righe e coloe Notazioe I algebra lieare giocao u ruolo importate le coppie, tere,, ple ordiate di umeri reali; cosi come

Dettagli

Lezione 14. Rappresentazione grafica della risposta in frequenza. F. Previdi - Fondamenti di Automatica - Lez. 14 1

Lezione 14. Rappresentazione grafica della risposta in frequenza. F. Previdi - Fondamenti di Automatica - Lez. 14 1 Lezioe 4. Rappresetazioe grafica della risposta i frequeza F. Previdi - Fodameti di Automatica - Lez. 4 Schema della lezioe. Rappresetazioi grafiche della risposta i frequeza. Diagramma di Bode del modulo:

Dettagli

REGIME DELLA CAPITALIZZAZIONE COMPOSTA E SCONTO COMPOSTO

REGIME DELLA CAPITALIZZAZIONE COMPOSTA E SCONTO COMPOSTO Regie della capializzazioe coposa e scoo coposo REGME DELLA CAPTALZZAZONE COMPOSTA E SCONTO COMPOSTO Cosideriao l ipiego del capiale C per ua duraa di (uero iero) ai e suppoiao che gli ieressi siao capializzai

Dettagli

( ) che include le rilevazioni sulle variabili effettuate sulla i-esima unità. Di tali vettori

( ) che include le rilevazioni sulle variabili effettuate sulla i-esima unità. Di tali vettori Rappreseazioe geomerica dei dai mulidimesioali l veore è ua m-upla ordiaa di umeri reali che esprime u blocco di iformazioi: x i,x i,,x im se e usao (umero di uià rilevae). L isieme delle rilevazioi forma

Dettagli

Lez. 23: Prestazioni Fuori Progetto di Turbine

Lez. 23: Prestazioni Fuori Progetto di Turbine Effetti di flusso compressibile Lez. 23: Prestazioi Fuori Progetto di Turbie Prestazioi Fuori Progetto di Turbie Per ua data turbia, il rapporto di espasioe varia co la portata elaborata, per diversi umeri

Dettagli